Problem sheet 2
Jan 18th 2005

MT290 Complex variable

Ex. 1

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function. Define: f is continuous at $c \in \mathbb{C}$.
Use the definition to show that f with $f(z)=z^{3}$ is continuous everywhere.

Ex. 2

Simplify

$$
\text { a) } \quad\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{201} ; \quad \text { b) } \quad(1+i)^{2 n}+(1-i)^{2 n}
$$

Ex. 3
a) Draw in the Argand diagram the sequence of points $z^{0}, z^{1}, z^{2}, \ldots$ for $z_{1}=i, z_{2}=\exp \left(\frac{2 \pi i}{12}\right), z_{3}=1.1 \exp \left(\frac{2 \pi i}{12}\right), z_{4}=0.9 \exp \left(\frac{2 \pi i}{12}\right)$.
b) Given z in modulus argument form, give a general formula for z^{n} and for $z^{1 / n}$.
c) For which complex numbers is $\lim _{n \rightarrow \infty} z^{n}=\infty$, and for which $\lim _{n \rightarrow \infty} z^{n}=$ 0 . For which complex numbers does the limit not exist?
For the specialists: describe as precise as possible what happens, if $|z|=1$.
Ex. 4
Sketch the following sets; (for (a)-(c) you will want to write $z=x+i y$):

$$
\text { (a) }\left\{z: \operatorname{Im} z^{2}>1\right\} ; \text { (b) }\left\{z: \operatorname{Re} z^{2} \leq 1\right\} ;
$$

(c) $\left\{z: \operatorname{Re} z^{2}>1, x>1, y^{2}<4\right\} ;$ (d) $\left\{z: \arg z=\frac{\pi}{6}, 0<|z|<1\right\}$.

Ex. 5
Sketch the following curves:
(a) $\phi(t)=t+i|t-1|, \quad 0 \leq t \leq 2$
(b) $\phi(t)=3 \sin t+4 i \cos t, \quad 0 \leq t \leq 2 \pi$
(c) $\phi(t)=\sin t+i \sin 2 t, \quad 0 \leq t \leq 2 \pi$.
(The following problems use material from the 2nd half of the week).
Ex. 6
Find the derivatives $\frac{d f}{d z}$ and show that the Cauchy-Riemann equations are satisfied for the functions $f_{1}(z)=z^{4}$ and $f_{2}(z)=e^{2 z}$.

The following two problems are for the specialists (not examinable):

Ex. 7

Here is an alternative construction of the complex numbers.
Let $\mathbb{F}=\left\{\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right): x, y, \in \mathbb{R}\right\}$. Show that \mathbb{F}, with the usual matrix addition and multiplication, is a field. (I.e. show that addition and multiplication satisfies the axioms of a commutative group; check the distributive law.) What is the mutiplicative identity e?
Find an element f with $f^{2}=-e$.
Use this to define a bijective map $\varphi: \mathbb{F} \rightarrow \mathbb{C}$ which preserves the whole structure of addition and multiplication; i.e. $a+b=c$ in \mathbb{F} becomes $\varphi(a)+\varphi(b)=\varphi(c)$ in \mathbb{C}, etc.

Ex. 8
Now, let $\mathbb{H}=\left\{\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right): z, w, \in \mathbb{C}\right\}$. Show that \mathbb{H}, with the usual matrix addition and multiplication is, well, almost a field. (I.e. show that addition and multiplication satisfies the axioms of a group, but the multiplication is not commutative; check the distributive law.) (In algebra such a structure is called a skew field. The elements of \mathbb{H} are called quaternions, they have many interesting properties...

The problem sheets will be available (probably with a few days delay) at http://www.ma.rhul.ac.uk/~elsholtz/WWW/lectures/0405mt290/lecture.html (The URL given last week was incorrect.)
The workshops have plenty of places left!
Thursday 3 pm, Friday 12 , and 1 pm .

