MT290 Complex variable

Ex. 1

Transform each of the following equations into a quadratic equation in e^{z} and hence find all the solutions for $z \in \mathbb{C}$ to
(a) $\cosh z=-1$;
(b) $\sinh z=\frac{i \sqrt{3}}{2}$.

Ex. 2

Let $f(x+i y)=u(x, y)+i v(x, y)$. Suppose that f is differentiable as a function of a complex variable, and that $v(x, y)=(u(x, y))^{2}$. Use the Cauchy-Riemann equations to show that

$$
\frac{\partial u}{\partial x}=-4 u^{2} \frac{\partial u}{\partial x}
$$

and thus deduce that $f(z)$ is constant. (Note: $1+4 u^{2} \neq 0!$)
Ex. 3
By writing $\tan z$ in terms of $w=e^{i z}$ write down the quadratic equation w must satisfy if

$$
\tan z=a .
$$

Hence find z if $\tan z=\sqrt{3}-2 i$. By considering the quadratic equation which w satisfies, and using the fact that $e^{z}=0$ has no solution, show that $\tan z$ takes all values in \mathbb{C} with two exceptions.

Ex. 4
Sketch the following sets and investigate whether they are open, and/or connected (for (a)-(c) you will want to write $z=x+i y$):

$$
\text { (a) }\left\{z: \operatorname{Im} z^{2}>1\right\} ; \quad \text { (b) }\left\{z: \operatorname{Re} z^{2} \leq 1\right\} ;
$$

(c) $\left\{z: \operatorname{Re} z^{2}>1, x>1, y^{2}<4\right\} ;(d)\left\{z: \arg z=\frac{\pi}{6}, 0<|z|<1\right\}$.

Ex. 5
Sketch and investigate the following contours to see whether or not they are smooth, piecewise smooth, simple, closed: (a) $\phi(t)=t+i|t-1|, \quad 0 \leq t \leq 2$
(b) $\phi(t)=3 \sin t+4 i \cos t, \quad 0 \leq t \leq 2 \pi$
(c) $\phi(t)=\sin t+i \sin 2 t, \quad 0 \leq t \leq 2 \pi$.

For the two problems above compare your earlier sketches on problem sheet 2 .
Ex. 6
Let $z=x+i y, x>0, y>0$. Express $\log |z|$ and $\arg z$ as functions of x and y (so don't use $i: \log |z|=\log |x+i y|$). Thus show that the function $f(z)=\log |z|+i \arg z$ satisfies the Cauchy-Riemann equations for $x, y>0$. Since the derivatives are continuous in this region this implies that $f(z)$ is differentiable. Show that $f^{\prime}(z)=\frac{1}{z}$.

