Problem sheet 4 Feb 1st 2005

MT290 Complex variable

Ex. 1

Transform each of the following equations into a quadratic equation in e^z and hence find all the solutions for $z \in \mathbb{C}$ to

(a)
$$\cosh z = -1;$$
 (b) $\sinh z = \frac{i\sqrt{3}}{2}$

Ex. 2

Let f(x+iy) = u(x, y) + iv(x, y). Suppose that f is differentiable as a function of a complex variable, and that $v(x, y) = (u(x, y))^2$. Use the Cauchy-Riemann equations to show that

$$\frac{\partial u}{\partial x} = -4u^2 \frac{\partial u}{\partial x}$$

and thus deduce that f(z) is constant. (Note: $1 + 4u^2 \neq 0$!)

Ex. 3

By writing $\tan z$ in terms of $w = e^{iz}$ write down the quadratic equation w must satisfy if

$$\tan z = a$$

Hence find z if $\tan z = \sqrt{3} - 2i$. By considering the quadratic equation which w satisfies, and using the fact that $e^z = 0$ has no solution, show that $\tan z$ takes all values in \mathbb{C} with two exceptions.

Ex. 4

Sketch the following sets and investigate whether they are open, and/or connected (for (a)-(c) you will want to write z = x + iy):

(a) $\{z : \text{Im } z^2 > 1\};$ (b) $\{z : \text{Re } z^2 \le 1\};$ (c) $\{z : \text{Re } z^2 > 1, x > 1, y^2 < 4\};$ (d) $\{z : \arg z = \frac{\pi}{6}, 0 < |z| < 1\}.$

Ex. 5

Sketch and investigate the following contours to see whether or not they are smooth, piecewise smooth, simple, closed: (a) $\phi(t) = t + i|t-1|$, $0 \le t \le 2$ (b) $\phi(t) = 3 \sin t + 4i \cos t$, $0 \le t \le 2\pi$ (c) $\phi(t) = \sin t + i \sin 2t$, $0 \le t \le 2\pi$.

For the two problems above compare your earlier sketches on problem sheet 2.

Ex. 6

Let z = x + iy, x > 0, y > 0. Express $\log |z|$ and $\arg z$ as functions of x and y (so don't use i: $\log |z| = \log |x + iy|$). Thus show that the function $f(z) = \log |z| + i \arg z$ satisfies the Cauchy-Riemann equations for x, y > 0. Since the derivatives are continuous in this region this implies that f(z) is differentiable. Show that $f'(z) = \frac{1}{z}$.