Ex. 1

Evaluate the following integrals around C, the circle $|z|=1$ taken anticlockwise, using Cauchy's integral formula (or the formula for derivatives if appropriate).
(a) $\int_{C} \frac{\cos z}{z} d z$;
(b) $\int_{C} \frac{e^{\pi z}}{\left(z-\frac{1}{4}\right)^{2}(z-4)} d z$.

Ex. 2
Throughout this question $|z|<2$. Let $f(z)=\frac{1}{z}+g(z)$, where $|g(z)|<A$ (a fixed constant). Let γ_{r} be the circle: $r e^{i t}, 0 \leq t \leq 2 \pi$. Use the estimation lemma to show that for $r<2$

$$
\left|\int_{\gamma_{r}} f(z) d z-2 \pi i\right| \leq 2 \pi A r
$$

Deduce that

$$
\int_{\gamma_{r}} f(z) d z \longrightarrow 2 \pi i
$$

as $r \rightarrow 0$. [Note: there is nothing special about the $|z|<2$ here, it's there just to restrict our attention to a finite region.

Ex. 3
Show that $\left|e^{i z}\right| \leq 1$ when $\operatorname{Im} z \geq 0$. Let

$$
I_{R}=\int_{\gamma_{R}} \frac{e^{i z}}{1+z^{2}} d z
$$

where γ_{R} is the semicircle given by $\phi(t)=R e^{i t}, 0 \leq t \leq \pi$. Show that, for all large R,

$$
\left|I_{R}\right| \leq \frac{2 \pi}{R}
$$

Hence deduce that $I_{R} \rightarrow 0$ as $R \rightarrow \infty$.
Ex. 4
(Compare our discussion of $\int_{\gamma} \frac{1}{z^{2}+4} d z$.) Let $f(z)$ be a non-constant polynomial of degree at least two, and C(R) a circle centred on 0 with radius R. Use the estimation lemma to show that

$$
\lim _{R \rightarrow \infty} \int_{C(R)} \frac{1}{f(z)} d z=0
$$

Hence show, using the deformation of contours theorem, that if all the roots of $f(z)=0$ lie within the circle $|z|=R$, then

$$
\int_{C(R)} \frac{1}{f(z)} d z=0
$$

Ex. 5
Solve the quadratic equation $x^{2}-4 x+5=0$. Hence write $x^{2}-4 x+5=(x-\alpha)(x-\beta)$. Use the semicircular contour $\gamma(R):(-R, R) \cup\left\{R e^{i t}: 0 \leq t \leq \pi\right\}$ to evaluate the following two integrals:

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}-4 x+5} d x, \quad \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}-4 x+5} d x
$$

Note: Workshops this week:
Thursday 3pm: 325
Friday 12pm: Lec B
From Feb. 24th onwards:
Let's see if Thursday 11am attracts more people...
Thursday 11am: 325
Thursday 3pm: 325
But no Friday workshops any longer.

