MT290 Complex variable

Ex. 1

Give the radius of convergence for each of the following series:
a. $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{3}}$;
b. $\sum_{n=0}^{\infty} \frac{z^{n}}{5^{n}}$;
c. $\sum_{n=0}^{\infty} \frac{z^{n}}{n^{3}+5^{n}}$;
d. $\sum_{n=0}^{\infty} z^{n} 5^{-n^{2}}$

Ex. 2
Determine the radius of convergence for:
a) $\sum_{n=0}^{\infty} \frac{z^{n}}{7^{n}}$,
b) $\sum_{n=0}^{\infty} \frac{z^{5 n}}{7^{n}}$
c) $\sum_{n=0}^{\infty} \frac{z^{b n}}{a^{n}}$
d) $\sum_{n=0}^{\infty} \frac{z^{n}}{n^{r}}$
e) $\sum_{n=0}^{\infty} \frac{z^{n}}{\binom{(n)}{n}}$.
where in c) a and b and in d) r are positive real constants. Recall that $\binom{m}{n}=\frac{m!}{n!(m-n)!}$ and use Stirling's approximation for n ! below.

Ex. 3

Determine the integrals, if they exist. Distinguish the various radii R.

$$
\text { a) } \quad \int_{|z|=R} \frac{d z}{z(z+3)}, \quad \text { b) } \quad \int_{|z|=R} \frac{\sin (\pi z) d z}{z(2 z-1)(z-2)} \text {. }
$$

Ex. 4 (Revision)

The function $f(z)=u(x, y)+i v(x, y)$ is differentiable for all $z=x+i y$, and $f(0)=0$. Given that $u(x, y)=$ $\sin x \cosh y$, show, using the Cauchy-Riemann equations, that $f(z)=\sin z$. Hint: You will need to use results like $\sin (i y)=i \sinh y$ and remember trigonometric identities like $\sin (A+B)=\ldots$.

Ex. 5
Stirling's formula is: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$. Use your pocket calculator to convince yourself for $n=10,20,30, \ldots$. List some values of $\frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}$
Use this to find an approximation for $\binom{2 n}{n}$ and $\binom{3 n}{n}$.
Try to prove a much weaker form of Stirling's formula as follows:
$\ln (n!)=\ln 1+\ln 2+\ldots+\ln n$. Approximate the sum by a definite integral like $\int_{a}^{b} \ln x d x$ with appropriate bounds. Find a) a lower and b) an upper bound for n !. If these bounds are not too far apart you have a good approximation to $n!$.

Ex. 6 (More difficult)

(This problem shows that a) not only semicircle contours help to evaluate integrals along the real line; b) that you can reduce an integral like $\int e^{-x^{2}} \cos a x d x$ (here with $a=1$) to $\int e^{-x^{2}}, d x$. The latter is not really easy, but at least well known so that you can use it here.)
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function with $f(z)=e^{-z^{2}}$. Let $R(K)$ denote the rectangle defined by the four points $P_{1}=-K+0 i, P_{2}=+K+0 i, P_{3}=+K+\frac{1}{2} i, P_{4}=-K+\frac{1}{2} i$.
Let γ_{1} denote the path along the edge connecting P_{1} and P_{2},
Let γ_{2} denote the path along the edge connecting P_{2} and P_{3},
Let γ_{3} denote the path along the edge connecting P_{3} and P_{4},
Let γ_{4} denote the path along the edge connecting P_{4} and P_{1}.
i) Draw the integration contour in the Argand diagram.
ii) Show that $\int_{\partial R(K)} f(z) d z=0$. Here $\partial R(K)$ denotes the boundary of the rectangle, taken in anticlockwise direction.
iii) Show that $\lim _{K \rightarrow \infty} \int_{\gamma_{2}} f(z) d z=0$, and similarly $\lim _{K \rightarrow \infty} \int_{\gamma_{4}} f(z) d z=0$. Use the above results, and (without proof) the well known result $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$ to conclude that $\int_{0}^{\infty} e^{-x^{2}} \cos x d x=\frac{\sqrt{\pi}}{2 e^{1 / 4}}$.

