Problem sheet 8 March 1st 2005

MT290 Complex variable

Ex. 1

Give the radius of convergence for each of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{z^n}{n^3}$$
; **b.** $\sum_{n=0}^{\infty} \frac{z^n}{5^n}$; **c.** $\sum_{n=0}^{\infty} \frac{z^n}{n^3 + 5^n}$; **d.** $\sum_{n=0}^{\infty} z^n 5^{-n^2}$

Ex. 2

Determine the radius of convergence for:

a)
$$\sum_{n=0}^{\infty} \frac{z^n}{7^n}$$
, b) $\sum_{n=0}^{\infty} \frac{z^{5n}}{7^n}$, c) $\sum_{n=0}^{\infty} \frac{z^{bn}}{a^n}$, d) $\sum_{n=0}^{\infty} \frac{z^n}{n^r}$, e) $\sum_{n=0}^{\infty} \frac{z^n}{\binom{3n}{n}}$.

where in c) a and b and in d) r are positive real constants. Recall that $\binom{m}{n} = \frac{m!}{n!(m-n)!}$ and use Stirling's approximation for n! below.

Ex. 3

Determine the integrals, if they exist. Distinguish the various radii R.

a)
$$\int_{|z|=R} \frac{dz}{z(z+3)}$$
, b) $\int_{|z|=R} \frac{\sin(\pi z)dz}{z(2z-1)(z-2)}$.

Ex. 4 (Revision)

The function f(z) = u(x, y) + iv(x, y) is differentiable for all z = x + iy, and f(0) = 0. Given that u(x, y) = u(x, y) + iv(x, y) $\sin x \cosh y$, show, using the Cauchy-Riemann equations, that $f(z) = \sin z$. Hint: You will need to use results like $\sin(iy) = i \sinh y$ and remember trigonometric identities like $\sin(A + B) = \dots$

Ex. 5

Stirling's formula is: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. Use your pocket calculator to convince yourself for $n = 10, 20, 30, \dots$. List some values of $\frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}$

Use this to find an approximation for $\binom{2n}{n}$ and $\binom{3n}{n}$. Try to prove a much weaker form of Stirling's formula as follows:

 $\ln(n!) = \ln 1 + \ln 2 + \ldots + \ln n$. Approximate the sum by a definite integral like $\int_a^b \ln x \, dx$ with appropriate bounds. Find a) a lower and b) an upper bound for n!. If these bounds are not too far apart you have a good approximation to n!.

Ex. 6 (More difficult)

(This problem shows that a) not only semicircle contours help to evaluate integrals along the real line; b) that you can reduce an integral like $\int e^{-x^2} \cos ax \, dx$ (here with a = 1) to $\int e^{-x^2} \, dx$. The latter is not really easy, but at least well known so that you can use it here.)

Let $f: \mathbb{C} \to \mathbb{C}$ be the function with $f(z) = e^{-z^2}$. Let R(K) denote the rectangle defined by the four points $P_1 = -K + 0i, P_2 = +K + 0i, P_3 = +K + \frac{1}{2}i, P_4 = -K + \frac{1}{2}i.$

Let γ_1 denote the path along the edge connecting P_1 and P_2 ,

Let γ_2 denote the path along the edge connecting P_2 and P_3 ,

Let γ_3 denote the path along the edge connecting P_3 and P_4 ,

Let γ_4 denote the path along the edge connecting P_4 and P_1 .

- i) Draw the integration contour in the Argand diagram.
- ii) Show that $\int_{\partial R(K)} f(z) dz = 0$. Here $\partial R(K)$ denotes the boundary of the rectangle, taken in anticlockwise direction.
- iii) Show that $\lim_{K \to \infty} \int_{\gamma_2} f(z) dz = 0$, and similarly $\lim_{K \to \infty} \int_{\gamma_4} f(z) dz = 0$. Use the above results, and (without proof) the well known result $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ to conclude that $\int_{0}^{\infty} e^{-x^2} \cos x \, dx = \frac{\sqrt{\pi}}{2e^{1/4}}$.