MT290 Complex variable

Ex. 1
Find power series for the following functions about the points stated and give the radius of convergence for each of the series.
a. $\frac{1}{2-z}$ about $z=0$; b. $\frac{1}{2-z}$ about $z=12$; c. $\frac{5}{(1-z)(4+z)}$ about $z=0$. d. e^{z} about $z=i$. e. $\frac{1}{3-z}$ about $z=4 i$.

Ex. 2

Determine the power series of $\sin z$ in two different ways:
a) Use the definition of \sin in terms of the complex exp function.
b) Use $\frac{d^{2} \sin z}{d z^{2}}=-\sin z, \cos (0)=1$ and the fact that \sin is an odd function.
c) Use the definition of $\sinh z$ in terms of the \exp to find its power series. Compare with $\sin z$ and deduce that $\sin (i z)=i \sinh z$.

Can you simplify the above calculations by means of Taylor's theorem?

Ex. 3

Assuming that it is alright to integrate a power series term by term within its radius of convergence (it is !) use the series for $(1+z)^{-1}$ to obtain the power series:

$$
\begin{equation*}
\log (1+z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{n} \tag{*}
\end{equation*}
$$

What is the radius of convergence of this series? Let $z=i y$ in $\left(^{*}\right)$. Take the imaginary part to obtain the series for $\arctan y$.

Ex. 4

Find the first few coefficients of the Taylor series of $\tan z$ in two different ways.
a) using $c_{n}=\frac{f^{(n)}(0)}{n!}$. When you are tired of differentiating try
b)

$$
\tan z=\frac{\sin z}{\cos z}=\frac{z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!} \mp}{1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!} \mp}=c_{0}+c_{1} z+c_{2} z^{2}+\ldots
$$

Multiply by $\cos z$ and find $c_{0}, c_{2}, c_{4}, \ldots$ Then find, c_{1}, from this c_{3} etc.

Ex. 5

Complete the following explanation of Taylor's theorem: Perhaps you wondered where this formula $c_{n}=\frac{f^{(n)}(0)}{n!}$ comes from.
Let's try to filter out the coefficient c_{k} from $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. A good filter is our favourite integral $\int_{|z|=1} z^{n} d z= \begin{cases}2 \pi i & \text { if } n=-1 \\ 0 & \text { otherwise. }\end{cases}$
$\int_{|z|=1} f(z) d z$ would not lead anywhere, for a differentiable function this is just 0 . But let's try

$$
\int_{|z|=1} \frac{f(z)}{z^{k+1}} d z=\int_{|z|=1} \frac{\sum_{n=0}^{\infty} c_{n} z^{n}}{z^{k+1}} d z=\int_{|z|=1} \sum_{n=0}^{\infty} c_{n} \frac{z^{n}}{z^{k+1}} d z
$$

Now go on, exchange the integration and summation (you are allowed to do it!), use our filter, combine with Cauchy's integral formulae and find the expression for c_{k}.

Note: Reminder/Workshops: Thursday 11am: 325
Thursday 3pm: 325

But no Friday workshops any longer.

If you have questions on the course, home work solutions or feel unhappy about certain topics: (in addition to the workshops, office hour...) I might have time to address these during the last week in the lecture. General questions for this are very welcome! Otherwise I will possibly explain some selected old exam problems.

