Ex. 1
Find the order of the zero for each of the following functions at $z=0$:
a. $z^{100}-z^{10}$;
b. $e^{z}-1-z$;
c. $\frac{\sin z-z}{z}$;
d. $\frac{\cosh z-1-\frac{z^{2}}{2}}{z^{2}}$.

Ex. 2
Find the singularities of the following functions and determine whether or not they are poles:

$$
\frac{z^{2}}{(z-2)^{5}(z-5)^{7}(z-10)^{100}} ; \quad \frac{e^{z}}{z^{2}}-\left(\frac{1}{z}+\frac{1}{2}\right)^{2} ; \quad \operatorname{cosec}(1 / z)
$$

Where the functions have poles, determine the order of the poles. Compare $\sin \frac{1}{z}$ and $\frac{1}{\sin z}$.
Ex. 3
Find the poles (with their order), and residues at the poles, for the following functions: a) $\frac{z}{z^{2}-3 z+2}$
$\frac{1}{e^{z}+1}$
c) $\frac{\sin z}{z^{3}}$
d) $\frac{e^{z^{2}}}{\left(z^{2}+9\right)\left(z^{2}+25\right)}$. Hint The function in b) has infinitely many poles.

Ex. 4
Find the poles of the following functions which have positive imaginary part, and calculate the residues at the poles.

$$
\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} ; \quad \quad \frac{e^{i z}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}
$$

If you have any questions on the course, previous problem sheets, exam or whatever, please let me know. In the last week I might come back to questions of general interest in the lecture.

