Ex. 1

Find the Rook polynomials of the following boards:
(a)

(b)

Ex. 2
Alice, Bob, Charles, Diane and Edger are having a drink after work. There are only four drinks on their table: ale, Bacardi, cider, and Drambuie. Bob and Charles hate ale, Charles hates Bacardi, Alice and Edger hate cider and Bob hates Drambuie. In how many ways can four people get a drink they like?

Ex. 3
Count the number of primes in the interval $\{1,2, \cdots, 100\}$ using the PIE.
State precisely what are the sets A_{i} etc. in your solution.
Ex. 4
An important function with arithmetic information about integers is the Euler φ-function. (For example, the property $a^{p} \equiv a \bmod p$ for primes p can be generalized to $a^{\varphi(n)+1} \equiv a \bmod n$, if $\operatorname{gcd}(a, n)=1$. And this has important consequences in cryptography such as the RSA encryption).
Define $\varphi: \mathbb{N} \rightarrow \mathbb{N}, \varphi(n)=|\{a \in \mathbb{N}, 1 \leq a \leq n: \operatorname{gcd}(a, n)=1\}|$.
Example: for $n=10: 1,3,7,9$ are the only integers $1 \leq a \leq 10$ that are coprime to 10 . Hence $\varphi(10)=4$. Prove the following properties, or give (with proof!) general formulae for the values of the φ-function.
a) $\varphi(p)=p-1$, for prime p.
b) Let p, q, r denote distinct primes. Give a formula for $\varphi(p q)$ and one for $\varphi(p q r)$, using the PIE. (Define the sets A_{i} precisely).
c) Give a formula for prime powers $\varphi\left(p^{e}\right)$.
d) Let $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. Give a formula for $\varphi\left(n_{1} n_{2}\right)$ in terms of $\varphi\left(n_{1}\right)$ and $\varphi\left(n_{2}\right)$.
e) Recall that each integer n can uniquely be written in the form $n=$ $p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$. where the $p_{1}<\ldots<p_{r}$ are primes.
Give a formula for $\varphi(n)$.

Ex. 5

Work through the following example (not to be handed in).
Imitate the proof for $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$ to prove an identity for $\binom{3 n}{n}$.
Verify it in the special case $n=4$.

Solution: I can think of two natural ways to generalize:
Start with $(1+x)^{2 n}(1+x)^{n}=(1+x)^{3 n}$.
Now determine the coefficient of x^{n}.
The RHS gives $\binom{3 n}{n}$.
The LHS gives $\sum_{k=0}^{n}\binom{2 n}{k}\binom{n}{n-k}=\sum_{k=0}^{n}\binom{2 n}{k}\binom{n}{k}$.
So,

$$
\binom{3 n}{n}=\sum_{k=0}^{n}\binom{2 n}{k}\binom{n}{k}
$$

Another possibility is: $(1+x)^{n}(1+x)^{n}(1+x)^{n}=(1+x)^{3 n}$. Now determine the coefficient of x^{n}.
The RHS gives $\binom{3 n}{n}$.
The LHS gives $\sum_{i=0}^{n} \sum_{j=0}^{n-i}\binom{n}{i}\binom{n}{j}\binom{n}{n-i-j}=\sum_{i, j \geq 0}$ with $i+j \leq n\binom{n}{i}\binom{n}{j}\binom{n}{i+j}$.
So,

$$
\binom{3 n}{n}=\sum_{i, j \geq 0 \text { with } i+j \leq n}\binom{n}{i}\binom{n}{j}\binom{n}{i+j} .
$$

The fact that these results are different is no contradiction. There are simply many different identities...

The details for $n=4$.
Work out rows 4 and 8 in the Pascal triangle:
1,4,6,4,1
1,8,28,56,70,56,28,8,1
and $\binom{12}{4}=495$.
The first formula gives

$$
1 \times 1+4 \times 8+6 \times 28+4 \times 56+1 \times 70=1+32+168+224+70=495 .
$$

The second formula:
Take all allowed combinations of $(i, j, i+j)$:
000/011/022/033/044/101/112/123/134/202/213/224/303/314/404
This gives:

$$
\begin{aligned}
& (1+16+36+16+1)+(16+96+96+16)+(36+96+36)+(16+16)+1 \\
= & 70+224+168+32+1=495 .
\end{aligned}
$$

