Ex. 1
Let $P=\{a, b, c, d, e, f, u, v\}$. Draw the Hasse diagram for the poset (P, \leq), where:

$$
\begin{aligned}
& v<a, v<b, v<c, v<d, v<e, v<f, v<u, \\
& a<c, a<d, a<e, a<f, a<u, \\
& b<c, b<d, b<e, b<f, b<u, \\
& c<d, c<e, c<f, c<u \\
& d<e, d<f, d<u \\
& e<u, f<u .
\end{aligned}
$$

Ex. 2

Show that there are 16 different posets on the set $X=\{a, b, c, d\}$. [Here 'different' means not order isomorphic.] Draw Hasse diagrams for them all.

Ex. 3

Draw the Hasse diagram of the following posets
a) The poset $\mathcal{D}(16)$ of divisors of 16 .
b) The power set $\mathcal{P}(\{1,2,3\})$,
c) The poset $P \oplus Y$, where $P=\underline{2}$ and Y is given by the following diagram:
d) The poset $Y \oplus P$, where P and Y are defined as above.
e) The poset $\underline{3} \times \underline{3}$.

Ex. 4
Let n be a positive integer. So $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct prime numbers and where $e_{1}, e_{2}, \ldots, e_{r}$ are positive integers. Prove that

$$
\mathcal{D}(n) \cong \underline{\left(e_{1}+1\right)} \times \underline{\left(e_{2}+1\right)} \times \cdots \times \underline{\left(e_{r}+1\right)} .
$$

Ex. 5
Let n be a positive integer. Show that $\mathcal{D}(n) \cong \mathcal{D}(n)^{\partial}$.
Ex. 6
Recall that an antichain is a set Y of incomparable elements in a poset (so $x \leq y$ implies $x=y$ for any $x, y \in Y)$. The width $w(P)$ of a poset P is the maximal size of an antichain in P.
a) Find $w(P)$ for each of the posets P below, and verify in each case that P can be written as the union of $w(P)$ chains.
b) Show that if a finite poset P can be written as the union of n chains, then $n \geq w(P)$.
[Not to be handed in: Let P be a finite poset. A famous theorem - Dilworth's Theorem - says that $w(P)$ is equal to the smallest integer n such that P can be written as the union of n chains. Try proving this yourself...]

