Exercise Sheet 4

MT454 Combinatorics

To be returned on 3rd November 2004

1. For each of the posets shown below:
(a) Write down the general form of a matrix corresponding to an element of $I(P)$.
(b) Verify directly (by multiplying matrices) that $I(P)$ is closed under multiplication.
(c) Calculate the Möbius function μ of the poset by using the method just before Theorem 3.23. Check that $\mu=i^{-1}$ by computing the matrix product μi.
2. Let n be a positive integer. So $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}$, where $p_{1}, p_{2}, \ldots, p_{r}$ are distinct prime numbers and where $e_{1}, e_{2}, \ldots, e_{r}$ are positive in-
tegers. Prove that the Möbius function μ of $\mathcal{D}(n)$ is defined by

$$
\mu\left(d, d^{\prime}\right)=\left\{\begin{array}{cl}
1 & \text { if } d=d,^{\prime} \\
(-1)^{k} & \begin{array}{l}
\text { if } d \text { divides } d^{\prime}, \text { and } d^{\prime} / d \text { is a product of } \\
k \text { distinct primes }
\end{array} \\
0 & \text { otherwise }
\end{array}\right.
$$

for all $d, d^{\prime} \in \mathcal{D}(n)$. [Hint: Sheet 3 Question 4 might be useful!]
3. Let r and s be functions from \mathbb{N} to \mathbb{R}. Suppose that

$$
r(n)=\sum_{d} s(d)
$$

where the sum runs over the positive divisors of n. Prove that

$$
s(n)=\sum_{d} r(n / d) \mu(d)
$$

where again the sum runs over the positive divisors of n, and where

$$
\mu(d)=\left\{\begin{array}{cc}
1 & \text { if } d=1 \\
(-1)^{k} & \text { if } d \text { is a product of } k \text { distinct primes } \\
0 & \text { otherwise }
\end{array}\right.
$$

[Hint: Use Möbius inversion in $\mathcal{D}(n)$.]

