Exercise Sheet 5

MT454 Combinatorics

Note: On Friday 12th November I give a lecture in Exeter, i.e. the MT454 is likely to be cancelled.
Are alternative times like Monday 3pm or Monday 4pm (on a Monday to be determined) possible for you?

1. (a) Calculate the Möbius function of the following poset:
(b) By generalising the above example, show that for all positive integers n there exists a poset P and $x, y \in P$ such that $\mu(x, y)=n$ (where μ is the Möbius function of P).
2. Recall that the Fibonacci Numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined by $F_{0}=$ $F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all non-negative integers n. Use the techniques of Theorem 4.1 to show that

$$
F_{n}=\left(\frac{\sqrt{5}+1}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{\sqrt{5}-1}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

3. (a) There are n seats arranged in a line. Show that the number of ways of choosing a subset of these seats, with no two chosen positions consecutive, is F_{n+1}.
(b) If the n seats are now arranged in a circle, show that the number of choices is $F_{n}+F_{n-2}$ for $n \geq 2$.
4. By using long division, find the first four terms in the power series for

$$
\frac{1+4 x}{1+5 x+x^{2}}
$$

5. Use partial fractions to simplify

$$
\frac{1+3 x}{1-3 x^{2}+2 x^{3}} 1
$$

