Exercise Sheet 6

MT454 Combinatorics

1. (a) Show that

$$
\frac{x(1+x)}{(1-x)^{3}}
$$

is the generating function for the sequence $\left(u_{n}\right)$ defined by $u_{n}=n^{2}$.
(b) Let $A(x)$ be the generating function for a sequence $\left(a_{n}\right)$. For any $n \geq 0$, let

$$
s_{n}=a_{0}+a_{1}+\cdots+a_{n}
$$

and let $S(x)$ be the generating function for $\left(s_{n}\right)$. Show that

$$
S(x)=\frac{A(x)}{1-x}
$$

Use this formula together with part (a) to find a formula for $\sum_{i=0}^{n} i^{2}$. [Hint: Use Lemma 4.10 at some point!]
2. Let $U(x)=F_{0}+F_{1} x+F_{2} x^{2}+\cdots$ be the generating function for the Fibonacci numbers. Find polynomials $A(x)$ and $B(x)$ such that

$$
U(x)=\frac{A(x)}{B(x)} .
$$

3. Find an explicit formula for u_{n}, where $u_{0}=1, u_{1}=u_{2}=0$ and $u_{n+3}-3 u_{n+1}+2 u_{n}=0$.
4. Show that the generating function for the sequence $\left(u_{n}\right)$ defined by the recursion $u_{0}=1, u_{n+1}-2 u_{n}=4^{n}$ for $n \geq 0$, is

$$
U(x)=\frac{1-3 x}{(1-2 x)(1-4 x)}
$$

Hence show that $u_{n}=2^{2 n-1}+2^{n-1}$.

