Exercise Sheet 6

MT454 Combinatorics

1. (a) Show that

$$\frac{x(1+x)}{(1-x)^3}$$

is the generating function for the sequence (u_n) defined by $u_n = n^2$.

(b) Let A(x) be the generating function for a sequence (a_n) . For any $n \ge 0$, let

$$s_n = a_0 + a_1 + \dots + a_n$$

and let S(x) be the generating function for (s_n) . Show that

$$S(x) = \frac{A(x)}{1-x}.$$

Use this formula together with part (a) to find a formula for $\sum_{i=0}^{n} i^2$. [Hint: Use Lemma 4.10 at some point!]

2. Let $U(x) = F_0 + F_1 x + F_2 x^2 + \cdots$ be the generating function for the Fibonacci numbers. Find polynomials A(x) and B(x) such that

$$U(x) = \frac{A(x)}{B(x)}.$$

- 3. Find an explicit formula for u_n , where $u_0 = 1$, $u_1 = u_2 = 0$ and $u_{n+3} 3u_{n+1} + 2u_n = 0$.
- 4. Show that the generating function for the sequence (u_n) defined by the recursion $u_0 = 1$, $u_{n+1} - 2u_n = 4^n$ for $n \ge 0$, is

$$U(x) = \frac{1 - 3x}{(1 - 2x)(1 - 4x)}.$$

Hence show that $u_n = 2^{2n-1} + 2^{n-1}$.