Exercise Sheet 7

MT454 Combinatorics

1. Find the values of $p(n)$ where $1 \leq n \leq 7$ by writing down all the appropriate partitions.
2. Define $p_{k}(n)$ to be the number of partitions of the integer n with exactly k parts. (So $p_{2}(4)=2$, as $2+2$ and $3+1$ are the two partitions of 4 with 2 parts.) Show that

$$
p_{k}(n)=p_{k}(n-k)+p_{k-1}(n-k)+\cdots+p_{0}(n-k),
$$

and use this equality to calculate $p(8)$, (where p is the standard partition function).
3. Write down the generating functions for the sequences whose nth terms are:
(a) the number of partitions of n into parts equal to 3 or 5 .
(b) the number of partitions of n into parts equal to 5,10 or 20.
4. By multiplying the appropriate power series, find the coefficient of x^{9} in

$$
\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right)}
$$

What is the interpretation of your result in terms of the number of partitions of a certain kind?

