Problem sheet 1 2006

Ex. 1
Prove that the distance $d(\vec{x}, \vec{y})$ between words $\vec{x}, \vec{y} \in\left(F_{q}\right)^{n}$ satisfies the triangle inequality.

Ex. 2

Define the minimum distance $d(C)$ of a code. What is $d(C)$ for the codes in examples 1.8, 1.10, 1.11 ?

Ex. 3

Define a ternary symmetric channel with error probability p. Also draw an analogue to the picture we had for the binary case, marking also the probabilities of each symbol change.

Ex. 4

Suppose a binary repetition code of length 5 is used for a binary symmetric channel with (symbol error) crossover probability p. Show that the word error probability is $10 p^{3}-15 p^{4}+6 p^{5}$. Evaluate this probability if $p=0.1$.

Ex. 5
We want to consider the best possible 3 -ary (n, M, d) code, where $q=3, n=3$ is the word length, M is the number of codewords, and $d=2$ is the minimum distance of the code. What is the largest M one can use?
a) Show that a 3 -ary $(3, M, 2)$-code must have $M \leq 9$.
b) Show that a 3 -ary (3, 9, 2)-code exists. (Hint: find three codewords starting with 0 , and three codewords starting with 1 , and three codewords starting with 2).

Hand in solutions in one week.

I've put some books in the restricted loan section of the library. Recommended reading is R. Hill: A First course in coding theory. (001.539 Hil)
An electronic version of the problem sheets will be available (probably with some delay):
http://www.ma.rhul.ac.uk/~elsholtz/WWW/lectures/0506mt361/lecture.html

