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Problem sheet 2
2006

MT3610/5461 Error correcting codes

Ex. 1
Construct, if possible, binary (n, M, d) codes, with the parameters below. If no
such code exists, explain why.

a) (6,2,6)

b) (3,8,1)

c) (4,8,2)

d) (5,3,4)

e) (8,30,3)

Ex. 2
Show that A2(8, 5) = 4.

Ex. 3
Show that A2(8, 4) = 16.

Ex. 4
State and prove the sphere-packing bound.

Ex. 5
Given a binary code. State and prove a connection between the distance between
two code words and the weights of the codewords.

Ex. 6
Let En ⊂ Fn

2 denote the set of all vectors with even weights. Deduce that En

is the code that is obtained by adding a parity check to the code C = Fn−1
2 .

Deduce that En is an (n, 2n−1, 2)-code.

Ex. 7
Prove that Aq(3, 2) = q2.

Ex. 8
Show: If a binary (n, M, d)-code exists, with d even, then there also exists a
binary (n, M, d)-code in which all the codewords haven even weight.

Ex. 9
Each properly published book gets a unique ISBN number (international stan-
dard book number). This is a 10-digit codeword. The first digit stands for the
country/language, the next few digits for the publisher. Then some digits for a
number assigned by the publisher, the very last digit is a checksum. (A large
publisher gets a short publisher identification and can thus use more digits for
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its own books, a small publisher gets a longer publisher identification. This
alone leads to interesting questions but we leave these aside.)
For example, the recommended text book by Ray Hill has the number
ISBN 0-19-853804-9
ISBN 0-19-853803-0 (for the paperback edition).
Here the first 0 stands for english, the 19 for Oxford University Press.

Let x1x2 · · ·x10 be the ISBN number (codeword). The check bit x10 is chosen
such that the whole codeword satisfies

∑10
i=1 ixi ≡ 0 mod 11.

a) Show that x10 =
∑9

i=1 ixi ≡ 0 mod 11.

Note that the last symbol can be any of 11 eleven values. So, one uses in
addition to 0, 1, . . . , 9 the symbol X = 10.

b) Show that this code can be used in the following way: To detect any
single error and to detect a double error created by the transposition of
two digits (example 152784 ↔ 158724).
Would this also work, if you use a similar code mod 15 instead of mod 11?

c) Can this method be used to correct one single error?

d) Discuss the advantages of this method for the practical use (to order books
in a bookshop etc.).

e) What is the minimum distance of any two ISBN numbers?

f) Consider a different code C2, where one uses as before 10 digits but does
not use a weighted sum, but

∑10
i=1 xi ≡ 0 mod 11.

What would be the disadvantage, compared with the ISBN code?



3

Ex. 10
(Not to be handed in!)
Work through this example.
C = {(00000, 01101, 10110, 11011)} defines a (5, 4, 3)-code. So, A2(5, 3) ≥ 4.
We want to show that no code with n = 5,M = 5, d = 3 exists. An exhaustive
search would be possible, with a computer. But the following procedure is much
more effective:
Let C be a (5,M, 3)-code with M ≥ 4.
By our discussion on equivalent codes we may assume w.l.o.g. that 00000 ∈ C.
C can contain at most one codeword with weight 4 or 5, since any two such
codewords would have distance at most 2. Also, because of d = 3 there cannot
be any codeword with just one or two ones, since the distance to 00000 would be
at most 2. Since M ≥ 4, there must be at least 2 codewords containing exactly
3 ones. By rearranging the positions we can assume that one of these is 11100.
The other one can have at most one of its three ones in the first three position,
(otherwise the distance to 11100 would be ≤ 2.) So we can assume w.l.o.g. that
the third codeword is 00111.
Now, after some trial and error attempts we find that the only possible fourth
codeword is 11011. This proves that A2(5, 3).
This type of argument reduces any exhausting search considerably!
It also proves that there is, up to equivalence, exactly one (5, 4, 3)-code.

Ex. 11
(Not to be handed in!)
We considered a non-trivial perfect binary (7, 16, 3)-code. Make yourself familiar
with this example.

~0 = 0 0 0 0 0 0 0
~a1 = 1 0 0 0 1 0 1
~a2 = 1 1 0 0 0 1 0
~a3 = 0 1 1 0 0 0 1
~a4 = 1 0 1 1 0 0 0
~a5 = 0 1 0 1 1 0 0
~a6 = 0 0 1 0 1 1 0
~a7 = 0 0 0 1 0 1 1
~b1 = 0 1 1 1 0 1 0
~b2 = 0 0 1 1 1 0 1
~b3 = 1 0 0 1 1 1 0
~b4 = 0 1 0 0 1 1 1
~b5 = 1 0 1 0 0 1 1
~b6 = 1 1 0 1 0 0 1
~b7 = 1 1 1 0 1 0 0
~1 = 1 1 1 1 1 1 1

When evaluating the minimum distance you would need to compare 16× 15/2
pairs. By the cyclical construction this number can be reduced:
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Compare ~0 with ~1 and ~a1, ~b1. (3)
Compare ~1 with ~a1, ~b1. (2)
Compare ~a1 with ~ai, i = 2, 3, . . . , 7. (6)
Compare ~a1 with ~bi, i = 1, . . . , 7. (7)
Compare ~b1 with ~bi, i = 2, 3, . . . , 7. (6)
These 24 comparisions suffice, (this number can be further reduced by methods
that we learn at a later stage in the course). Note that the minimum distance
is d = 3. Check that the sphere packing bound is sharp here.

Hand in solutions in one week.
I’ve put some books in the restricted loan section of the library. Recommended
reading is R. Hill: A First course in coding theory. (001.539 Hil)
An electronic version of the problem sheets is available:
http://www.ma.rhul.ac.uk/∼elsholtz/WWW/lectures/0405mt361/lecture.html


