Ex. 1

(Not to be handed in) Work through pages 74-78 of Raymond Hill's book. In particular watch out for the advantages of incomplete decoding.

Ex. 2

Show that the decimal code

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{10}\right) \in \mathbb{Z}_{10}^{10} \mid \sum_{i=1}^{10} x_{i} \equiv 0(\bmod 10), \sum_{i=1}^{10} i x_{i} \equiv 0(\bmod 10)\right\}
$$

is not a single-error-correcting code. (Here \mathbb{Z}_{10} denotes the set of integers $\bmod 10$.

Ex. 3
(see problem sheet 6) Let C be the ternary linear code with generator matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 0 & 1 & 1
\end{array}\right]
$$

a) Find a generator matrix for C in standard form
b) Find a parity check matrix for C in standard form.
c) Use syndrome decoding to decode the received vectors 2121, 1201 and 2222.

Ex. 4

Suppose a certain binary channel accepts word of length 7 and that the only kind of error vector ever observed is one of the eight vectors

0000000, 0000001, 0000011, 0000111, 0001111, 0011111, 0111111, 111111.
Design a binary linear $[7, k]$-code which will correct all such errors with as large a rate as possible.

Ex. 5

Let C be the code generated by

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

A new code C_{2} is formed by adding a parity check.
a) Write down the generator matrix for C_{2} in standard form.
b) Determine the parameters $[n, k, d]$ and M.
c) Write down its parity check matrix for C_{2}.
d) Show that C_{2} can be used to simultaneously correct one error and detect two errors.
e) Make a lookup table to enable syndrome decoding to use it in the way suggested in d.
f) Decode the received vectors 0110110,1111010 and 1110111 .

Do not write down the standard array or the codewords.

