If you haven't done homework so far: Work through the homework and solutions of the previous weeks. If you want you can hand it in and get feedback. Please catch up with the material!

Ex. 1

A memoryless source emits only vowels, each with the following probabilities:

$$
P(A)=0.2, P(E)=0.3, P(I)=P(O)=0.2, P(U)=0.1 \text {. }
$$

Estimate the number of typical outputs of length n. (Describe what you are doing: define what you mean by typical.)

Ex. 2

A memoryless source over the 26 -letter alphabet has a vocabulary of about 10^{n} sequences of length n, for suifficiently large n. Estimate the entropy of the source. (Hint: The answer is simple and short.)

Ex. 3

Consider the infinite square lattice consisting of all integer-coordinated points of the plane and with nearest neighbours in the direction of the coordinate axes joined by an edge. A self avoiding walk of length n is a sequence of n edges starting from the origin, each pair of consecutive edges having a common point, and at no stage revisiting a point already visited. If $f(n)$ denotes the number of self-avoiding walks of length n, then $f(1)=4, f(2)=12$ and so on. Prove that

$$
f(m+n) \leq f(m) f(n)
$$

and hence deduce that

$$
\lim _{n \rightarrow \infty}(f(n))^{\frac{1}{n}}=\inf _{n \geq 1}(f(n))^{\frac{1}{n}}=\theta
$$

exists. Determine $f(3)$. Draw the situation for $n=1,2,3$. Prove that $2 \leq \theta \leq 3$.

Ex. 4

With probability $\frac{1}{3}$, a source \mathcal{S} emits a random string of zeros and ones; with probability $\frac{2}{3}$, it emits a random string of ones and twos. Show that the source is not ergodic.

Ex. 5

Find the entropy of the Markov source whose transition matrix is given by

$$
\left(\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

Ex. 6
Which of the Markov sources having transition matrices as shown are irreducible?

$$
M_{1}=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right), \quad M_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$$
M_{3}=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{4} & \frac{3}{4}
\end{array}\right), \quad M_{4}=\left(\begin{array}{cccc}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right)
$$

To be returned in one week, before the lecture.
My web page contains a collection of related material.
http://www.ma.rhul.ac.uk/~elsholtz/WWW/lectures/0506mt441/lecture.html

