Technische Universität Clausthal Institut für Mathematik Prof. Dr. L. G. Lucht Dr. C. Elsholtz

Ingenieurmathematik I 8. Übungsblatt

(P1) Berechnen Sie Real- und Imaginärteil der komplexen Zahlen

- (a) $z_1 = 2(1-i) + 3(2+i)$,

- (c) $z_3 = \frac{1}{1 + \sqrt{3}i}$,
- (b) $z_2 = \frac{1}{i}$, (d) $z_4 = \frac{(-2+5i)(1+3i)}{2+3i} (\frac{2}{13} \frac{3}{13}i)$.

(P2) Berechnen und skizzieren Sie in der komplexen Zahlenebene die Menge aller $z\in\mathbb{C}$ mit

- (a) $|z-z_0| < R$, (b) $1 \le |z| < 3$, (c) $\frac{3\pi}{4} < \arg z < \pi$,
- (d) $\operatorname{Im}(z^2) \ge \operatorname{Im} z$, (e) $\operatorname{Im}(z^2) \ge 2$.

(P3) (a) Berechnen Sie sämtliche komplexen dritten Wurzeln aus $4\sqrt{2} + 4\sqrt{2}i$. Geben Sie das Ergebnis sowohl in Polarkoordinaten als auch in kartesischen Koordinaten an. Skizzieren Sie die Lösung in der Gaußschen Ebene.

(b) Berechnen Sie analog die komplexen vierten Wurzeln aus $-\frac{1}{2} + \frac{1}{2}\sqrt{3}i$.

(H1) Berechnen und skizzieren Sie die Menge aller $z \in \mathbb{C}$ mit:

- (a) $|z-z_0| \ge R$, (b) |z-2| < |z|,
 - (c) $Re(z^2) = 0$,

- (d) Re z = 2 Im z + 1, (e) |z + i| + |z i| < 4.

(H2) Es seien $z, w, z_1, z_2 \in \mathbb{C}$. Rechnen Sie nach, daß

$$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$$
 (*)

gilt. Folgern Sie dann mit der Gleichung (*):

- (a) Aus $|z_1 + z_2| < 1$ und $|z_1 z_2| < 1$ folgt $|z_1|^2 + |z_2|^2 < 1$.
- (b) Aus $|z_1|^2 + |z_2|^2 \le 1$ folgt $|z_1 z_2| \le 1$ oder $|z_1 + z_2| \le 1$.
- (c) Gilt die Umkehrung zu (a)?

Name	Vorname	Fachrichtung	Fachsemester	Ü-Gruppe	Punkte

Technische Universität Clausthal Institut für Mathematik Prof. Dr. L. G. Lucht Dr. C. Elsholtz

WS 2000/2001

Ingenieurmathematik I 8. Hausübungsblatt

(H1) Berechnen und skizzieren Sie die Menge aller $z \in \mathbb{C}$ mit:

- (c) $Re(z^2) = 0$,

- $\begin{array}{lll} \mbox{(a)} & |z-z_0| \geq R \,, & \mbox{(b)} & |z-2| < |z| \,, \\ \mbox{(d)} & {\rm Re} \, z = 2 \, {\rm Im} \, z + 1 \,, & \mbox{(e)} & |z+\mathfrak{i}| + |z-\mathfrak{i}| \leq 4 \,. \end{array}$

(H2) Es seien $z, w, z_1, z_2 \in \mathbb{C}$. Rechnen Sie nach, daß

$$|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2)$$
 (*)

gilt. Folgern Sie dann mit der Gleichung (*):

- (a) Aus $|z_1 + z_2| \le 1$ und $|z_1 z_2| \le 1$ folgt $|z_1|^2 + |z_2|^2 \le 1$.
- (b) Aus $|z_1|^2 + |z_2|^2 \le 1$ folgt $|z_1 z_2| \le 1$ oder $|z_1 + z_2| \le 1$.
- (c) Gilt die Umkehrung zu (a)?

Abgabe der Lösungen

mit diesem Deckblatt vor Ihrer kleinen Übung in der Woche vom Dienstag 12.12. bis Donnerstag 14.12.2000.