- 41. Ersetzen Sie folgende Funktionen durch ihre Taylorpolynome des angegebenen Grades, und schätzen Sie den Fehler im angegebenen Bereich ab:
 - a) $f(x) = \sin(x)$ durch $T_3(f, x, 0)$ in $|x| \le 1/10$
 - b) $f(x) = \arctan(x)$ durch $T_3(f, x, 0)$ in $|x| \le 1/10$
- 42. Entwickeln Sie die Funktion $f(x) = \arctan(x)$ in eine Potenzreihe (=Taylor-Reihe um x =0). Für welche Werte von x konvergiert diese Reihe? Leiten Sie daraus

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

ab. Hinweis: verwenden Sie

$$\frac{1}{1+x^2} = \frac{1}{2} \left(\frac{i}{x+i} - \frac{i}{x-i} \right)$$

für die Berechnung der höheren Ableitungen.

- 43. Diskutieren Sie die folgenden reellen Funktionen (Skizzen!):
 - (a) $f(x) = \frac{1}{1+x^2}$ (b) $f(x) = \sqrt{\frac{x-1}{x+1}}$ (c) $f(x) = x^2 e^{-\frac{x^2}{2}}$ (d) $f(x) = x \ln(x)$ (e) $f(x) = (x^2 1)e^{-x}$ (f) $f(x) = \tanh \frac{1}{x}$ (g) $f(x) = e^{-x} \sin x, x \ge 0$
- 44. Man ermittle die folgenden unbestimmten Integrale:
 - (a) $\int x^3 \ln x \, dx$ (b) $\int x^n \ln x \, dx$ allgemein, für eine natürliche Zahl n (c) $\int x^3 \sin x \, dx$ (d) $\int \cos^4 x \, dx$ (e) $\int \sqrt{x^2 + 1} \, dx$ Hinweis: $x = \sinh t$