Archiv der Mathematik

A remark on Hofmann and Wolke's additive decompositions of the set of primes

By

CHRISTIAN ELSHOLTZ

Abstract. We improve upon Hofmann and Wolke's bounds on the conceivable additive decompositions of the set of primes. We also prove that there cannot be a decomposition, where one set is a shifted copy of the other. This answers an open question of Hofmann and Wolke.

We improve upon Hofmann and Wolke's bounds (see [2]) on the conceivable additive decompositions of the set of primes. Their result corresponds to the special case r = 2 of our new bounds. We overcome a difficulty that arose in the application of the large sieve method in their work. We also prove that there cannot be a decomposition, where one set is a shifted copy of the other. This answers an open question of Hofmann and Wolke.

Theorem 1. Let \mathscr{A} and \mathscr{B} be sets of integers with $|\mathscr{A}|, |\mathscr{B}| \ge 2$. Suppose that $\mathscr{A} + \mathscr{B} = \{a + b : a \in \mathscr{A}, b \in \mathscr{B}\} = \mathscr{P}'$, where \mathscr{P}' coincides with the set of primes \mathscr{P} for large elements. Then the following bounds on the counting functions hold for all $r \ge 2$, for suitable positive constants c_r and for sufficiently large $x > x_r$:

$$\exp\left(c_r \frac{\log x}{\log_r x}\right) \ll A(x) \ll x \exp\left(-c_r \frac{\log x}{\log_r x}\right).$$

Here $\log_r x$ denotes the r-th iterated logarithm. The same applies to B(x).

Theorem 2. There does not exist an additive decomposition $\mathcal{A} + \mathcal{B} = \mathcal{P}'$ with $\mathcal{B} = \{a + k : a \in \mathcal{A}\}$, where k is any fixed constant.

We will first outline the method of Hofmann and Wolke.

Suppose that $\mathscr{P} \cap [x_0, \infty] = \mathscr{P}' \cap [x_0, \infty]$. Let $a_1 \in \mathscr{A}$ with $a_1 > x^{1/2}$. If $a_1 + b_1 = p_1 > x_0$, then p_1 is prime and $a_1 \equiv -b_1 \mod p$ for all primes $p < p_1$. Hence, for all primes $x_0 the set <math>\mathscr{A}$ avoids the negatives of those residue classes modulo p that occur in \mathscr{B} . So one can use a sieve method with the number of forbidden classes $\omega(p) = B(p)$ to obtain an upper bound on A(x).

Mathematics Subject Classification (2000): 11P32, 11N35, 11N36, 11P70.

Lemma 1.

$$A(x) \leq \frac{2x}{L} + x^{\frac{1}{2}}, \text{ where}$$
$$L = \sum_{q \leq x^{1/2}} \mu^{2}(q) \prod_{p|q} \frac{\omega(p)}{p - \omega(p)} \geq \max_{m \in \mathbb{N}} \exp\left(m \log\left(\frac{1}{m} \sum_{p \leq x^{1/(2m)}} \frac{\omega(p)}{p}\right)\right).$$

The proof is immediate when applying Montgomery's large sieve (see [1], Theorem 5.3.2) to the interval $[\sqrt{x}, x]$, as was done in [2]. For the evaluation of *L* see [3]. Hence an existing lower bound on B(x) leads to an upper bound on A(x). On the other hand $\pi(x) \ll A(x)B(x)$ shows that an upper bound on A(x) also implies a lower bound on B(x). One starts with

 $|\mathscr{B}| \ge 2$, hence one can use an upper bound sieve with $\omega(p) = 2$ leading to $A(x) \ll \frac{x}{(\log x)^2}$.

This implies the lower bound $B(x) \gg \log x$ etc. Now Hofmann and Wolke's method can be summarized in the following table.

$B(x) \gg$	$\omega(p) =$	т	$A(x) \ll$
$ \mathscr{B} \ge 2$	2	-	$x(\log x)^{-2}$
$\log x$	$[c_0 \log p]$	$[(\log x)^{\frac{1}{2}}]$	$x\exp\left(-c_1(\log x)^{\frac{1}{2}}\right)$
$\exp{(\tilde{c}_1(\log x)^{\frac{1}{2}})}$	$[c_1'\exp(\tilde{c}_1(\log p)^{\frac{1}{2}})]$	$\left[\frac{\log x}{\left(\log_2 x\right)^2}\right]$	$x \exp\left(-c_2 \frac{\log x}{\log_2 x}\right)$

They mention that an application of Montgomery's sieve does not yield new results for $\omega(p) \ge d_1 \exp\left(d_2 \frac{\log p}{\log_2 p}\right)$. In contrast to this we will apply Montgomery's sieve successfully with $\omega(p) = \left[d_1 \exp\left(d_2 \frac{\log p}{\log_r p}\right)\right]$ for all $r \ge 2$.

Lemma 2. For given $r \ge 2$, let $\omega(p) = [d_1 \exp\left(d_2 \frac{\log p}{\log_r p}\right)]$. Then $L \gg \exp\left(c \frac{\log x}{\log_{r+1} x}\right)$ for a suitable positive constant c.

Proof.

$$\sum_{p \leq y} \frac{\omega(p)}{p} \geq \sum_{y/2 \leq p \leq y} \frac{\omega(p)}{p} \geq (\pi(y) - \pi(y/2)) \frac{d_1 \exp\left(d_2 \frac{\log(y)}{\log_r(y/2)}\right)}{y}$$
$$\gg \exp\left(d_3 \frac{\log y}{\log_r y}\right).$$

 $(\log (v/2))$

With
$$m = \left[\frac{\log x}{(\log_2 x)^2}\right]$$
 we have $\log_r x^{1/(2m)} \sim \log_{r-1} \frac{(\log_2 x)^2}{2} \leq 2\log_{r+1} x$ and
 $\sum_{p \leq x^{1/(2m)}} \frac{\omega(p)}{p} \gg \exp\left(d_4 \frac{\log x}{m \log_{r+1}}\right)$. Hence
 $\log L \geq m \log\left(\frac{1}{m} \sum_{p \leq x^{1/(2m)}} \frac{\omega(p)}{p}\right) \geq m\left(-\log m + d_4 \frac{\log x}{m \log_{r+1} x}\right) \geq c \frac{\log x}{\log_{r+1} x}.$

$B(x) \gg$	$\omega(p) =$	т	$A(x) \ll$
$\exp\left(\tilde{c}_2 \frac{\log x}{\log_2 x}\right)$	$\left[c_2' \exp\left(\tilde{c}_2 \frac{\log p}{\log_2 p}\right)\right]$	$\left[\frac{\log x}{\left(\log_2 x\right)^2}\right]$	$x \exp\left(-c_3 \frac{\log x}{\log_3 x}\right)$
$\exp\left(\tilde{c}_r \frac{\log x}{\log_r x}\right)$	$\left[c_r' \exp\left(\tilde{c}_r \frac{\log p}{\log_r p}\right)\right]$	$\left[\frac{\log x}{\left(\log_2 x\right)^2}\right]$	$x \exp\left(-c_{r+1} \frac{\log x}{\log_{r+1} x}\right)$

Lemma 2 allows to continue the sieve iteration of [2].

It is in fact possible to let *r* grow with *x*. But since the constants implied behave like $c_r \approx \frac{1}{2^r}$ we see that *r* can only increase so extremely slowly that we refrain from stating a new result.

Hofmann and Wolke also considered the problem whether an additive decomposition of the set of primes exists with $\mathscr{B} = \{a + 1 : a \in \mathscr{A}\}$. They proved that in this situation one has the bounds

$$\frac{x^{\frac{1}{2}}}{(\log x)^{\frac{1}{2}}} \ll A(x) \ll x^{\frac{1}{2}} \text{ and } \frac{x^{\frac{1}{2}}}{(\log x)^{\frac{1}{2}}} \ll B(x) \ll x^{\frac{1}{2}}.$$

I would like to thank Dr. Puchta (Freiburg) for drawing my attention to this problem. He later informed me that he independently settled this problem.

Lemma 3. Suppose that $\mathcal{A} + \mathcal{B} = \mathcal{P}'$. Then the large elements of one of the sets \mathcal{A} and \mathcal{B} lie in precisely one residue class modulo 3, and the large elements of the other set lie in precisely two residue classes modulo 3.

Theorem 2 is then immediate, since a shift does not change the number of occurring classes modulo 3.

Proof of the lemma. If in one of the sets \mathscr{A},\mathscr{B} all three residue classes modulo 3 were represented infinitely often, then the class $0 \mod 3$ would contain infinitely many elements of $\mathscr{P}' = \mathscr{A} + \mathscr{B}$, contradicting the definition of \mathscr{P}' . The same conclusion holds, if we assume that in each of \mathscr{A} and \mathscr{B} two residue classes modulo 3 were represented infinitely often. Note that any two such classes are consecutive. If, on the other hand, each of \mathscr{A} and \mathscr{B} has infinitely many elements in only one residue class modulo 3, then in at least one of the two classes 1 or 2 modulo 3 we would have only $\ll A(x) + B(x) \ll x/(\log x)^2$ elements. This would contradict the Prime Number Theorem for arithmetic progressions. \Box

Finally we remark that the bounds on A(x)B(x) in [2] can be given explicitly: For sufficiently large x and for an arbitrary $\varepsilon > 0$ one has

$$\frac{x}{\log x} \le A(x)B(x) \le \left(\frac{\pi^4}{9} + \varepsilon\right)x.$$

The lower bound follows from $\pi(x) = \frac{x}{\log x} + \frac{x}{(\log x)^2} + O\left(\frac{x}{(\log x)^3}\right)$. The upper bound follows from the large sieve inequality $S(x) \le 2x/L$ and $\sum_{q \le x} \mu^2(q) \sim \frac{6}{\pi^2}x$. It

Vol. 76, 2001

should be pointed out that the very same constants can be obtained from an unpublished manuscript (see [4]) which Prof. Wirsing presented at the Oberwolfach conference in 1972.

The author would like to thank the referee for a careful reading of the manuscript.

References

- [1] J. BRÜDERN, Einführung in die analytische Zahlentheorie. Berlin 1995.
- [2] A. HOFMANN and D. WOLKE, On additive decompositions of the set of primes. Arch. Math. 67, 379– 382 (1996).
- [3] R. C. VAUGHAN, Some applications of Montgomery's sieve. J. Number Theory 5, 64-79 (1973).
- [4] E. WIRSING, On the additive decomposibility of the set of primes. Unpublished manuscript, 1972/ 1998.

Eingegangen am 21.6.1999

Anschrift des Autors:

Christian Elsholtz Institut für Mathematik Erzstrasse 1 D-38678 Clausthal-Zellerfeld Germany