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THE DISTRIBUTION OF SEQUENCES IN RESIDUE CLASSES

CHRISTIAN ELSHOLTZ

(Communicated by David E. Rohrlich)

Abstract. We prove that any set of integers A ⊂ [1, x] with |A| � (log x)r

lies in at least νA(p) � p
r
r+1 many residue classes modulo most primes p �

(log x)r+1. (Here r is a positive constant.) This generalizes a result of Erdős
and Ram Murty, who proved in connection with Artin’s conjecture on primitive
roots that the integers below x which are multiplicatively generated by the
coprime integers a1, . . . , ar (i.e. whose counting function is also c(log x)r) lie in

at least p
r
r+1 +ε(p)

residue classes, modulo most small primes p, where ε(p)→
0, as p→∞.

Let ordp(a) denote the order of a modulo p, where (a, p) = 1. A quantitative
version of Artin’s conjecture on primitive roots states that for a fixed integer a, not
a square, and not −1, there is a positive proportion of primes such that ordp(a) =
p− 1. (See [7] for a survey.) In favour of this conjecture, Erdős proved in [2] that
for all but o( y

log y ) of the primes p ≤ y one has

ordp(2) > p
1
2 .

This improved upon the lower bound of ordp(2) > pδ for all δ < 1
2 , proved by

Bundschuh; see [1]. It is also implicit in section 3 of Hooley’s work on Artin’s
conjecture (see [5]) that for all but O( y

(log y)3 ) primes p ≤ y one has ordp(a)�
√
p

log p .
Erdős announced at the end of his paper that the lower bound can be slightly
sharpened to

ordp(2) ≥ p 1
2 +ε(p),

where ε is any real function with limp→∞ ε(p) = 0. The details of this were provided
by Erdős and Ram Murty in [3]. For related results see also Pappalardi [8].

For a more general situation, they implicitly consider the following. Let a1, . . ., ar
be mutually coprime positive integers and let p be a prime with (p, a1a2 · · · ar) = 1.
Let A1 be the semigroup of positive integers multiplicatively generated by the ai
and let A = A1 ∩ [1, x]. Then the elements in A have the form aβ1

1 aβ2
2 · · · aβrr ≤ x,

where the βi are nonnegative integers. Let f(p, a1, . . . , ar) denote the number of
distinct residue classes modulo p which are needed to cover all elements of a ∈ A.

Note that the number of powers of a below x is asymptotically ca log x, and
that there are about ca1,... ,ar(log x)r many integers below x which are generated
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multiplicatively by the ai. Here and in the following, the c with various indices
stand for positive constants.

In this situation,1 Erdős and Ram Murty prove that, for all but o( y
log y ) many

primes p ≤ y with (p, a1 · · ·ar) = 1 one has

f(p, a1, . . . , ar) ≥ p
r
r+1 +ε(p),

where ε is an arbitrary real function with limp→∞ ε(p) = 0.
Giving a more quantitative version of this statement one might consider the

sequence up to x. It is then implicitly understood that y � (log x)r+1, since
otherwise the sequence A does not have � y

r
r+1 elements below x.

In this note we generalize these results to arbitrary integer sequences. Therefore,
the fact that the powers of some element a lie in many residue classes modulo many
primes is not necessarily an argument in favour of Artin’s conjecture. However, for
special sequences like the powers of a the result by Erdős and Ram Murty is stronger
by the ε(p) refinement. We prove the following theorem:

Theorem. Let x > x0 and let A ⊆ [1, x] be a set of positive integers with |A| ≥
c1(log x)r. Let νA(p) denote the number of distinct residue classes modulo p which
are necessary to cover A. Let y = c4(log x)r+1. Let

S = {p ∈ P ∩ [1, y] : νA(p) ≤ c2p
r
r+1 }

and c3 = |S|
π(y) . Let β = 1

r+1 and C = 1
β (1 − (1− c3)β)cβ4 . If C > c2, then

c2c3c4
C − c2

≥ c1.

In typical applications, the counting function A(x), i.e. c1 and r, might be known.
Suppose one wants to make the proportion c3 of ‘bad primes’ very small so that
one knows for essentially all primes p ≤ y, that νA(p) is large. Then one can make
an admissible choice of c2 and c4 as follows: Choose a small c3, choose c4 ≥

c1
c3

,

and put c2 = C
2 . Then trivially C > c2 and

c2c3c4
C − c2

=
c2c3c4
c2

= c3c4 ≥ c1.

This implies the following corollary.

Corollary. Let A be an infinite set of positive integers with counting function
A(x)� (log x)r. Let νA(p) denote the number of distinct residue classes modulo p
which are necessary to cover A ∩ [1, x]. Then for all c3 > 0 one can find positive
c2 and c4 such that for all but at most c3y

log y primes p ≤ y, where y = c4(log x)r+1,
one has νA(p) ≥ c2p

r
r+1 .

Unfortunately, it appears, if one allows at most o( y
log y ) exceptional primes, that

is if one requires that c3 → 0 as x→∞, then one has to allow that c2 and c4 vary
accordingly.

1Strictly speaking, their theorem is stated in a more general form for rational numbers. Let

us take the opportunity to mention that there is a slight inaccuracy in the description of the ε
in Theorem 4 and part 3 of Theorem 5 of their results (and also in the abstracts in the Math.
Reviews and the Zentralblatt): Obviously, one should either replace p/ε(p) by pε(p) or one should
take p/ε(p) with limp→∞ ε(p) =∞.
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Our main tool is Gallagher’s larger sieve, which we state for completeness.

Lemma (Gallagher’s larger sieve; see [4]). Let A ⊆ [1, x] be a set that lies in at
most νA(p) residue classes modulo p, for p ∈ S. Then

|A| ≤
− logx+

∑
p∈S log p

− log x+
∑
p∈S

log p
νA(p)

,

provided the denominator is positive.

Proof of the Theorem. Since we deal with upper bounds and since log p and log p

p
r
r+1

are monotonic functions for p > p0, the worst case distribution of the primes in S is
that these primes are as large as possible. If x tends to infinity, then the intervals
[0, c y] and [(1 − c)y, y] contain asymptotically the same number of primes, cy

log y .
The worst case distribution is determined by the primes in [(1− c3 + o(1))y, y]. For
simplicity, we omit o(1) expressions and write . instead of ≤. Moreover, recall that
it follows from

∑
p≤z log p ∼ z by partial summation that for 0 < α < 1 one has

∑
p≤z

log p
pα
∼ z1−α

1− α.

With α = r
r+1 , so that 1− α = 1

r+1 = β, we find that

|A| .
− logx+

∑
(1−c3)y≤p≤y log p

− log x+
∑

(1−c3)y≤p≤y
log p

c2p
r
r+1

. c3y

− logx+ 1
c2β

(yβ − (1− c3)βyβ)

=
c3c4(log x)r+1

− log x+ C
c2

log x
=
c2c3c4
C − c2

(log x)r.

Suppose that we have C > c2 but c2c3c4
C−c2 < c1. This is, for sufficiently large x, a

contradiction to our assumption |A| ≥ c1(log x)r.

Remark. Matthews (see [6]) considered questions related to that of Erdős and Ram
Murty in a more general context of algebraic groups and abelian varieties. For the
classical case of Artin’s conjecture he proved that for almost all primes and for all
positive ε one has ν(p) > p

1
2−ε. (Apparently he was unaware of [1] and [2].) He

mentions further applications to nilpotent groups and to manifolds due to Milnor,
Tits, and Wolf.
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[2] Erdős, P., Bemerkungen zu einer Aufgabe in den Elementen. Arch. Math. 27 (1976), 159-163.

MR 53:7969
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