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ABSTRACT. We prove that any set of integers A C [1,z] with |A| > (logx)"
lies in at least v 4(p) > pﬁ many residue classes modulo most primes p <
(log )"+, (Here r is a positive constant.) This generalizes a result of Erdés
and Ram Murty, who proved in connection with Artin’s conjecture on primitive
roots that the integers below z which are multiplicatively generated by the
coprime integers ai, ... ,a, (i.e. whose counting function is also ¢(log z)") lie in
T te®)

at least p residue classes, modulo most small primes p, where £(p) —

0, as p — oo.

Let ordy(a) denote the order of a modulo p, where (a,p) = 1. A quantitative
version of Artin’s conjecture on primitive roots states that for a fixed integer a, not
a square, and not —1, there is a positive proportion of primes such that ord,(a) =
p — 1. (See [7] for a survey.) In favour of this conjecture, Erdés proved in [2] that

for all but 0(%) of the primes p < y one has

ord,(2) > P2

This improved upon the lower bound of ord,(2) > p° for all § < 3, proved by

Bundschuh; see [1]. It is also implicit in section 3 of Hooley’s work on Artin’s
conjecture (see [A]) that for all but O(m) primes p < y one has ord,(a) > 1(\)/;[).
Erd6s announced at the end of his paper that the lower bound can be slightly

sharpened to

ord,(2) > p%+6(p) ,

where ¢ is any real function with lim,_, . (p) = 0. The details of this were provided
by Erdds and Ram Murty in [3]. For related results see also Pappalardi [g].

For a more general situation, they implicitly consider the following. Let aq, ..., a,
be mutually coprime positive integers and let p be a prime with (p,a1az---a,) = 1.
Let A; be the semigroup of positive integers multiplicatively generated by the a;
and let A = A; N[1,z]. Then the elements in A have the form a?'a3? - - - afr < x,
where the 3; are nonnegative integers. Let f(p,a,...,a,) denote the number of
distinct residue classes modulo p which are needed to cover all elements of a € A.

Note that the number of powers of a below x is asymptotically ¢, logz, and
that there are about ¢4, ... 4. (logz)" many integers below = which are generated
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multiplicatively by the a;. Here and in the following, the ¢ with various indices
stand for positive constants.

In this situationf] Erdés and Ram Murty prove that, for all but o(logy) many

primes p <y with (p,ay - --a,) = 1 one has
f(p,ar,...,a,) > prite®

where ¢ is an arbitrary real function with lim, . ¢(p) = 0.

Giving a more quantitative version of this statement one might consider the
sequence up to x. It is then implicitly understood that y < (logz)"*!, since
otherwise the sequence A does not have > 371 elements below z.

In this note we generalize these results to arbitrary integer sequences. Therefore,
the fact that the powers of some element « lie in many residue classes modulo many
primes is not necessarily an argument in favour of Artin’s conjecture. However, for
special sequences like the powers of a the result by Erdos and Ram Murty is stronger
by the (p) refinement. We prove the following theorem:

Theorem. Let © > xo and let A C [1,x] be a set of positive integers with |A| >
c1(logx)". Let va(p) denote the number of distinct residue classes modulo p which
are necessary to cover A. Let y = cy(logz)" 1. Let

S={pePnlyl:valp) < Cgprrl}

and c3 = % Let 8 = T—i_l and C = %(1 —(1—e3)?)i. IfC > ¢y, then
Co2C3Cq
—_— > .
C—co =

In typical applications, the counting function A(x), i.e. ¢; and r, might be known.
Suppose one wants to make the proportion c3 of ‘bad primes’ very small so that
one knows for essentially all primes p < y, that v4(p) is large. Then one can make

.. . C1
an admissible choice of ¢; and ¢4 as follows: Choose a small c3, choose ¢4 > —,
Cc3

and put cp = % Then trivially C' > ¢o and

C2C3Cy C2C3C4
—— = —— =cc3¢4 > (1.
C— Co C2

This implies the following corollary.

Corollary. Let A be an infinite set of positive integers with counting function
A(x) > (logz)". Let va(p) denote the number of distinct residue classes modulo p
which are necessary to cover AN [1,z]. Then for all cs > 0 one can find positive

co and ¢4 such that for all but at most lzzyy primes p <y, where y = c4(logx)™ 1,

one has v4(p) > cap™i.

Unfortunately, it appears, if one allows at most o(@) exceptional primes, that
is if one requires that c3 — 0 as z — oo, then one has to allow that ¢y and ¢4 vary
accordingly.

IStrictly speaking, their theorem is stated in a more general form for rational numbers. Let
us take the opportunity to mention that there is a slight inaccuracy in the description of the &
in Theorem 4 and part 3 of Theorem 5 of their results (and also in the abstracts in the Math.
Reviews and the Zentralblatt): Obviously, one should either replace p/e(p) by pe(p) or one should
take p/e(p) with limp o0 €(p) = co.
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Our main tool is Gallagher’s larger sieve, which we state for completeness.

Lemma (Gallagher’s larger sieve; see [4]). Let A C [1,x] be a set that lies in at
most va(p) residue classes modulo p, for p € S. Then

Al < —logx + ZpGS logp
- _ logp ’
log z + E;Des va(p)

provided the denominator is positive.

Proof of the Theorem. Since we deal with upper bounds and since logp and log%’l’

are monotonic functions for p > pg, the worst case distribution of the primes in § is

that these primes are as large as possible. If x tends to infinity, then the intervals
[0,cy] and [(1 — ¢)y,y] contain asymptotically the same number of primes, %.

The worst case distribution is determined by the primes in [(1—c3 +0(1))y, y]. For
simplicity, we omit o(1) expressions and write < instead of <. Moreover, recall that

it follows from Zp<z logp ~ z by partial summation that for 0 < o < 1 one has

—x

logp 2t
Z R

p<z i
With o = rL+1’ so that 1 —a = T—_}_l = 3, we find that
|.A| _llogx+2(1c3)y<ll<y 1125: < -~ - C?ﬁﬁy_ — —
—logz+ X cpy<pey ooy logz + 55 (47 — (1 — ¢3)%y”)
_ csca(logz) _ 0203y (log 2",

—logx + %1ogx C —co

Suppose that we have C' > ¢ but % < ¢1. This is, for sufficiently large x, a
contradiction to our assumption |A| > ¢ (logz)". O

Remark. Matthews (see [6]) considered questions related to that of Erdés and Ram
Murty in a more general context of algebraic groups and abelian varieties. For the
classical case of Artin’s conjecture he proved that for almost all primes and for all

positive & one has v(p) > p2 <. (Apparently he was unaware of [1] and [2].) He

mentions further applications to nilpotent groups and to manifolds due to Milnor,
Tits, and Wolf.
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