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1. Introduction. Blecksmith, Erdős and Selfridge [1] defined a prime
p > 2 to be a cluster prime if every positive even integer 2r ≤ p − 3 can
be written as a difference of two primes, 2r = q − q′, where q′ ≤ q ≤ p. It
is an open question whether there exist infinitely many cluster primes. Guy
([4, Section C1]) attributes this question to Erdős. The attention of the
general audience was drawn to this problem by Peterson’s article [6] in
Science News.

Blecksmith et al. [1] proved that the counting function πC(x) of cluster
primes can be bounded from above: for all positive s,

πC(x) = Os

(
x

(logx)s

)
.

It is the purpose of this note to prove a better bound, i.e. that cluster primes
are rare. This new bound was indeed conjectured by Blecksmith et al. [1].

Theorem. The number πC(x) of cluster primes below x is bounded by

πC(x) = O

(
x

exp
( 1

60(log log x)2
)
)
.

As Blecksmith, Erdős and Selfridge show, the problem is related to the
prime k-tuple conjecture. It is proved that for a cluster prime p the interval
[p − t, p) must contain sufficiently many primes, which explains the name
cluster prime. This allows us to apply an upper bound sieve. In Blecksmith
et al. [1], Brun’s version of the small sieve is used. The principal problem
is that the authors arrive at a constant M whose dependence on the sieve
dimension s is not at all clear. This prohibits taking an increasing s.

Filaseta [3] mentioned that an application of Hooley’s almost pure sieve
proves the result with s = ε log log log x, thus obtaining an upper bound of

πC(x) = O

(
x

exp(a log log x log log log x)

)
for some positive constant a.
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In this note we apply the large sieve method, due to Montgomery [5].
In fact, we make use of the following lemma due to Vaughan [7], which
is an elaborated version of the large sieve method, perfectly fitting to our
application.

Lemma 1 (Montgomery [5], Vaughan [7]). Denote by P the set of primes
and let ω : P → N with 0 ≤ ω(p) ≤ p − 1. Let A ⊂ [1, N ] denote a set of
integers which lies outside ω(p) residue classes modulo the prime p. Then
the number A(x) of elements n ∈ A with n ≤ x satisfies

A(x) ≤ 2x
L
, where L =

∑

q≤x1/2

µ2(q)
∏

p|q

ω(p)
p− ω(p)

.

Moreover ,

L ≥ max
m∈N

exp
(
m log

(
1
m

∑

p≤x1/(2m)

ω(p)
p

))
.

2. Proof of the Theorem. If p is a cluster prime, then the even integers
like p − 9 or p − 15 are the differences of two primes q, q′ with q, q′ ≤ p. In
particular, there must be a prime in the interval [p− 6, p). More generally,
an even integer 2r ∈ [p−t, p−3] must be represented by a prime q ∈ [p−t, p]
and a prime q′ ∈ [1, t]. By the prime number theorem the number of primes
in [1, t] is (1 + o(1))t/log t. We see that for any ε > 0 there must be at least
s := (1/2− ε) log t primes in [p− t, p).

Since the average gap between primes of size x is about log x we see
that this is a useful criterion for t = O((logx)δ) (with 0 < δ < 1). On the
contrary, for sufficiently large t one expects that an interval of length t has
about t/log t primes so that this criterion becomes useless.

There are (trivially) at most
(
t
s

)
possibilities to place s primes in an

interval of length t. For any pattern of s primes in [p − t, p) we will give
an upper bound on the number of prime s-tuples below x. This bound will
not depend on the particular pattern. So, multiplying this bound by the
upper bound for the number of patterns,

(
t
s

)
, gives an upper bound on

the number of p ≤ x such that the interval [p − t, p) contains (at least) s
primes.

We prove the following lemma:

Lemma 2. Let δ = 1/(2e) and t = (log x)δ. Let ε be a sufficiently small
positive constant. Let A(x) denote the number of integers n ≤ x such that
the interval [n− t, n) contains at least s = (1/2− ε) log t primes. Then

A(x) = O

(
x

exp((1/(4e2)− ε)(log log x)2)

)
.
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We fix a particular pattern a1 < . . . < as. If all n−ai are prime simulta-
neously, then the integers n avoid the residue classes ai mod p for p ≤ n− t.
If p > t, then the number of forbidden classes is ω(p) = s.

We choose m = dδ2(log log x)2e, where x is large. With y = x1/(2m) we
have log log y = log log x− 2 log log log x+O(1). So we find that

∑

p≤y

ω(p)
p
≥
∑

t≤p≤y

ω(p)
p
≥ s(log log y − log log t+ o(1))

≥ (1/2− ε)δ(log log x)(log log x− 3 log log log x+O(1))

≥ (1/2− 2ε)δ(log log x)2.

This implies the estimate

L ≥ exp
(
dδ2(log log x)2e log

(
1

dδ2(log log x)2e δ
(

1
2
− 2ε

)
(log log x)2

))

≥ exp
(
δ2(log log x)2 log

(
1
δ

(
1
2
− 3ε

)))

≥ exp(δ2(log log x)2 log(e− 6eε)) ≥ exp(δ2(1− 7ε)(log log x)2)

≥ exp
((

1
4e2 − ε

)
(log log x)2

)
.

Therefore, for any fixed pattern a1 < . . . < as there are at most
2x

exp((1/(4e2)− ε)(log log x)2)
values n ≤ x such that all n− ai are prime. Thus the lemma is proved.

To prove the theorem we only need to recall that

πC(x) ≤
(
t

s

)
2x

exp(δ2(1− 7ε)(log log x)2)
.

Because of (
t

s

)
≤ ts ≤ exp((1/2− ε)δ2(log log x)2)

we find that

πC(x) = O

(
x

exp((1/(8e2)− ε)(log log x)2)

)
.

3. Further comments. No serious attempt has been made at optimiz-
ing the constant 1/60 or 1/(8e2) − ε that appears in the Theorem. Some
improvement is possible. We only mention the following: Vaughan’s argu-
ment in Lemma 1 can be refined to

L ≥ max
m∈N

exp
(
m log

(
e− εm
m

∑

p≤x1/(2m)

ω(p)
p

))
.
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Here the εm are positive constants that tend to 0 as m goes to infinity. This
allows using c1 ≈ δ/2 and δ ≈ 1/2 and proves the Theorem with 1/8 − ε
instead of 1/60. For details see [2].

The author would like to thank the referees for helpful comments.
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