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Abstract

The following two problems are open:
1) Do two sets of positive integers A and B exist, with at least two
elements each, such that A+ B coincides with the set of primes P, for
sufficiently large elements?
2) Let A = {6, 12, 18}. Is there an infinite set B of positive integers
such that AB + 1 ⊂ P ? A positive answer would imply that there
are infinitely many Carmichael numbers with 3 prime factors.

In this paper we prove the multiplicative analogue of the first prob-
lem, namely that there are no two sets A and B, with at least two el-
ements each, such that the product AB coincides with any additively
shifted copy P + c of the set of primes for sufficiently large elements.
We also prove that shifted copies of sets of integers which are gen-
erated by certain subsets of the primes cannot be multiplicatively
decomposed.

1 Introduction

Let A and B denote sets of positive integers. Let us define a sumset by

A+ B = {a + b : a ∈ A, b ∈ B}

and similarly a product set by

AB = {ab : a ∈ A, b ∈ B}.

Sumsets have been extensively studied in the literature, see for example
Ostmann [15], Nathanson [14], and Tao and Vu [19]. Some of the results on
sumsets can be rewritten for product sets. Often, the right multiplicative
analogue of problems on A+ B is to ask about sets of the form AB + 1.
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Usually the interaction of sums and products leads to very difficult prob-
lems. For example one would like to know whether the set of shifted primes
p + 2 or shifted squares n2 + 1 contains infinitely many primes. Also, for a
finite set of integers A it is an open problem if at least one of the sets A+A
and AA has at least |A|2−ε many distinct elements, as conjectured by Erdős
and Szemerédi [5].

There are also many open problems on inverse questions, e.g., whether a
given set can be additively or multiplicatively decomposed.

Let us start with some definitions.

Definition 1.1 (See Ostmann [15], vol. 1, p. 1). Let S1 and S2 denote sets
of positive integers. We say that S1 and S2 are asymptotically equal, if there
exists an integer N0 such that S1 ∩ [N0,∞) = S2 ∩ [N0,∞).

Definition 1.2 (See [15], vol. 1, p. 5). Let S be a set of positive integers.
We say that S is additively irreducible if there are no two sets of positive
integers A and B, with at least two elements each, such that A+ B = S.

Definition 1.3 (See [15], vol. 1, p. 5). Let S be a set of positive integers.
We say that S is asymptotically additively irreducible (or we say that no
asymptotic additive decomposition exists) if there are no two sets of posi-
tive integers A and B, with at least two elements each, such that A+ B is
asymptotically equal to S.

Ostmann stated the following

Conjecture 1.4 ([15] vol. 1, p. 13). The set of primes P is asymptotically
additively irreducible.

This problem has attracted considerable attention, and several authors
have proved that in a conceivable asymptotic additive decomposition of P
both summands A and B would need to be infinite, (see Hornfeck [10], Mann
[12], Laffer and Mann [11]). For further partial results see for example Pomer-
ance, Sárközy and Stewart [16], Hofmann and Wolke [9], Puchta [17] or the
present author [1], [2], [3] and [4]. In particular, the author proved in [2] that
the set of primes is not asymptotically additively decomposable into three
sets A,B, C containing at least two elements each.

We study some examples:

Example 1.5. There are “large” sets of integers which are sumsets but still
have multiplicative properties, see also [4]. Let

A = {n2 : n ∈ N and (p | n ⇒ p ≡ 1, 3, 5 mod 8)},
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B = {n2 : n ∈ N and (p | n ⇒ p ≡ 1, 5, 7 mod 8)}.

Then the set C = A+ B has the two properties:
1) the elements of C consist of prime factors p 6≡ 3 mod 4 only.
2) the set C can be additively decomposed.

This shows that “close” to Ostmann’s conjecture there are examples that
behave very differently.

Moreover, the set

C2 = {x2 + y2 : x, y ∈ N}
= {n =

∏
i

pαi
i : pi prime, αi nonnegative integers, αi even if pi ≡ 3 mod 4}

has the following multiplicative and additive decomposition: Let

A2 = {n ∈ N : p | n ⇒ (p = 2 or p ≡ 1 mod 4)},

B2 = {n2 : n ∈ N and (p | n ⇒ p ≡ 3 mod 4)} :

C2 = A2B2 = {n2 : n ∈ N}+ {n2 : n ∈ N}.

Example 1.6. It is not known whether there is any set A of at least two ele-
ments a1, a2 and a set B with infinitely many elements such that all elements
of the sumset are prime simultaneously: A+ B ⊂ P . The existence of such
sets would imply that there are infinitely many pairs of primes with bounded
gaps. The twin prime conjecture, and more generally the k-tuple conjectures,
can be written in this notation: Let A = {0, 2}. Does an infinite set B exist
such that A+ B ⊂ P?

Example 1.7. If we study the analogue multiplicative questions we should
study the multiplicative structure of primes shifted by an additive constant
c. It is an open problem whether for any integer c and any set A of at least
two integers a1, a2 there is a set B containing infinitely many elements such
that all elements aibj + c are simultaneously prime: AB + c ⊂ P.

Famous open problems can be written as special cases of this question as
follows:

- Sophie Germain primes are primes p with the property that 2p + 1 is
also a prime. It is not known whether there exist infinitely many of
these prime pairs. This can be rephrased as follows: Let A = {1, 2}.
Determine whether there is an infinite set B such that AB − 1 ⊂ P .
Note that in this example the elements in B would be shifted primes
p + 1.
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- Also, it is not known whether there are infinitely many Carmichael
numbers with exactly 3 prime factors. This would follow if there are
infinitely many prime triples p1 = 6k + 1, p2 = 12k + 1, p3 = 18k + 1;
then n = p1p2p3 is a Carmichael number. This can be written in terms
of product sets as follows: Let A = {6, 12, 18}. It is an open problem
whether there is an infinite set B of integers such that AB + 1 ⊂ P .
As Granville and Pomerance show (Theorem 1 of [8]) all Carmichael
numbers come from a parametric form of a suitably generalized type.

Thus, these multiplicative decomposability problems of shifted primes are
closely related to encryption protocols like RSA, i.e. to important questions
in cryptography. (For references to Germain primes and Carmichael numbers
see Ribenboim [18]).

In this paper we solve the multiplicative analogue of Ostmann’s conjec-
ture. In plain words, we prove that there are no two sets A,B, with at least
two elements each, such that a shifted copy of the primes P+c can be asymp-
totically multiplicatively decomposed. A precise formulation follows below
after some definitions.

Definition 1.8. Let S be a set of positive integers. We say that S is multi-
plicatively irreducible if there are no two sets of positive integers A and B,
with at least two elements each, such that AB = S.

Definition 1.9. Let S be a set of positive integers. We say that S is asymp-
totically multiplicatively irreducible (or cannot be asymptotically multiplica-
tively decomposed) if there are no two sets of positive integers A,B, with at
least two elements each, such that AB is asymptotically equal to S.

Definition 1.10. Let S be a set of positive integers. We say that S is
asymptotically multiplicatively translation-irreducible if there is no decom-
position of the following type: S ′ = AB + c, where A,B are sets of positive
integers with at least two elements each, c 6= 0 an integer, and where S ′ is
asymptotically equal to S.

In this paper we prove:

Theorem 1.11. The set of primes is asymptotically multiplicatively translation-
irreducible.

Remark 1.12. The proof shows that the same holds for any set of primes
P1 ⊂ P with a counting function P1(N) ≥ f(N) N

(log N)2
, where f(N) tends

to infinity.
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The following Theorem proves the corresponding result for sets of integers
composed of certain prime factors only (i.e. for certain semigroups).

Theorem 1.13. Let T ⊂ P be a set of primes with the property that∑
p≤N, p∈T

1 = τ
N

log N
+ O

(
N

(log N)2

)
, (1)

for some constant 0 < τ < 1. Let

Q(T ) = {1} ∪ {n ∈ N : p | n ⇒ p ∈ T }.

Then Q(T ) is asymptotically multiplicatively translation-irreducible.

Remark 1.14. Observe that Theorem 1.13 does not contain Theorem 1.11
as a special case. But even though, the proofs of both theorems are closely
related which should be useful if one wants to adapt the method to other
problems.

Remark 1.15. Observe that Q(T ) = Q(T )Q(T ). So, we need c 6= 0 in
Definition 1.10. In contrast to this, by the very definition of the primes, the
set P is asymptotically multiplicatively irreducible, (c = 0).

Remark 1.16. The above choice of T contains important cases like T is the
union of primes in certain arithmetic progressions.

2 Background from sieve theory

We shall use a combination of the large sieve, and of Gallagher’s larger sieve.
Let us state these sieves first.

Lemma 2.1 (Montgomery [13]). Let P denote the set of primes. Let p be
a prime. Let A denote a set of integers which avoids ωA(p) residue classes
modulo p. Here ωA : P → N with 0 ≤ ω(p) ≤ p − 1. Let A(N) denote the
counting function A(N) =

∑
a≤N,a∈A 1. Then the following upper bound on

the counting function holds:

A(N) ≤ N + Q2

L
, where L =

∑
q≤Q

µ2(q)
∏
p|q

ωA(p)

p− ωA(p)
.

One typically chooses Q = N
1
2 .

Vaughan has found a suitable lower bound of L if
∑

p≤y

ω(p)

p
is known.

We state a slight refinement of the original version.
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Lemma 2.2 (Compare Vaughan [20]). Let εm be positive constants with
0 < εm ≤ e− 1 that satisfy m! ≤ ( m

e−εm
)m. For sufficiently large Q

a) L ≥
∞∑

m=1

1

m!

 ∑
p≤Q

1
m

ω(p)

p


m

.

b) L ≥
∞∑

m=1

exp

m log

e− εm

m

∑
p≤Q

1
m

ω(p)

p


 ,

It is always possible to have e− εm = 1. It follows from Stirling’s formula
that one can choose εm → 0. The sum

∑∞
m=1 is in fact a finite sum only.

The parameter m denotes the number of prime factors of q in the definition

of L. Hence 1 ≤ m ≤ log Q

log 2
. There are at most O(log Q) summands. A

lower bound on L can be found by choosing a suitable value of m.

Proof of Theorem 2.2. For the proof of a) see [20].
Proof of b)

With
(

m
e−εm

)m

≥ m! the following inequalities hold:

∞∑
m=1

1

m!

 ∑
p≤Q

1
m

ω(p)

p


m

≥
∞∑

m=1

 ∑
p≤Q

1
m

(e− εm)ω(p)

mp


m

=
∞∑

m=1

exp

m log

e− εm

m

∑
p≤Q

1
m

ω(p)

p


 .

Lemma 2.3 (Gallagher’s larger sieve, [6]). Let S denote a set of primes such
that B lies modulo p (for p ∈ S) in at most νB(p) residue classes. Then the
following bound holds, provided the denominator is positive:

B(N) ≤
− log N +

∑
p∈S log p

− log N +
∑

p∈S
log p

νB(p)

.
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3 Proof of Theorem 1.11

Proposition 3.1. Let A,B be sets of positive integers with at least two ele-
ments each. Suppose that P ′ = AB + c, where P ′ ∩ [N0,∞) = P ∩ [N0,∞).
Then for arbitrary ε > 0:

N
1
2
−ε �ε A(N) �ε N

1
2
+ε.

The same holds for B(N).

Proof. Suppose that P ′ = AB + c, where P ′ ∩ [N0,∞) = P ∩ [N0,∞). Let
b1 < b2 be the least two elements of B. Without loss of generality we may
assume that N0 > max(b2, c); otherwise, we just increase N0. Let N > N3

0 be
a large integer. We begin by showing that for any prime q ∈ [N0, N

1/2] the set
A1 = A ∩ [N1/2, N ] avoids at least two residue classes modulo q. If a ∈ A1,
then ab1 +c = p is a prime with b1 < N0 < q < N1/2 < p. Now b1 6≡ 0 mod q,
so b−1

1 mod q exists and a 6≡ −b−1
1 c mod q. Similarly a 6≡ −b−1

2 c mod q. It
follows that a ∈ A1 avoids the two residue classes −b−1

1 c and −b−1
2 c modulo

q. These are distinct since 0 < b1 < b2 < q and 0 < c < q.
Lemma 2.1 applied with ω(q) = 2 gives the upper bound A1(N) �

N
(log N)2

, so A(N) ≤
√

N +A1(N) � N
(log N)2

. Because P(N) � N
log N

we must

have B(N) � log N . This trivially implies that B(N) → ∞, as N → ∞.
Observe that this argument (and those below) also holds for a subset P1 of
the primes, if P1(N) ≥ N

(log N)2
f(N) where f(N) →∞ as N →∞.

Let b1 < b2 < . . . < bk be the first k elements of B. We adapt the
argument above with the change that N0 > bk. A sieve with ω(q) = k,

for q ∈ [N0, N
1
2 ] implies that A(N) �k

N
(log N)k and therefore B(N) �k

(log N)k−1. This holds for all k, so we have B(N) ≥ ck(log N)k.
To iterate this further we need a lower bound on ω(q) on average. Since a

residue class b mod q forbids a class a mod q for A we actually count those
classes modulo primes that occur in B.

Let νB(p) = |B mod p|; i.e., νB(p) is the number of residue classes modulo
p that contain at least one element of B.

Let
y = ck(log N)k+1 (2)

and S = {p : N0 < p ≤ y}. If
∑

p∈S
log p
νB(p)

> 3 log N , then we apply Gal-

lagher’s larger sieve. Using (2) and Chebyshev’s bound
∑

p≤y log p < 2y we
obtain a contradiction:

ck(log N)k ≤ B(N) ≤
− log N +

∑
p∈S log p

− log N +
∑

p∈S
log p
νB(p)

<
2y

− log N +
∑

p∈S
log p
νB(p)

< ck(log N)k.
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Consequently ∑
p∈S

log p

νB(p)
≤ 3 log N.

From the Cauchy-Schwarz inequality and by partial summation from
Chebyshev’s inequality π(y) � y

log y
we find that:( ∑

N0<p≤y

log p

νB(p)

)( ∑
N0<p≤y

νB(p)

p

)
≥

(∑
p≤y

(
log p

p

)1/2
)2

� y

log y
. (3)

We combine these two inequalities to obtain∑
p∈S

νB(p)

p
� y

(log y)(3 log N)
� (log N)k

log log N
.

It then follows by Montgomery’s large sieve and by Vaughan’s Lemma
2.2 that A1(N) ≤ 2N

L
, where

L =
∑

q≤N1/2

µ2(q)
∏
p|q

ωA(p)

p− ωA(p)

≥ max
m∈N

exp

m log

 1

m

∑
p≤N1/(2m)

ωA(p)

p

 .

We choose the integer m such that N1/(2m) is close to y. Hence

m =
1

2(k + 1)

log N

log log N
+ O(1).

We may choose

ωA(p) =

{
νB(p) for p ∈ S
0 otherwise.

Therefore we find that for all ε′ > 0:

log L ≥ log N

2(k + 1) log log N
log

(
2(k + 1) log log N

log N

c(log N)k

log log N

)
+ O(1)

≥
(

1

2
− 1

k + 1
− ε′

)
log N.

So, for any given ε > 0, we choose ε′ = ε
2
, and so, for sufficiently large k, we

find that

A(N) ≤ A1(N) + N
1
2 ≤ 2N

L
+ N

1
2 �ε N

1
2
+ 1

k+1
+ε′ �ε N

1
2
+ 3

4
ε.
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The same upper bound holds for B(N), by symmetry. The lower bound

A(N) � N
1
2
−ε, for all ε > 0, follows since A(N)B(N) � π(N) � N

log N
must

hold. So, the proposition follows.

Proof of Theorem 1.11. If ab + c = p ≤ N , then at least one of a �
√

N or
b �

√
N must hold. Since all π(N) + O(1) � N

log N
primes in [N0, N ] have

at least one presentation as ab + c, we not only have A(N)B(N) � N
log N

but
also

A(N)B(
√

N) +A(
√

N)B(N) � N

log N
.

Applying our proposition, once with N1 =
√

N , a second time with N2 = N
gives

A(N)B(
√

N) +A(
√

N)B(N) � N
3
4
+ε,

which proves the theorem.

4 Proof of Theorem 1.13

This proof follows along the same lines.
Let us state some consequences of the density condition of T .

Lemma 4.1. ∑
p≤y,p 6∈T

1

p
= (1− τ) log log y + C + o(1).

Proof. This follows by partial summation from the density assumption in
equation (1). Actually, a somewhat weaker density assumption would suffice.

Lemma 4.2. ∑
p≤y,p 6∈T

(
log p

p

) 1
2

�τ
y

1
2

(log y)
1
2

.

This follows again by partial summation. The following argument may
be easier: Let pn denotes the n-th prime which is not in T . Equation (1)
implies that pn ∼ 1

1−τ
n log n. Then

∑
p≤y,p 6∈T

(
log p

p

) 1
2 ∼

∑
n≤ (1−τ+o(1))y

log y

(
(1−τ)(log n+log log n+O(1))

n log n

) 1
2

�τ

∑
n≤ (1−τ+o(1))y

log y

1

n
1
2
�τ

y
1
2

(log y)
1
2
.
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Lemma 4.3.

Q(T )(N) ∼ Cτ
N

(log N)1−τ
.

Q(P\T )(N) ∼ C1−τ
N

(log N)τ
.

This follows from the following result.

Lemma 4.4 (Wirsing, [21]). Let T denote a set of primes and 0 < τ ≤ 1.
If ∑

p≤x
p∈T

1

p
= τ log log x + C + o(1),

then

|{n ≤ N, p | n ⇒ p ∈ T }| ∼ CT
N

(log N)1−τ
.

Proposition 4.5. Suppose that Q(T )′ = AB + c, where min(|A|, |B|) ≥ 2,
Q(T )′ ∩ [N0,∞) = Q(T ) ∩ [N0,∞). Then for arbitrary ε > 0:

N
1
2
−ε �ε A(N) �ε N

1
2
+ε.

The same holds for B(N).

Proof. Suppose for a contradiction that Q(T )′ = AB + c, where Q(T )′ ∩
[N0,∞) = Q(T ) ∩ [N0,∞). Let b1 < b2 be the two smallest elements of B,
and without loss of generality we can assume that N0 > max(b2, c); (otherwise
just increase N0). Observe that ab + c 6≡ 0 mod q for primes q 6∈ T . A class
b mod q that occurs in B induces a forbidden class −c b−1 mod q for A: let
N > N3

0 be any large integer. Let T = P\T . Let q ∈ T be a prime in
[N0, N

1/2]. Let A1 = A ∩ [N1/2, N ], and let a ∈ A1. Let N > ab + c = p >
N1/2 > q > N0. Since b1 < b2 < q it is clear that b−1

1 mod q and b−1
2 mod q

exist and are distinct. Also recall that c 6= 0 and q > c. Therefore the set A1

avoids modulo all primes q ∈ [N0, N
1/2] at least two distinct residue classes.

An application of Vaughan’s lemma 2.2 applied with

ω(q) =

{
2 if q ∈ T ∩ [N0, N

1
2 ]

0 otherwise.

gives an upper bound of

A1(N) � N

maxm

(
exp

(
m log

(
e−εm

m

∑
p≤N1/(2m)

ω(p)
p

))) .
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Choosing m = b2(1− τ) log log Nc gives

A1(N) � N

exp(m log
2e(1−ε)(1−τ)(log log N−log(2m))

2(1−τ) log log N )
� N

(log N)2(1−τ)(1−2ε) ,

which implies A(N) ≤
√

N +A1(N) � N
(log N)2(1−τ)(1−2ε) . Since

Q(T )(N) � N

(log N)1−τ

one necessarily has B(N) ≥ k, for each fixed k. Let b1 < b2 < . . . < bk be the
first k elements of B. We iterate this procedure. Let N0 > bk. An application
of Vaughan’s lemma applied with

ω(q) =

{
k if q ∈ T ∩ [N0, N

1
2 ]

0 otherwise.

and m = bk(1−τ) log log Nc gives an upper bound ofA(N) � N
(log N)k(1−τ)(1−ε′) .

Since this holds for all k we also have B(N) ≥ ck(log N)k. Let T (y) = {p ∈
T , p ≤ y}. By Lemma 4.2 above we find that: ∑

p∈T (y)

log p

νB(p)

 ∑
p∈T (y)

νB(p)

p

 ≥

 ∑
p∈T (y)

(
log p

p

)1/2
2

�τ
y

log y
.

Choose y = ck(log N)k+1. Let us assume that∑
p∈T (y)

log p

νB(p)
> 3 log N.

Then we arrive at a contradiction, by Gallagher’s larger sieve:

B(N) ≤
− log N +

∑
p∈T (y) log p

− log N +
∑

p∈T (y)
log p
νB(p)

<
y

2 log N
< ck(log N)k.

Therefore we have that ∑
p∈T (y)

log p

νB(p)
≤ 3 log N

which implies that∑
p∈T (y)

νB(p)

p
� y

(log y)(3 log N)
� (log N)k

log log N
.
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We apply again Montgomery’s large sieve and Vaughan’s Lemma . We
choose the integer m such that N1/(2m) is close to y. Hence m = 1

2(k+1)
log N

log log N
+

O(1). We may choose ωA(p) =

{
νB(p) for p ∈ T (y)
0 otherwise.

Therefore we find that

log L ≥ log N

2(k + 1) log log N
log

(
2(k + 1) log log N

log N

c(log N)k

log log N

)
+ O(1)

≥
(

1

2
− 1

k + 1
− ε′

)
log N.

And so we have that A(N) ≤ 2N
L

+ N
1
2 � N

1
2
+ 1

k+1
+ε′ � N

1
2
+ 3

4
ε. The upper

bound on B(N) is the same, by symmetry. The lower bounds follow again
from A(N)B(N) � N

(log N)1−τ , which completes the proof of the Proposition.

The proof of Theorem 1.13 is as before. Assuming a decomposition
Q(T )′ = AB + c exists, then for some constant c′

N

(log N)1−τ
� Q(T )(N) � A(N)B(c′

√
N) +A(c′

√
N)B(N) � N

3
4
+ε,

which is a contradiction.

Remark 4.6. An alternative proof of Theorem 1.11 is as follows: By a theorem
of Goldfeld [7] it is known that for � N

(log N)
of the primes p ≤ N the largest

prime factor of p+c satisfies P (p+c) � p0.5. This means that a multiplicative
decomposition of P + c would need � N

log N
large elements in A or B, which

is impossible by relatively simple sieve bounds. In order to prove Theorem
1.13 one would need to prove suitable results on the largest prime factor
of sequences like Q(T ) + c first. This approach would not seem to be any
simpler than the one chosen in this paper.

This paper was written while the author was enjoying a research stay
at the Mathematical Institute of the Hungarian Academy of Sciences. The
author was supported by the Finite Structures project, in the framework
of the European Community’s “Structuring the European Research Area”
programme. The author is also grateful to the referee for a careful reading
of the manuscript.
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