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Christian Elsholtz and Glyn Harman

On the occasion of Helmut Maier’s 60th birthday.
With admiration

for his beautiful results on the distribution of primes.

Abstract We discuss recent conjectures of T. Ordowski and Z.W. Sun on limits
of certain coordinate-wise defined functions of primes in Q(

√
−1) and Q(

√
−3),

Let p ≡ 1 mod 4 be a prime and let p = a2
p + b2

p be the unique representation with
positive integers ap > bp. Then the following holds:

lim
N→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
=

∫ π/4
0 cosk(x)dx∫ π/4
0 sink(x)dx

.

For k = 1 this proves, but for k = 2 this disproves the conjectures in question.
We shall also generalise the result to cover all positive definite, primitive, binary
quadratic forms. In addition we will discuss the case of indefinite forms and prove
a result that covers many cases in this instance.

1 Primes and quadratic forms

Tomasz Ordowski (see Sun [12], section 6) conjectured:

Conjecture 1. Let p≡ 1 mod 4 be a prime and let p = a2
p +b2

p be the unique repre-
sentation with positive integers ap > bp.
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a) lim
N→∞

∑p≤N, p≡1 mod 4 ap

∑p≤N, p≡1 mod 4 bp
= 1+

√
2,

b) lim
N→∞

∑p≤N, p≡1 mod 4 a2
p

∑p≤N, p≡1 mod 4 b2
p
=

9
2
.

Z.W. Sun [12] stated a number of related conjectures for other quadratic forms,
including the following:

Conjecture 2 (Sun). Let p≡ 1 mod 3 be a prime and let p = x2
p + xpyp + y2

p be the
unique representation with positive integers xp > yp.

a) lim
N→∞

∑p≤N, p≡1 mod 3 xp

∑p≤N, p≡1 mod 3 yp
= 1+

√
3,

b) lim
N→∞

∑p≤N, p≡1 mod 3 x2
p

∑p≤N, p≡1 mod 1 y2
p
=

52
9
.

This conjecture can also be found in the comments on sequence A218585 in [10].
Sun further remarked that numerically

lim
N→∞

∑p≤N, p≡1 mod 3 x3
p

∑p≤N, p≡1 mod 1 y3
p
≈ 11.15 and lim

N→∞

∑p≤N, p≡1 mod 3 x4
p

∑p≤N, p≡1 mod 1 y4
p
≈ 20.6.

In this paper we will show that these limits exist and how one can evaluate them.
Cases a) of both conjectures turn out to be true, but cases b) of both conjectures are
wrong. It seems to us that the authors guessed the values based on some experimen-
tal data, but without theoretical justification. For the two quadratic forms above we
will determine the nature and value of the sums with arbitrary k ∈ N.

Theorem 1. Let p ≡ 1 mod 4 be a prime and let p = a2
p + b2

p be the unique repre-
sentation with positive integers ap > bp. Then

Ik := lim
N→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
=

∫ π/4
0 cosk(x)dx∫ π/4
0 sink(x)dx

.

For k = 1 this value is indeed 1+
√

2. For k = 2 the value is π+2
π−2 which is about

4.50388. Here is a small table of exact and numerical values.
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k exact value approx. numerical value
1 1+

√
2 2.41421

2
π +2
π−2

4.50388

3 5
7 (5+4

√
2) 7.61204

4
3π +8
3π−8

12.2298

5 (43
√

2)/(64−43
√

2) = 43
199 (43+32

√
2) 19.0701

6
15π +44
15π−44

29.1700

7 (177
√

2)/(256−177
√

2) = 177
1439 (177+128

√
2) 44.0371

8
21π +64
21π−64

65.8612

Remark 1. The method of proof can be easily adapted to prove a slightly more gen-
eral result:
Let 0 ≤ C1 < C2 be nonnegative constants. Let p ≡ 1 mod 4 be a prime and let
p = a2

p + b2
p be a representation with positive integers C1 ap < bp < C2 ap. Then

(counting representations with multiplicity if C1 < 1 <C2)

Ik(C1,C2) := lim
N→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
=

∫ arctanC2
arctanC1

cosk(x)dx∫ arctanC2
arctanC1

sink(x)dx
.

The special case C1 = 0,C2 = 1 immediately gives Theorem 1.

Remark 2. It is possible to investigate the number theoretic properties of the integers
in the related sequences. For example the coefficients of π in the expressions

∫
π/4

0
cosk(x)dx =


2+π

8 k = 2
8+3π

32 k = 4
11
48 +

10π

128 k = 6
5
24 +

35π

512 k = 8

etc. leads to the sequence 1,3,10,35,126, . . . which is well studied, with a lot of
further comments and connections stated in the Online encyclopeadia of integer
sequences, sequence, A001700, [10].

On the other hand, for k = 2` we find that Ik = (A`π +B`)/(A`π−B`) where A`

is the sequence

1,3,15,21,315,3465,45045,15015,765765,14549535 . . .

which is, at the time of writing, not in the OEIS. However, the sequence is very
closely related to sequence A025547, Least common multiple of {1,3,5, ...,2n−
1}: 1,3,15,105,315,3465,45045,45045,765765,14549535,14549535, . . . The re-
lation to this sequence is quite natural by the recursive nature of the integrals. (Ex-
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panding the fractions would enlarge 21 to 105 and 15015 to 45045). We do not
follow any of these paths further.

We now study two properties of the values of Ik:

Corollary 1. Let Ik = limN→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
, then Ik ∈ Q(

√
2), with Ik irrational,

when k is odd, and Ik ∈Q(π), with Ik transcendental, when k ≥ 2 is even.

The following result states the asymptotic growth of Ik:

Theorem 2. As k tends to infinity, we have the following estimate:

Ik ∼
(

πk
2

) 1
2

2k/2 . (1)

We now come to Conjecture 2. A consequence of our main theorem below (The-
orem 4) is the following which we state as a result in its own right.

Theorem 3. Let p ≡ 1 mod 3 be a prime and let p = x2
p + xpyp + y2

p be the unique
representation with positive integers xp > yp. Then

Jk = lim
N→∞

∑p≤N, p≡1 mod 3 xk
p

∑p≤N, p≡1 mod 3 yk
p
=

U(k)
V (k)

,

where

U(k) =
∫

π/6

0
(
√

3cosx− sinx)k dx

and

V (k) = 2k
∫

π/6

0
sink xdx.

In particular this gives

k exact value of Jk approx. numerical value
1 1+

√
3 2.73205

2
2π

2π−3
√

3
5.78012

3 1
13 (67+45

√
3) 11.1494

4
2(
√

3−2π)

7
√

3−4π
20.5927

5 7
709 (1837+1113

√
3) 37.1698

6
9
√

3−10π

18
√

3−10π
66.2204

Again, part a) of the conjecture is correct, while b) is not.
Theorems 1 and 3 above, and many others, are consequences of the follow-

ing general result. Before stating this we need to make some comments on the
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uniqueness of representations. In the examples above the representations are unique,
but it is easy to find forms which give two representations. For Theorem 3 if we
had considered instead Q(x,y) = x2 − xy + y2 so that Q(x,y) = Q(x,x− y) and
thus 0 < y < x is equivalent to 0 < x− y < x. We thus obtain two representa-
tions for every representable prime. Similarly, if instead of x2 + y2 we considered
(x− y)2 + y2 = x2 − 2xy + 2y2. We note that x2 − 3xy + 3y2 gives four different
representations with 0 < y < x of primes p ≡ 1 mod 6. The worst case forms are
ax2 +bxy+ cy2 with 4ac−b2 = 3 and b large and negative. For these we have 5 or
6 representations. For example, with Q(x,y) = x2−7xy+13y2 we have

109 = Q(8,5) = Q(16,7) = Q(27,5) = Q(33,7) = Q(41,12) = Q(43,12)
(6 representations),

103 = Q(17,2) = Q(25,9) = Q(35,11) = Q(38,9) = Q(42,11)
(5 representations).

We therefore need to state our general theorem carefully to take this into account.
The reason for the numbers of solutions occuring will become apparent in the proof
of the theorem.

Theorem 4. Let Q(x,y) = ax2 + bxy + cy2 be a positive definite, primitive (i.e.
gcd(a,b,c) = 1), binary quadratic form with integer coefficents. Write D= 4ac−b2,
so D > 0 as the form is positive definite. Let δ =

√
D, and

β =

{
1
2 π if a+2b = 0,
arctan(δ/(b+2a)) otherwise,

with arctanx ∈ [0,π]. Then, for primes p represented by Q(x,y) with 0 < y < x we
let xp,yp denote a solution to 0 < yp < xp,Q(xp,yp) = p. For all other primes we
write xp = yp = 0. When there is more than one pair xp,yp we assume all pairs are
counted in the expressions that follow. We define xn,yn similarly for any positive
integer n. We then have

Rk = lim
N→∞

∑p≤N xk
p

∑p≤N yk
p
= lim

N→∞

∑n≤N xk
n

∑n≤N yk
n
=

S(k)
T (k)

,

where

S(k) =
∫

β

0
(δ cosθ −bsinθ)k dθ ,

and

T (k) = (2a)k
∫

β

0
sink

θ dθ .

We give one further corollary to illustrate the general result.

Corollary 2. Let n ∈ Z,n ≥ 2. Then, in the notation of Theorem 4 with Q(x,y) =
x2 +ny2, we have
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R1 = 1+
√

n+1,

R2 =
n(
√

n+(1+n)arctan
√

n)
−
√

n+(1+n)arctan
√

n
,

R3 =
(3+2n)(2+3n+2(1+n)3/2)

3+4n
.

This follows by taking a = 1,b = 0,c = n in Theorem 4 which gives δ =
2
√

n,β = arctan(
√

n). It can also be observed that if n+1 is a square, then some of
these limits are indeed rational numbers.

Z.W. Sun also made a conjecture about the form u2
p +3upvp + v2

p for prime p ≡
±1 mod 5:

Conjecture 3 (Sun). Let p ≡ ±1 mod 5 be a prime and let p = u2
p + 3upvp + v2

p be
the unique representation with positive integers up > vp.

lim
N→∞

∑p≤N, p≡±1 mod 5 up

∑p≤N, p≡±1 mod 5 vp
= 1+

√
5.

He also remarked that it seems that

lim
N→∞

∑p≤N, p≡±1 mod 5 u2
p

∑p≤N, p≡±1 mod 5 v2
p
≈ 8.185.

While Theorem 4 is only valid for positive definite forms we remark that a formal
application of the integrals, with a = 1,b = 3,D =

√
−5 leads to S(1) = −3+

√
5

and T (1) = 2−
√

5 which predicts indeed

lim
N→∞

∑p≤N, p≡±1 mod 5 up

∑p≤N, p≡±1 mod 5 vp
= 1+

√
5.

Moreover, for k = 2 we find S(2) = −i(
√

5−2artanh( 1√
5
)) and T (2) = − i

2 (
√

5−
4artanh( 1√

5
)), which predicts

lim
N→∞

∑p≤N, p≡±1 mod 5 u2
p

∑p≤N, p≡±1 mod 5 v2
p
=

2
√

5−4artanh( 1√
5
)

√
5−4artanh( 1√

5
)
≈ 8.18483.

Now there are several potential difficulties when looking at the problem for indefi-
nite forms. For example, in the most general case there is not the control of variable
size in terms of prime size that we have in the positive definite case. At first sight
there could be issues working in fields with infinitely many units, in particular how
we count the number of representations. Moreover, the results we need from Cole-
man’s work [1, 2] are not explicitly stated for indefinite forms, although careful
study shows that he does indeed prove the theorem we require. We thus are able to
prove the following result which covers the above conjecture and many other cases.
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Theorem 5. Let Q(x,y)= ax2+bxy+cy2 be an indefinite, primitive, binary quadratic
form with integer coefficents. Write D = b2−4ac, which we assume is not a perfect
square. Let δ =

√
D and we assume that 0 < δ/(b+ 2a) < 1, for if this condi-

tion fails there will be infinitely many representations of a prime by Q(x,y) with
0 < y < x. Put κ = artanh(δ/(b+2a)) (so this is well-defined by the previous con-
dition). Then, for primes p represented by Q(x,y) with 0 < y < x we define xp,yp
by 0 < yp < xp,Q(xp,yp) = p. When there is more than one pair xp,yp we assume
all pairs are counted in the expressions that follow. For all other primes we write
xp = yp = 0. We define xn,yn similarly for any positive integer n. We then have

Rk = lim
N→∞

∑p≤N xk
p

∑p≤N yk
p
= lim

N→∞

∑n≤N xk
n

∑n≤N yk
n
=

U(k)
V (k)

,

where
U(k) =

∫
κ

0
(δ coshθ −bsinhθ)k dθ ,

and
V (k) = (2a)k

∫
κ

0
sinhk

θ dθ .

Remark 3. We will indicate in the proof how one gets multiple representations of
primes and why representations are unique for some forms like u2

p +3upvp + v2
p.

We give a corollary working out these integrals for a particular family:

Corollary 3. Let n ∈ Z,b ≥ 3. Then, in the notation of Theorem 5 with Q(x,y) =
x2 +bxy+ y2, we have

R1 = 1+
√

b+2.

R2 =
(b−1)

√
b2−4−4artanh

√
(b−2)/(b+2)√

b2−4−4artanh
√

(b−2)/(b+2)
.

2 Proofs: The Simplest Case

We begin by quoting a simple consequence of Coleman’s work for Gaussian primes
which we will use to prove Theorem 1 directly and which motivated the whole
investigation. The reader will see that the proof of Theorem 4 is a straightforward
generalisation of this, though the necessary terminology may at first make it look
more complicated.

Lemma 1 (Coleman, Theorem 2.1 of [1]). Let 0 ≤ ϕ1 ≤ ϕ2 ≤ 2π , and 0 ≤ y ≤ x.
We can define S = S(x,y,ϕ1,ϕ2) = {z ∈ Z[i] : x−y < |z|2 ≤ x,ϕ1 ≤ ϕ ≤ ϕ2}, where
ϕ = arg(z/|z|)4. Let P = P(x,y,ϕ1,ϕ2) = {p ∈ S : |p|2 = p, prime}.

Let ε > 0 be given. We have the asymptotic result,
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∑
p∈P(x,y,ϕ1,ϕ2)

1 =
(ϕ2−ϕ1)y

2π logx

(
1+O

(
1

logx

))
,

for ϕ2−ϕ1 > x−5/24+ε , y > x19/24+ε ,x > xε .

Let us first outline the idea: for asymptotically evaluating ∑p≤N,p≡1 mod 4 ak
p it

suffices to dissect the sector with radius N from 0 < ϕ < π/4 into polar boxes.
Coleman’s result says that one can dissect this into fine (but not too fine) boxes, so
that the number of primes, corresponding to p = a2 +b2, is asymptotically the right
number, with some error of smaller order. We can therefore replace summation by
integration with negligible error. The same is true for the sum in the denominator.
Hence, we get:

lim
N→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
=

∫ π/4
0 cosk(x)dx∫ π/4
0 sink(x)dx

.

The reader should note that this is exactly the same relation we would get if p ran
over all numbers representable as the sum of two squares.

Proof (Proof of Theorem 1). We now describe this in more detail. We write T =
2[log2 N],ν =

√
N. Let us first concentrate on Gaussian primes with modulus in

the interval ( ν

2 ,ν ], we later sum up over intervals of type ( ν

2i ,
ν

2i−1 ]. For 1 ≤ s ≤
3T/4,1≤ t ≤ T/2 we then define polar boxes

Bs,t = {a = reiϕ : 1− s/T < (r/ν)2 ≤ 1− (s−1)/T,(t−1)/T < 2ϕ/π ≤ t/T}

=

{
a = reiϕ :

√
N
√

1− s/T < r ≤
√

N
√

1− (s−1)/T ,
π(t−1)

2T
< ϕ ≤ πt

2T

}
.

We note that a polar box {(r,θ) : R2
2 < r ≤ R2

1,θ
′ ≤ θ ≤ θ ′+ φ} has area 1

2 (R
2
1−

R2
2)φ . It follows (something we will need later when we convert sums to integrals)

that the box Bs,t has area Nπ/(4T 2). Write η = (logN)−1. Now logM = logN +
O(1) for N/4 < M ≤ N. Hence, by Lemma 1 (note though that the corresponding
polar box in that lemma has an angle four times that of Bs,t ) for each pair s, t we
have

∑
p∈Bs,t

1 =
N

T 2 logN
(1+O(η)) .

In each polar box cosϕ = cos(tπ/2T )+O(η) and similarly for sinϕ . Also r =
ν(1− s/T )

1
2 +O(νη). Hence
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∑
N
4 <p≤N,p≡1 mod 4

ak
p = ∑

s,t
∑

p∈Bs,t

ak
p

= (1+O(η))∑
s,t

N
T 2 logN

(
ν(1− s/T )

1
2 cos(tπ/2T )+O(ην)

)k

=
4
π
(η +O(η2))∑

s,t

∫ ∫
reix∈Bs,t

(r cosx+O(νη))kr dr dx

=
4
π
(η +O(η2))

∫
ν

ν/2
rk+1 dr

∫
π/4

0
cosk xdx.

We remark that it is easy to check the case k = 0 of the above which must give
the number of primes ≡ 1 mod 4 between N/4 and N. This is 3

8 Nη(1+O(η)) and
equals the final line of the above display by an elementary calculation.

Similarly,

∑
N
4 <p≤N,p≡1 mod 4

bk
p =

4
π
(η +O(η2))

∫
ν

ν/2
rk+1 dr

∫
π/4

0
sink xdx.

Adding up over the intervals ( ν

2i ,
ν

2i−1 ], and cancelling common factors one finds
that

lim
N→∞

∑p≤N,p≡1 mod 4 ak
p

∑p≤N,p≡1 mod 4 bk
p
=

∫ π/4
0 cosk(x)dx∫ π/4
0 sink(x)dx

.

Proof (Proof of Corollary 1). We now evaluate these integrals, for small exponents,
and determine the arithmetic nature of the values. It is well known that

∫
π/4

0
sinn(x)dx = − sinn−1 xcosx

n

∣∣∣∣π/4

0
+

n−1
n

∫
π/4

0
sinn−2 xdx

= − 1
n2n/2 +

n−1
n

∫
π/4

0
sinn−2 xdx,

∫
π/4

0
cosn(x)dx =

cosn−1 xsinx
n

∣∣∣∣π/4

0
+

n−1
n

∫
π/4

0
cosn−2 xdx

=
1

n2n/2 +
n−1

n

∫
π/4

0
cosn−2 xdx.

We note for the initial values n = 0 and n = 1 that
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π/4

0
sin0(x)dx =

π

4
,∫

π/4

0
sin1(x)dx = 1− 1√

2
,∫

π/4

0
cos0(x)dx =

π

4
,∫

π/4

0
cos1(x)dx =

1√
2
.

From this it is easy, to calculate for small k the limit by hand. For example, let k = 5.∫
π/4

0
sin3(x)dx =− 1

3 ·23/2 +
2
3
(1− 1√

2
) =

1
12

(8−5
√

2).

∫
π/4

0
sin5(x)dx =− 1

5 ·25/2 +
4
5
· 1

12
(8−5

√
2) =

1
120

(64−43
√

2).

∫
π/4

0
cos3(x)dx =

1
3 ·23/2 +

2
3

1√
2
=

5
√

2
12

.

∫
π/4

0
cos5(x)dx =

1
5 ·25/2 +

4
5
· 5
√

2
12

=
43
√

2
120

.

Hence

I5 = lim
N→∞

∑p≤N,p≡1 mod 4 a5
p

∑p≤N,p≡1 mod 4 b5
p
=

43
√

2
120

1
120 (64−43

√
2)

=
43
√

2
64−43

√
2
.

It is clear from the recursion formulae above, that for odd k,
∫ π/4

0 cosk xdx =

r1
√

2, and
∫ π/4

0 sink xdx = r2 + r3
√

2, where r1,r2,r3 ∈ Q\{0}. It follows that Ik ∈
Q(
√

2) \Q. Similarly, as remarked above, when k = 2` we find that Ik = (A`π +
B`)/(A`π−B`) with integers A`,B` > 0, so the value of I(k) is a rational expression
of π , where the π can never cancel, hence I(k) is transcendental, when k≥ 2 is even.

Proof (Proof of Theorem 2). We note that∫
π/4

0
cosn(x)dx =

∫
π/2

0
cosn(x)dx+O

(
2−n/2

)
.

For n even, say n = 2m, we have by the recursion formula
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π/2

0
cosn(x)dx =

π

2
(2m−1)(2m−3) . . .3

2m(2m−2) . . .2

=
π

2
(2m)!

(2mm!)2

∼ π

2
(2m/e)2m

√
4πm

22m(m/e)2m2πm

∼
(

π

2n

) 1
2
.

In the above we have used Stirling’s formula to obtain asymptotic formulae for m!
and (2m)! . Similarly, for odd n we have

∫
π/2

0
cosn(x)dx∼

(
π(1+n)

2n2

) 1
2
∼
(

π

2n

) 1
2
.

On the other hand, we note that

sin(π/4− x) =
1√
2

(
1− x+O(x2)

)
.

Hence the natural logarithm of the function ekx2k/2(sin(π/4− x)k is

k
2 log2+ kx+ k log(sin(π/4− x)) = O(kx2).

From this we easily obtain

(sin(π/4− x))k = 2−k/2e−kx (1+O
(
kx2)) .

Hence, writing λ = π/4− k−2/3,µ = k1/3, we have∫
π/4

0
sink(x)dx =

∫
λ

0
sink(x)dx+

∫
π/4

λ

sink(x)dx

= O
(

2−k/2e−µ

)
+

2−k/2

k

(
1+O

(
µ
−1)) .

Combining the above results gives (1) as desired.

3 Proofs: The General Positive Definite Case

A number of authors, including Landau, Hecke [3, 4], Rademacher [11], Kubilius
[9], Kalnin′ [6] and Coleman [1, 2] established results with regard to equidistribution
of prime ideals in certain regions. We shall here need to work with the distribution
of prime ideals and the 1-1 correspondence that exists between these ideals and the
representation of their norms by poitive definite quadratic forms. A further compli-
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cation arises that the discriminant of the quadratic form may not be a fundamental
discriminant (those given in the next paragraph) and this forces us to use a more
general result.

We must now define the notation needed to state Coleman’s theorem in its full
generality and we will quote this more or less verbatim from [1]. Let Q(

√
∆) be the

imaginary quadratic number field with discriminant ∆ or 4∆ depending on whether
or not ∆ ≡ 1 mod 4, respectively, and ∆ is a negative square-free integer. We use
gothic letters a, f to denote ideals and p will represent a prime ideal. We write N(a)
for the norm of a. Given a non-zero ideal f, let g = g(f) be the number of units ε

such that ε ≡ 1 mod f. We write K for an ideal class mod f and (ξ ) for the principal
ideal generated by an algebraic integer ξ . For each such class we assume there has
been chosen and fixed an ideal a0 ∈K−1. Then given a∈K we can define ξa ∈ a0 by
(ξa) = aa0 and ξa ≡ 1 mod f. This algebraic integer is unique up to multiplication
by the units ε ≡ 1 mod f. We write

λ (ξa) =

(
ξa

|ξa|

)g

.

By the definition of g,arg(λ (ξa)) is unique mod 2π .

Lemma 2 (Coleman, Theorem 2.1 of [1]). Given 0≤ ϕ1 ≤ ϕ2 ≤ 2π , 0≤ y≤ x and
an ideal class K mod f. We define S = S(x,y,ϕ1,ϕ2,K) = {a ∈ K : x− y < N(a) ≤
x,ϕ1 ≤ arg(λ (ξa))≤ ϕ2}. Let P = P(x,y,ϕ1,ϕ2,K) = {p ∈ S : N(p) = p, prime}.

Let ε > 0 be given. We have the asymptotic result,

∑
p∈P(x,y,ϕ1,ϕ2,K)

1 =
(ϕ2−ϕ1)y
2πh(f) logx

(
1+O

(
1

logx

))
,

for ϕ2−ϕ1 > x−5/24+ε , y > x19/24+ε ,x > xε . Here h(f) is the order of the abelian
group of ideal classes mod f.

Proof (Proof of Theorem 4). The proof that

lim
N→∞

∑n≤N xk
n

∑p≤N yk
n
=

S(k)
T (k)

,

follows by applying a simple change of variable to map the region

0 < y < x, Q(x,y)< N

onto the sector
0 < r < N

1
2 , 0 < θ < β .

This change of variable will underlie the proof of the more difficult case for primes

lim
N→∞

∑p≤N xk
p

∑p≤N yk
p
=

S(k)
T (k)

,
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so we shall concentrate on establishing this.
Let ∆ =−D, and we suppose initially that this is a fundamental discriminant with

∆ <−4. Hence there are just the two units −1,1 in Q(
√

∆). We follow Coleman’s
argument based on [7] to obtain the 1-1 correspondence between prime ideals and
points at which Q(m,n) is prime. In Lemma 1 we take

a0 =
[
a, 1

2 (b− iδ )
]
.

The 1-1 correspondence is then

N(p) = p = Q(m,n)

with

ξp = ma+n
(

b− iδ
2

)
.

We must remark at this stage that this correspondence is 1-1 between prime ide-
als and m,n and not necessarily between p and m,n. This is why we may get two
repesentations if two distinct prime ideals with norm p fall within the sector we are
about to describe (which can be larger than the first quadrant if b <−2a).

We note that |ξp|2 = ap. So, if we write

φ = arg(ξp), r =
√

p,

we have
m =

r√
aδ

(δ cosφ +bsinφ) , n =−2a
r√
aδ

sinφ .

Now writing θ =−φ the condition 0 < n < m translates to 0 < θ < β with

m =
r√
aδ

(δ cosθ −bsinθ) , n = 2a
r√
aδ

sinθ .

We divide the region 0 < r < N
1
2 ,0 < θ < β into polar boxes as in the proof of

Theorem 1 and apply Lemma 2 to the corresponding regions. As in the proof of
Theorem 1 we can convert the sums to integrals with smaller order errors. When we
divide one sum by the other the integrals over r cancel, as do various constants and
the 1/ logN factor, leaving just S(k)/T (k) as claimed.

Now if ∆ = −3 or −4 we have 6 or 4 units respectively. We recall that ξp is
only unique up to multiplication by units. In the above argument we can have up
to two distinct prime ideals and ξp could be multiplied by 3 or 2 units leading to
different values m,n and still remain within the sector under consideration. This
leads to the multiple representations. Of course, for Theorem 1 κ = π/4 constrains
ξp to one value, and similarly for Theorem 3 κ = π/6, leading to one value. For the
form x2− 7xy+ 13y2 we have ∆ = −3, κ = arctan(−

√
3/5) = 2.808 . . .. We note

that 5π/6 < κ < π and so there will be either 5 or 6 representations depending on
whether or not all 6 possible values for ξ lie in the sector.
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Now suppose that D = − f 2∆ with ∆ a fundamental discriminant and continue
working in Q(

√
∆). If we repeat the above argument then we would require

ξp = ma+n
(

b− i f δ

2

)
.

We therefore need to restrict ourselves to counting those prime ideals which lead to
such ξp. This corresponds to restricting the prime ideals to a union of ideal classes
mod f for a suitable f. We give the simplest case by way of illustration. Let Q(x,y) =
x2+4y2, so D = 16 = f 2(−∆) with f = 2. Let f= (2). Then there are just two ideal
classes coprime to f: {(u+ vi) : v even,u odd}, {(u+ vi) : u even,v odd}. Counting
only prime ideals in the class with v even will then give p = x2 +4y2 as required.

4 The Indefinite Case

We first consider how to describe the geometry in the real case. The natural em-
bedding from Q(δ ) into R2 is a+ bδ −→ (a,bδ ). We write ζ ′ for the algebraic
conjugate of ζ ∈ Q(δ ). We shall discover that the polar boxes of the imaginary
case give way to hyperbolic boxes in this new situation. We then note that there is
an analogous correspondence between prime ideals and points at which Q(m,n) is
prime. However we now need to be much more careful about the number of points
(m,n) corresponding to each prime ideal. We need only deal with the fundamental
discriminant case as the adaptation to the general case follows as previously. Now
we write

ξp = ma+n
(

b−δ

2

)
= u+ vδ where u2−Dv2 = r2a

=
√

ar(coshφ + sinhφ) for a uniquely defined value φ .

Note that this gives a 1-1 corespondence between ξp and (m,n). Following the ar-
gument of the previous case, if we write θ =−φ then 0 < m < n becomes

m =
r√
aδ

(δ coshθ −bsinhθ) , n = 2a
r√
aδ

sinhθ ,

with 0 < θ < κ . We thus have a hyperbolic box

{(r coshθ ,r sinhθ) : 0≤ r ≤ N
1
2 ,0 < θ < κ} ,

which we dissect into small hyperbolic boxes in a corresponding manner to our
earlier discussion. In particular, where ξa occurs we define t(ξa) to be the unique
value t such that
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ξa =
√

N(a)(cosh t + sinh t) =
√

N(a)et .

Now ξp is only unique up to multiplication by units. Let ε0 be the fundamental unit
of Q(δ ). Multiplying ξp by an even power of ε0 gives another candidate for ξp but
shifts φ by 2logε0. Hence the maximum number of additional representations of p
from this ideal will be strictly less than

κ

2logε0
. (2)

However, there is the ideal containing the algebraic conjugate of ξp, that is ξ ′p,
to consider. Possibly multiplying ξ ′p by an even power of ε0 will give a number
in the required range. So, writing t = t(ξp), we would need 0 < −t < κ and 0 <
t+2h logε0 < κ . In the case of x2+3xy+y2 the value of (2) is exactly 1/2 and so the
representation is unique. On the other hand, for x2+xy−y2 the value is 1. There can
therefore be no more representations from the original ideal, but if 0 <−t < κ then
we obtain 0 < t +2logε0 < κ giving exactly one other representation. Of course, it
is easy to see there will be two representations for this form as the transformation
(x,y) −→ (x,x− y) leaves the expression unchanged. If 0 < δ/(2a+ b) < 1 fails,
then the only restriction on θ is θ > 0 and so we obtain infinitely many solutions
by multiplying ξp by any positive even power of ε0. That is why we cannot prove a
result of the required form in this case.

We must now show that Coleman’s work in [2] supplies us with the required
formula for prime ideals in hyperbolic boxes as above. There Theorem 2 is his main
theorem. We remark that Hensley [5, §5] also gives an explicit account for how to
count prime ideals in hyperbolic boxes in the case of real quadratic fields. We must
first describe Hecke characters in Q(δ ), and we quote Hecke’s original definition
almost verbatim from [4]. Given an integer ρ of Q(δ ) we define

λ (ρ) = exp
(

iπ
logε0

log
∣∣∣∣ ρ

ρ ′

∣∣∣∣) .

This is clearly a multiplicative function of ρ which takes the value 1 at all units
(as they are powers of ε0, and dividing a unit by its conjugate gives an even power
of ε0). The Hecke characters are then all integer powers of λ (·). If N(ρ) = r, and
ρ = r(cosh t + sinh t), then

ρ
′ = r(cosh t− sinh t),

ρ

ρ ′
= e2t .

We can therefore use the Hecke characters to pick out the condition σ < t < σ + τ .
Since we can investigate the size of the norm using N(ρ)s(s ∈ C) just as in the
imaginary case, we obtain the following result from [2, Theorem 2]. We continue to
use the terminology stated before Lemma 2.

Lemma 3. Let ε > 0 be given. Given 0≤ ϕ0 < ϕ0+τ ≤ 1 < x, x−1/5+ε ≤ τ < 1 and
an ideal class K mod f. We define S = S(x,ϕ0,τ,K) = {a ∈ K : x(1− τ) < N(a) ≤
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x,ϕ0 ≤ t(ξa) ≤ ϕ0 + τ}. Let P = P(x,ϕ0,τ,K) = {p ∈ S : N(p) = p, prime}. We
have the asymptotic result,

∑
p∈P(x,ϕ0,τ,K)

1 =
xτ2

h(f) logx

(
1+O

(
1

logx

))
.

Here h(f) is the order of the abelian group of ideal classes mod f.

This supplies us with precisely the formula we need for counting prime ideals in a
hypebolic box and the proof can then be easily completed.
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