The Independence of Linear Approximations in Symmetric Cryptology

Sean Murphy Royal Holloway

Abstract

The basic form of the technique of *linear cryptanalysis* considers a block cipher which encrypts a binary plaintext vector \mathbf{p}_i to ciphertext vector \mathbf{c}_i under a key **k**. A linear approximation of this block cipher is an expression of the form

$$\mathbf{a}^T \begin{pmatrix} \mathbf{p}_i \\ \mathbf{c}_i \end{pmatrix} = \mathbf{b}^T \mathbf{k}$$
 with probability $p = \frac{1}{2} + \epsilon$,

where **a** and **b** are known as the *data mask* and *key mask* respectively, and ϵ is known as the *bias*. The simplest form of linear cryptanalysis uses this single linear approximation with many plaintext–ciphertext pairs to find the key bit $\mathbf{b}^T \mathbf{k}$. This talk considers the use of many such linear approximations with data masks $\mathbf{a}_0, \mathbf{a}_1, \ldots$ to find the key bit $\mathbf{b}^T \mathbf{k}$. Issues discussed include:

- whether using a third linearly dependent mask $\mathbf{a}_0 + \mathbf{a}_1$ can give more key information than using just the two masks \mathbf{a}_0 and \mathbf{a}_1 ;
- whether a mask **a** with bias $\epsilon = 0$ can give any key information.