Partikuläre Lösungen der inhomogenen Differentialgleichung

Sei
$$y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = f(x)$$
, $a_{n-1}, ..., a_1, a_0 \in \mathbb{R}$.

Wie schon gesagt, läßt sich jede Lösung y(x) der inhomogenen Gleichung darstellen in der Form $y(x) = y_H(x) + y_p(x)$, wobei $y_H(x)$ eine geeignete Lösung der zugehörigen homogenen Gleichung ist und $y_p(x)$ eine spezielle Lösung der inhomogenen Gleichung.

Häufig besitzt die rechte Seite f(x) die Form $f(x) = f_1(x) + f_2(x) + \ldots + f_m(x)$.

Satz. (Superpositionsprinzip)

Für die Funktionen $u_1(x), \ldots, u_m(x)$ gelte $L[u_i] = f_i$, $i = 1, \ldots, m$. Dann gilt für $y(x) = u_1(x) + \ldots + u_m(x)$

$$L[y] = f_1 + \ldots + f_m .$$

Beweis. Wegen der Linearität von L gilt

$$L[y] = L[u_1 + \ldots + u_m] = L[u_1] + \ldots + L[u_m] = f_1 + \ldots + f_m$$
. \square

Beispiel. Betrachte $y'' + y = x + e^x$.

 $u_1(x) = x$ ist Lösung von $u_1'' + u_1 = x = f_1(x)$.

 $u_2(x) = \frac{1}{2}e^x$ ist Lösung von $u_2'' + u_2 = e^x = f_2(x)$.

Somit ist $y(x) = x + \frac{1}{2}e^x$ eine Lösung von $y'' + y = x + e^x$.

Für bestimmte rechte Seiten f(x) lassen sich **Ansätze** für partikuläre Lösungen angeben. Die dabei auftretenden vorerst unbestimmten Koeffizienten lassen sich dann durch Einsetzen in die Differentialgleichung bestimmen.

Sei $f(x) = f_1(x) + f_2(x) + \ldots + f_m(x)$. Man spricht von **äußerer Resonanz** für $f_i(x)$, wenn $f_i(x)$ zugleich eine Lösung der zugehörigen

homogenen Differentialgleichung ist.

Des weiteren liegt sogenannte innere Resonanz vor, wenn eine Nullstelle λ des charakteristischen Polynoms mehrfach auftritt.

Beispiel. Betrachte $y'' - 2y' + y = e^x$.

Das charakteristische Polynom ist $\lambda^2-2\lambda+1$ und hat die doppelte Nullstelle $\lambda_{1,2}=1$. Folglich liegt innere Resonanz vor, und $y_H=C_1e^x+C_2xe^x$.

Des weiteren ist $f(x) = e^x$ eine Lösung der zugehörigen homogenen Gleichung y'' - 2y' + y = 0. Damit liegt für e^x auch äußere Resonanz vor.

Um einen Ansatz in den nun folgenden Formen durchführen zu können, darf **keine** äußere Resonanz vorliegen.

- $f_i(x) = A \dots \text{(const.)}$ Ansatz für $f_i : B \text{ (const.)}$
- $f_i(x) = x^m$ bzw. $f_i(x) = A_0 + A_1 x + \ldots + A_m x^m$ Ansatz für f_i : $B_0 + B_1 x + \ldots + B_m x^m$
- $f_i(x) = Ae^{\mu x}$ Ansatz für f_i : $Be^{\mu x}$
- $f_i(x) = A\sin(kx)$, $f_i(x) = A\cos(kx)$, $f_i(x) = A\sin(kx) + B\cos(kx)$ Ansatz für f_i : $C\sin(kx) + D\cos(kx)$
- $f_i(x) = Ae^{\mu x}\sin(kx)$, $f_i(x) = Ae^{\mu x}\cos(kx)$, $f_i(x) = e^{\mu x}(A\cos(kx) + B\sin(kx))$

Ansatz für f_i : $e^{\mu x}(C\cos(kx) + D\sin(kx))$

• $f_i(x)=e^{\mu x}P(x)$ $(P(x)\dots \text{Polynom})$ Ansatz für $f_i:e^{\mu x}Q(x)$ $(Q(x)\dots \text{Polynom vom selben Grad wie}$ P(x)

•
$$f_i(x) = P(x)\sin(kx)$$
, $f_i(x) = P(x)\cos(kx)$ $(P(x)\dots \text{Polynom})$
Ansatz für $f_i: Q(x)\sin(kx) + R(x)\cos(kx)$ $(Q(x), R(x)\dots \text{Polynome})$

Bemerkung.

- (i) Liegt äußere Resonanz und keine innere Resonanz vor, dann ist der Ansatz für $f_i(x)$ mit einem linearen Polynom in x zu multiplizieren.
- (ii) Liegt äußere Resonanz **und** innere Resonanz vor, dann ist dann ist der Ansatz für $f_i(x)$ mit einem Polynom in x von der Ordnung des jeweiligen λ zu multiplizieren.

Beispiele.

1)
$$y'' - 3y' + 2y = e^x \sin x$$

Das charakteristische Polynom ist $\lambda^2-3\lambda+2$ und hat die Nullstellen $\lambda_1=2$ und $\lambda_2=1$. Damit ist $y_H=C_1e^{2x}+C_2e^x$.

Da weder äußere noch innere Resonanz vorliegt, ist der Ansatz für y_p gleich $y_p = e^x(A\cos x + B\sin x)$.

Einsetzen in die Differentialgleichung und Koeffizientenvergleich liefert $A=\frac{1}{2}$ und $B=-\frac{1}{2}$.

Damit ist $y_p = \frac{1}{2}e^x(\cos x - \sin x)$ und

$$y(x) = C_1 e^{2x} + C_2 e^x + \frac{1}{2} e^x (\cos x - \sin x)$$
, $C_1, C_2 \in \mathbb{R}$.

$$2) \quad y'' - 2y' + y = \sin x + \sinh x$$

Das charakteristische Polynom ist $\lambda^2 - 2\lambda + 1$ und hat die Nullstellen $\lambda_{1,2} = 1$. Somit liegt innere Resonanz vor, und $y_H(x) = C_1 e^x + C_2 x e^x$.

$$f(x) = \sin x + \sinh x = \sin x + \frac{1}{2}(e^x - e^{-x}) = \sin x + \frac{1}{2}e^x - \frac{1}{2}e^{-x}.$$

Für den Summanden $\frac{1}{2}e^x$ liegt auch äußere Resonanz vor, und damit erhalten wir als Ansatz

 $y_p = A\cos x + B\sin x + Cx^2e^x + De^{-x} .$

Einsetzen und Koeffizientenvergleich liefert $\,A=\frac{1}{2}\;,\;B=0\;,\;C=\frac{1}{4}\;,\;D=-\frac{1}{8}\;.$

Somit ist $y_p = \frac{1}{2}\cos x + \frac{1}{4}x^2e^x - \frac{1}{8}e^{-x}$ und

$$y(x) = C_1 e^x + C_2 x e^x + \frac{1}{2} \cos x + \frac{1}{4} x^2 e^x - \frac{1}{8} e^{-x}$$
.