Raumkurven

Sei $\vec{x}(t) = (x(t), y(t), z(t))$ eine Raumkurve.

Dann gibt $\dot{\vec{x}}(t)$ die Tangentenrichtung an und $\ddot{\vec{x}}(t)$ gibt die Änderung der Tangentenrichtung an.

Falls $\dot{\vec{x}}(t)$ und $\ddot{\vec{x}}(t)$ linear unabhängig sind, liefern diese beiden Vektoren zusammen mit dem Punkt $\vec{x}(t)$ eine Ebene.

Betrachten wir den Kurvenpunkt $\vec{x}(t_0)$. Sind die Vektoren $\dot{\vec{x}}(t_0)$ und $\ddot{\vec{x}}(t_0)$ linear unabhängig, wird dadurch die sogenannte **Schmiegebene** im Punkt $\vec{x}(t_0)$ definiert (wobei $\dot{\vec{x}}(t_0)$ bzw. $\ddot{\vec{x}}(t_0)$ zwei Richtungsvektoren der Ebene sind).

Die Schmiegebene hat also die Gleichung

$$\vec{x} = \vec{x}(t_0) + \lambda \dot{\vec{x}}(t_0) + \mu \ddot{\vec{x}}(t_0)$$
.

Im weiteren erweist es sich als sinnvoll, die Bogenlänge als Parameter einzuführen (\rightarrow natürliche Parameterdarstellung).

Betrachte
$$\vec{x} = \vec{x}(s)$$
. Mit $s = s(t) = \int_{t_0}^t ||\dot{\vec{x}}(\tau)|| d\tau$ folgt

$$\dot{\vec{x}}(t) = \frac{d}{dt}\dot{\vec{x}}(s(t)) = \vec{x}'(s)\dot{s}(t) = \vec{x}'(s)||\dot{\vec{x}}(t)||$$
 und damit ist

$$\vec{x}'(s) = \frac{\dot{\vec{x}}(t)}{\|\dot{\vec{x}}(t)\|}$$
, folglich $\|\vec{x}'(s)\| = 1$.

Damit: $\vec{x}'(s) = \vec{t}(s)$ ist der Tangenteneinheitsvektor.

Wegen
$$\vec{x}''(s) = \frac{d}{dt}\vec{x}'(s)\frac{dt}{ds} = \frac{1}{\|\dot{\vec{x}}(t)\|}\frac{d}{dt}\frac{\dot{\vec{x}}(t)}{\|\dot{\vec{x}}(t)\|} = \frac{1}{\|\dot{\vec{x}}(t)\|^2}\ddot{\vec{x}}(t) + \frac{1}{\|\dot{\vec{x}}(t)\|}\dot{\vec{x}}(t)\frac{d}{dt}\frac{1}{\|\dot{\vec{x}}(t)\|}$$

liegt auch $\vec{x}''(s)$ in der Schmiegebene.

Aus
$$0 = \frac{d}{ds} 1 = \frac{d}{ds} (\vec{x}'(s) \cdot \vec{x}'(s))$$
 ergibt sich $\vec{x}'(s) \cdot \vec{x}''(s) = 0$, und damit $\vec{x}''(s) \perp \vec{x}'(s)$.

Definition.

(i)
$$\vec{h}(s) = \frac{\vec{x}''(s)}{\|\vec{x}''(s)\|}$$
 heißt **Hauptnormalenvektor** im Punkt $\vec{x}(s)$.

- (ii) $\|\vec{x}''(s)\| = k(s)$ heißt **Krümmung** der Raumkurve im Punkt $\vec{x}(s)$.
- (iii) $\vec{b}(s) = \vec{t}(s) \times \vec{h}(s)$ heißt **Binormalenvektor** im Punkt $\vec{x}(s)$.
- (iv) Die Vektoren $\vec{t}(s)$, $\vec{h}(s)$, $\vec{b}(s)$ bilden ein Orthonormalsystem (Einheitsvektoren, die paarweise aufeinander orthogonal stehen), und heißen **begleitendes Dreibein** im Punkt $\vec{x}(s)$.

Bemerkung. Sowohl die Vektoren $\dot{\vec{x}}(t)$, $\ddot{\vec{x}}(t)$ als auch die Vektoren $\vec{x}'(s) = \vec{t}(s)$, $\vec{x}''(s) = k(s)\vec{h}(s)$ spannen die Schmiegebene auf.

Somit ist $\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)$ parallel zu \vec{b} . Man kann zeigen, dass $\vec{b}(t) = \frac{\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)}{\|\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)\|}$, und weiters

$$\vec{h}(t) = \vec{b}(t) \times \vec{t}(t)$$
 mit $\vec{t}(t) = \frac{\dot{\vec{x}}(t)}{\|\dot{\vec{x}}(t)\|}$.

Wir betrachten nun die Änderungen von $\vec{h}(s)$ mittels des Ansatzes $\vec{h}'(s) = \lambda \vec{t}(s) + \mu \vec{h}(s) + \nu \vec{b}(s) \ .$

Wegen
$$0 = \frac{d}{ds}1 = \frac{d}{ds}(\vec{h} \cdot \vec{h}) = 2\vec{h}' \cdot \vec{h}$$
 folgt, dass $\mu = 0$.

Wegen $0 = \frac{d}{ds}0 = \frac{d}{ds}(\vec{h} \cdot \vec{t}) = \vec{h}' \cdot \vec{t} + \vec{h} \cdot \vec{t}'$ und $\vec{h}' \cdot \vec{t} = \lambda$ und $\vec{t}' = k\vec{h}$ folgt, dass $\lambda = -k$.

Definition. $\tau(s) = \vec{h}' \cdot \vec{b}$ heißt **Torsion** der Raumkurve. Die Torsion beschreibt die Abweichung der Raumkurve von der Schmiegebene.

Mit dieser Bezeichnungsweise erhalten wir $\vec{h}' = -k\vec{t} + \tau \vec{b}$.

Analog betrachten wir den Ansatz $\vec{b}'(s) = \alpha \vec{t}(s) + \beta \vec{h}(s) + \gamma \vec{b}(s)$.

Wegen $0 = \frac{d}{ds}0 = \frac{d}{ds}(\vec{b}\cdot\vec{t}) = \vec{b}'\cdot\vec{t} + \vec{b}\cdot\vec{t}'$ und $\vec{b}'\cdot\vec{t} = \alpha$ und $\vec{b}\cdot\vec{t}' = \vec{b}\cdot(k\vec{h}) = 0$ folgt, dass $\alpha = 0$.

Wegen $0 = \frac{d}{ds}0 = \frac{d}{ds}(\vec{b} \cdot \vec{h}) = \vec{b}' \cdot \vec{h} + \vec{b} \cdot \vec{h}'$ und $\vec{b}' \cdot \vec{h} = \beta$ und $\vec{b} \cdot \vec{h}' = \tau$ folgt, dass $\beta = -\tau$.

Wegen $0 = \frac{d}{ds} 1 = \frac{d}{ds} (\vec{b} \cdot \vec{b}) = 2\vec{b}' \cdot \vec{b}$ folgt, dass $\gamma = 0$.

Insgesamt erhalten wir die Frenet'schen Formeln

$$\vec{t'} = k\vec{h}
\vec{h'} = -k\vec{t} + \tau \vec{b}
\vec{b'} = -\tau \vec{h}$$

Für Krümmung und Torsion gilt

- (a) in natürlichen Koordinaten $k=\vec{t'}\cdot\vec{h}$, $\tau=-(\vec{b'}\cdot\vec{h})=\vec{h'}\cdot\vec{b}$
- (b) in beliebiger Parameterdarstellung (ohne Beweis)

$$k = \frac{\sqrt{\|\dot{\vec{x}}(t)\|^2 \|\ddot{\vec{x}}(t)\|^2 - (\dot{\vec{x}} \cdot \ddot{\vec{x}})^2}}{\|\dot{\vec{x}}(t)\|^3} = \frac{\|\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)\|}{\|\dot{\vec{x}}(t)\|^3}$$

$$\tau = \frac{(\vec{x}(t), \ddot{\vec{x}}(t), \ddot{\vec{x}}(t))}{\|\dot{\vec{x}}(t)\|^2 \|\ddot{\vec{x}}(t)\|^2 - (\dot{\vec{x}} \cdot \ddot{\vec{x}})^2} = \frac{(\dot{\vec{x}}(t), \ddot{\vec{x}}(t), \ddot{\vec{x}}(t))}{\|\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)\|^2}$$

Bemerkung. Das begleitende Dreibein einer Raumkurve $\vec{x}(t)$ erhält man also durch :

Bestimme $\dot{\vec{x}}(t)$ und $\ddot{\vec{x}}(t)$. Dann ist

$$\vec{t}(t) = \frac{\dot{\vec{x}}(t)}{\|\dot{\vec{x}}(t)\|}$$
 , $\vec{b}(t) = \frac{\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)}{\|\dot{\vec{x}}(t) \times \ddot{\vec{x}}(t)\|}$, $\vec{h}(t) = \vec{b}(t) \times \vec{t}(t)$.