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Abstract. Let d ≥ 1 be an integer and r = (r1, . . . , rd) ∈ Rd. We define the shift radix system

τr : Zd → Zd by
τr(a) = (a2, . . . , ad,−⌊ra⌋) (a = (a1, . . . , ad)).

The shift radix system τr has the finiteness property if each a ∈ Zd is eventually mapped to 0

under iterations of τr.
The mapping τr can be written as τr(a) = R(r)a + v(a) where R(r) is a d × d matrix and

v is a correction term. It has been conjectured that the fact that τr has the finiteness property
implies that all eigenvalues of R(r) are strictly smaller than one in modulus.

The aim of the present paper is to prove this conjecture for the case d = 3.

1. Introduction

In 2005 Akiyama et al. [1] introduced so-called shift radix systems. Moreover, they showed
that these simple dynamical systems are generalizations of several well-known notions of number
systems such as beta-numeration and canonical number systems. To be more specific, let d ≥ 1
be an integer and r = (r1, . . . , rd) ∈ R

d. To r we associate the mapping τr : Z
d → Z

d in the
following way: For a = (a1, . . . , ad) ∈ Z

d let1

τr(a) = (a2, . . . , ad,−⌊ra⌋),
where ra = r1a1 + · · ·+ rdad, i.e., the inner product of the vectors r and a. We call τr a shift radix
system (SRS for short). If for all a ∈ Z

d we can find some k > 0 such that the k-fold iterative
application of τr to a satisfies τk

r
(a) = 0 we say that the SRS τr has the finiteness property2.

It is easy to see that the mapping τr can be viewed as a sum of a linear function and a small error
term caused by the floor function ⌊·⌋ occurring in its definition. Indeed, for r = (r1, . . . , rd) ∈ R

d

we denote by

(1.1) R(r) =

















0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

−r1 −r2 · · · · · · −rd

















the companion matrix of the polynomial

χr(X) = Xd + rdX
d−1 + · · · + r2X + r1.

Then we can write

(1.2) τr(a) = R(r)a + v(a),
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where v(a) = (0, . . . , 0, {ra}). Note that χr is the characteristic polynomial of R(r). Moreover,
given a vector a = (a1, . . . , ad) ∈ Z

d, calculating τr(a) = (a2, . . . , ad+1) amounts to calculating
the integer ad+1. According to the definition of τr this integer ad+1 is given as the unique integral
solution of the linear inequality

(1.3) 0 ≤ r1a1 + · · · + rdad + ad+1 < 1.

This fact will be used throughout the present paper.
Known results on beta-transformations and canonical number systems suggest that the following

conjecture is true.

Conjecture 1.1 ([2, Conjecture 2, p. 23]). Let r ∈ R
d. If τr has the finiteness property then

R(r) is contractive, i.e., each of its eigenvalues has modulus strictly less than one.

It is clear that the finiteness property implies that each eigenvalue of R(r) has modulus at most
one because otherwise in view of (1.2) it is clear that ||τk

r
(a)|| → ∞ for k → ∞ if ||a|| is large.

Thus it remains to check all parameters r giving rise to a matrix R(r) whose eigenvalues have
modulus at most one with equality in at least one case. We mention that Pethő [13] studied the
case that some roots of χr are roots of unity.

Moreover, the conjecture holds for all parameters corresponding to beta-numeration as well as
to canonical number systems. This has been proved by employing algebraic methods (we refer to
[9] for beta-numeration and to [12] for canonical number systems). However, these cases cover only
countably many parameters r. In general, these methods do not apply any more. The conjecture
is trivial for d = 1 ([1, Proposition 4.1]) and has been proved for d = 2 ([3, Corollary 2.5]).

Our aim is to prove the conjecture for d = 3.
The following families of sets are needed for our studies. For d ∈ N, d ≥ 1 let

Dd :=
{

r ∈ R
d : ∀a ∈ Z

d the sequence (τk
r
(a))k≥0 is ultimately periodic

}

and(1.4)

D(0)
d :=

{

r ∈ R
d : τr has the finiteness property

}

.

With this notation, our main result is contained in the following theorem.

Theorem 1.2. If r ∈ D(0)
3 then R(r) is contractive, i.e., all roots of the polynomial χr are strictly

less than one in modulus.

The set Dd is strongly related to contracting polynomials. In particular, let

Ed :=
{

(r1, . . . , rd) ∈ R
d : ρ(Xd + rdX

d−1 + · · · + r1) < 1
}

,

where we denote by ρ(f) the maximum of the moduli of the roots of f ∈ R[X ]. In [1, Lemmas 4.1,
4.2 and 4.3] it is shown that

(1.5) int (Dd) = Ed.

Note that in view of the remarks after the statement of Conjecture 1.1 it is clear that D(0)
d ⊂ Ed.

Thus the conjecture can be formulated as

D(0)
d ⊂ Ed.

Therefore, it remains to prove Conjecture 1.1 for each r ∈ ∂Ed.
The proofs of Conjecture 1.1 for the cases d = 1 and d = 2 require explicit descriptions of the

boundary of Ed. In these cases the proof was established by constructing explicit orbits that do
not end up at 0 for all r in the boundary of Ed. In our case this seems no longer possible for
all parameters r ∈ ∂Ed. We need to employ other methods to gain the proof of Theorem 1.2.
Indeed, for some parameter regions we show that for large n the set τ−n

r
(0), where τ−1

r
denotes

the preimage of τr, has finite intersection with a subspace that is bounded by two hyperplanes.
This allows us to conclude that some elements of this subspace belong to periodic orbits of τr that
do not end up at 0 without constructing these orbits explicitly.

For the sake of completeness we would also like to mention that Surer [14] studies a generaliza-
tion of SRS by putting an additional translation vector in the floor function of the mapping τr,
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i.e., he considers the mappings

τr,ε(a) = (a2, . . . , ad,−⌊ra + ε⌋).
These objects are called ε-SRS. In [7, Conjecture 13] Conjecture 1.1 has been formulated for ε-
SRS. For ε = 1

2 it is shown to be true for d ≤ 3 in [5, 10]. Indeed, 1
2 -SRS with finiteness property

have been completely characterized for d ≤ 3. The methods used for proving these results are no
longer applicable in our setting. Indeed, the situation in the case of SRS turns out to be much
more complicated than it is for 1

2 -SRS.

2. Preliminary results

The present section contains several preliminary definitions and results needed in the proof of
our main theorem. Moreover, already in this section we prove that certain regions of ∂Ed are not

contained in D(0)
d .

For r ∈ R
d we denote by

Per(r) = {a ∈ Z
d : there exists k > 0 with τk

r
(a) = a}

the set of (purely) periodic elements of τr. For parameters r ∈ Dd it is clear from the definition
that τr has the finiteness property if and only if Per(r) = {0}.

Let a1, . . . ,ap ∈ Z
d be given and suppose that τr(ak) = ak+1 (1 ≤ k ≤ p − 1) and τr(ap) = a1.

Then we say that a1, . . . ,ap is a cycle or a periodic orbit of τr. Such a cycle is often denoted by

a1 → · · · → ap → a1.

The integer p is called a period of the periodic element a1 (obviously, each element of a cycle is
contained in Per(r) and therefore a periodic element).

A cycle a1 → · · · → ap → a1 of τr is called nontrivial if a1 6= 0. If r ∈ Dd it is immediate
from the definitions that τr admits a nontrivial cycle if and only if τr does not have the finiteness
property. Of course, given an arbitrary r ∈ R

d it is sufficient to exhibit a nontrivial period in order
to conclude that τr does not have the finiteness property. This criterium will be used throughout
the paper.

We are now preparing the proof of our main theorem. As we already know that D(0)
3 ⊂ E3 it

remains to check that D(0)
3 ∩ ∂E3 = ∅. The boundary of Ed has been investigated in [11] (see also

[8]). In particular, it is shown in [11] that

∂Ed = E
(1)
d ∪ E

(−1)
d ∪ E

(C)
d ,

where E
(1)
d and E

(−1)
d are subsets of hyperplanes and E

(C)
d is a hypersurface. Here, E

(1)
d and E

(−1)
d

correspond to polynomials having 1 and −1 as a root, respectively, while E
(C)
d is the closure of

the set of all parameters corresponding to polynomials having a nonreal root of modulus 1. The
set E3 is depicted in Figure 1.

Remark 2.1. For the sake of completeness we mention that this correspondence is induced by the
bijective mapping

r ∈ R
d 7→ χr ∈ R[X ].

If β is a nonrational algebraic number with at least one conjugate on the unit circle then the

minimal polynomial of β belongs to E
(C)
d . In particular, if d is odd and β is a Salem number of

degree d + 1 with minimal polynomial M then we can write M = (X − β)f with f ∈ E
(C)
d .

For the case d = 3 in [11, Section 6.2] the parameterizations

E
(1)
3 = {(s, s + t + st, st + t + 1) : −1 ≤ s, t ≤ 1} and(2.1)

E
(−1)
3 = {(−s, s− t − st, st + t − 1) : −1 ≤ s, t ≤ 1}(2.2)

are derived. In order to get a parametrization of E
(C)
d we note that a real polynomial of degree

three whose roots are at most one in modulus and which has at least one nonreal root is of the
form

χr(X) = (X + t)(X2 + sX + 1) = X3 + (s + t)X2 + (st + 1)X + t
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Figure 1. The set E3. The boundary of E3 consists of three pieces. The two

hyperplanes are the sets E
(1)
d

and E
(−1)
d

, while the quadratic surface is the set

E
(C)
d .

with −2 < s < 2 and −1 ≤ t ≤ 1. Thus

E
(C)
3 = {(t, st + 1, s + t) | − 2 ≤ s ≤ 2, −1 ≤ t ≤ 1}.

What we have to show now is that

D(0)
3 ∩ (E

(1)
3 ∪ E

(−1)
3 ∪ E

(C)
3 ) = ∅.

The most difficult part consists in showing that D(0)
3 ∩ E

(C)
3 = ∅. The other two parts of ∂E3 can

be treated in an easy way. We start with E
(1)
3 .

Lemma 2.2. We have D(0)
3 ∩ E

(1)
3 = ∅.

Proof. Let r ∈ E
(1)
3 . Then by (2.1) there exist s, t ∈ [−1, 1] such that r = (s, s + t + st, st + t + 1).

We will show that for this parameter r the mapping τr has (1,−1, 1) as a periodic point. Indeed,
by (1.3) we have τr((1,−1, 1)) = (−1, 1, i) with i ∈ Z given as the solution of

0 ≤ s − (s + t + st) + (st + t + 1) + i < 1 ⇐⇒ 0 ≤ i + 1 < 1.

As i = −1 is the only choice we get τr((1,−1, 1)) = (−1, 1,−1). Going one step further we get
τr((−1, 1,−1)) = (1,−1, i) with

0 ≤ −s + (s + t + st) − (st + t + 1) + i < 1 ⇐⇒ 0 ≤ i − 1 < 1

and therefore τr((−1, 1,−1)) = (1,−1, 1). Thus (1,−1, 1) → (−1, 1,−1) → (1,−1, 1) is a cycle of

τr. Therefore r 6∈ D(0)
3 . Since r was an arbitrary element of E

(1)
3 the lemma is proved. �

The region E
(−1)
3 is settled in the following lemma.

Lemma 2.3. We have D(0)
3 ∩ E

(−1)
3 = ∅.
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Figure 2. This figure shows how the rectangle {(s, t) : s ∈ (−2, 2), t ∈ (−1, 1)}
is subdivided by the regions Ci and the region treated in Lemma 2.4. The region
Ci is labeled by i in this figure. (0 ≤ i ≤ 6; note that C0 also contains the lines
s = 0 and s = 1.)

Proof. Let r ∈ E
(−1)
3 . Then by (2.2) there exist s, t ∈ [−1, 1] such that r = (−s, s−t−st, st+t−1).

We will show that for this parameter r the mapping τr has (1, 1, 1) as a periodic point. Indeed,
we have τr((1, 1, 1)) = (1, 1, i) with i ∈ Z given as the solution of

0 ≤ −s + (s − t − st) + (st + t − 1) + i < 1 ⇐⇒ 0 ≤ i − 1 < 1.

As i = 1 is the only choice we get τr((1, 1, 1)) = (1, 1, 1). Thus (1, 1, 1) → (1, 1, 1) is a cycle of τr.

Therefore r 6∈ D(0)
3 . Since r was an arbitrary element of E

(−1)
3 the lemma is proved. �

Thus in all what follows we may restrict ourselves to parameters r ∈ E
(C)
3 , i.e., r = (t, st+1, s+t)

with t ∈ [−1, 1] and s ∈ [−2, 2]. The following lemma contains the case t ≤ 0, which is a special
case of a known result.

Lemma 2.4. If t ≤ 0 then (t, st + 1, s + t) 6∈ D(0)
3 .

Proof. This is a special case of [4, Theorem 2.1]. �

Remark 2.5. We note that the parameters treated in Lemma 2.4 contain all parameters corre-
sponding to Salem numbers of degree four.

Moreover, observe that the parameters corresponding to t = 1, s = 2 or s = −2 are related to

polynomials having 1 or −1 as a root. Thus all these parameters are contained in E
(1)
3 ∪ E

(−1)
3

and are therefore treated in Lemmas 2.2 and 2.3. We can therefore restrict ourselves to r =
(t, st + 1, s + t) with t ∈ (0, 1) and s ∈ (−2, 2).

Thus only the parameters r specified in Lemma 2.6 remain to be examined. We split the
remaining parameters into seven parts.
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Lemma 2.6. Set

C0 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 : 0 < t ≤ 1, −2 < s < −1 + 2t

1 + t
or s ∈ {0, 1}

}

,

C1 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 : 0 < t ≤ 1

2
, −1 + 2t

1 + t
≤ s < 0

}

,

C2 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 : 0 < t ≤ 1

2
, 0 < s < 1

}

,

C3 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 : 0 < t ≤ 4

5
, 1 < s < 2

}

,

C4 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 :

1

2
< t < 1, −1 + 2t

1 + t
≤ s < 1, s 6= 0

}

,

C5 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 :

4

5
< t < 1, 1 < s < 2 − t

}

,

C6 :=

{

(t, st + 1, s + t) ∈ E
(C)
3 :

4

5
< t < 1, 2 − t ≤ s < 2

}

.

Then D(0)
3 ∩ (C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6) = ∅ implies Theorem 1.2.

Proof. This is an immediate consequence of Lemmas 2.2, 2.3 and 3.1. �

The subdivision of the rectangle {(s, t) : s ∈ (−2, 2), t ∈ (−1, 1)} is illustrated in Figure 2.
Thus it remains to deal with the parameters r ∈ C0 ∪ . . . ∪ C6 to finish the proof of our main

result. For the parameters contained in C1 ∪ C2 ∪ C3 ∪ C5 we show that the preimages of the origin
under the iterates of τr cannot cover the whole lattice Z

3. To treat the elements of C0 ∪ C4 ∪ C6

we exhibit several periodic elements of Z
3. We proceed that way because for r ∈ C1 ∪ C2 ∪ C3 ∪ C5

the structure of the orbits is hard to survey and we were not able to treat these parameters by
constructing explicit nontrivial orbits.

3. Considering concrete orbits of τr

In this section we deal with the elements of C0, C4 and C6. We can show that these elements

are not contained in D(0)
3 by exhibiting concrete nontrivial orbits. This is the easier part of the

proof.
First we establish the following lemma.

Lemma 3.1. Let C0 be given as in Lemma 2.6. Then

C0 ∩ D(0)
3 = ∅.

Proof. We shall check the three following items.

(i) If

(3.1) 0 < t < 1 and − 2 ≤ s < −1 + 2t

1 + t

then (1, 1, 1) is a fixed point of τ(t,st+1,s+t).
Indeed, in view of (1.3) this fixed point exists if and only if the inequalities 0 ≤

t+(st+1)+s+t+1 < 1 are satisfied. Observing that t+(st+1)+s+t+1 = (s+2)t+s+2
this follows immediately from (3.1).

(ii) For s = 0 we see that (1, 0,−1) is a periodic element (of period 4), indeed we get

(1, 0,−1) → (0,−1, 0) → (−1, 0, 1) → (0, 1, 0) → (1, 0,−1).

The existence of this cycle is equivalent to the set of inequalities (note that s = 0)

0 ≤ t − t < 1,

0 ≤ −1 + 1 < 1,

0 ≤ −t + t < 1,

0 ≤ 1 − 1 < 1
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which are obviously satisfied.
(iii) For s = 1 we check that (0, 1,−1) is a periodic element (of period 3), indeed we get

(0, 1,−1) → (1,−1, 0) → (−1, 0, 1) → (0, 1,−1).

The existence of this cycle is equivalent to the set of inequalities (note that s = 1)

0 ≤ (t + 1) − (t + 1) < 1,

0 ≤ t − (t + 1) + 1 < 1,

0 ≤ −t + (t + 1) − 1 < 1

which are obviously satisfied.

Putting (i), (ii), and (iii) together yields the result. �

The following lemma settles the parameters contained in C4.

Lemma 3.2. Let C4 be given as in Lemma 2.6. Then

C4 ∩ D(0)
3 = ∅.

Proof. Let r = (t, st + 1, s + t) be an element of C4. We have to split the parameter region
1
2 < t < 1, − 1+2t

1+t
≤ s < 1 into several parts. For each of these parts we exhibit a nontrivial

orbit. The candidates for these orbits were found by extensive computer calculations. Moreover,
verifying that a given cycle occurs for a particular range of parameters can easily be done using
a short Mathematica program. However, as we shall exemplify for the first case, the calculations
are not too hard and can also be done without the aid of a computer.

Case 1, − 1+2t
1+t

≤ s < − 2+2t
1+2t

: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1, 2) → (1, 2, 2) → (2, 2, 1) → (2, 1, 0) →
(1, 0,−1) → (0,−1,−1) → (−1,−1, 0) → (−1, 0, 1).

To verify this, in view of (1.3) we need to check that the inequalities

0 ≤ s + 2 < 1,

0 ≤ st + 2s + 2t + 3 < 1,

0 ≤ 2st + 2s + 3t + 3 < 1,

0 ≤ 2st + s + 3t + 2 < 1,

0 ≤ 2t + st < 1,

0 ≤ −s − 1 < 1,

0 ≤ −st − s − t − 1 < 1,

0 ≤ −st − t < 1

are satisfied for all s, t satisfying − 3
2 < s < − 2+2t

1+2t
and 1

2 < t < 1. First note that for
1
2 < t < 1 we have − 2+2t

1+2t
∈

(

− 3
2 ,− 4

3

)

. Thus we have s ∈ (− 3
2 ,− 4

3 ). This implies that
the inequalities in the first line are satisfied. The lower bound in the second line follows
from

st + 2s + 2t + 3 = (s + 2)t + 2s + 3 >

(

−3

2
+ 2

)

· 1

2
+ 2

(

−3

2

)

+ 3 =
1

4
≥ 0;

the upper bound of the second line is true because of

st + 2s + 2t + 3 = (s + 2)t + 2s + 3 <

(

−4

3
+ 2

)

· 1 + 2

(

−4

3

)

+ 3 = 1.

The other inequalities can be checked in a similar way.
Case 2, − 2+2t

1+2t
≤ s < − t

1+t
: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1, 2) → (1, 2, 1) → (2, 1, 0) →
(1, 0,−1) → (0,−1,−1) → (−1,−1, 0) → (−1, 0, 1).
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Case 3, − t
1+t

≤ s < − t
1+2t

: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(1,−1,−1) → (−1,−1, 1) → (−1, 1, 2) → (1, 2, 0) → (2, 0,−2) →
(0,−2, 0) → (−2, 0, 2) → (0, 2, 1) → (2, 1,−1) → (1,−1, 1).

Case 4, − t
1+2t

≤ s < − t
2+2t

: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(1, 2, 0) → (2, 0,−2) → (0,−2, 0) → (−2, 0, 2) → (0, 2, 1) → (2, 1,−2) → (1,−2,−1) →
(−2,−1, 2) → (−1, 2, 2) → (2, 2,−1) → (2,−1,−2) → (−1,−2, 1) → (−2, 1, 2) → (1, 2, 0).

Case 5, − t
2+2t

≤ s < 0: This case has to be split up further.

Case 5.1, t <
√

5−1
2 : If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1 − 1, 1) → (−1, 1, 2) → (1, 2,−1) → (2,−1,−1) → (−1,−1, 1).

Case 5.2, t ≥
√

5−1
2 : We need even more subcases here.

Case 5.2.1, s > −1+t
1+t

: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic
orbit

(−1 − 1, 1) → (−1, 1, 2) → (1, 2,−1) → (2,−1,−1) → (−1,−1, 1).

Case 5.2.2, s ≤ −1+t
1+t

: Note that this case only occurs for t ≥ 2
3 because other-

wise −1+t
1+t

< − t
2+2t

and the range for s is empty.

Case 5.2.2.1, 2
3 ≤ t ≤ 1

4 (
√

17 − 1): If (s, t) is in this range, τ(t,st+1,s+t) ad-
mits the periodic orbit

(−1, 0, 1) → (0, 1, 1) → (1, 1,−1) → (1,−1,−1) → (−1,−1, 1) → (−1, 1, 2) → (1, 2,−1) →
(2,−1,−1) → (−1,−1, 0) → (−1, 0, 2) → (0, 2, 0) → (2, 0,−1) → (0,−1, 0) → (−1, 0, 1).

Case 5.2.2.2, 1
4 (
√

17 − 1) < t < 1: If (s, t) is in this range, τ(t,st+1,s+t) ad-
mits the periodic orbit

(1,−1,−1) → (−1,−1, 1) → (−1, 1, 2) → (1, 2,−1) → (2,−1,−1) → (−1,−1, 0) → (−1, 0, 2) →
(0, 2, 0) → (2, 0,−1) → (0,−1,−1) → (−1,−1, 2) → (−1, 2, 1) → (2, 1,−1) → (1,−1,−1).

Case 6, 0 < s < 1
1+t

: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1, 0) → (1, 0,−1) → (0,−1, 1) →
(−1, 1, 1) → (1, 1,−1) → (1,−1, 0) → (−1, 0, 1).

Case 7, 1
1+t

< s < 1: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1, 0) → (1, 0,−1) → (0,−1, 1) → (−1, 1, 1) → (1, 1,−2) →
(1,−2, 1) → (−2, 1, 1) → (1, 1,−1) → (1,−1, 0) → (−1, 0, 1).

�

The following lemma treats C6.

Lemma 3.3. Let C6 be given as in Lemma 2.6. Then

C6 ∩ D(0)
3 = ∅.

Proof. Let r = (t, st + 1, s + t) be an element of C6. Again we have to split the parameter region
4
5 < t < 2 − t, s < 2 into several parts. For each of these parts we exhibit a nontrivial orbit.

Case 1, 2 − t ≤ s < − 3
2 : If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(2,−2, 1) → (−2, 1, 1) → (1, 1,−2) → (1,−2, 2) → (−2, 2, 0) → (2, 0,−2) →
(0,−2, 3) → (−2, 3,−2) → (3,−2, 0) → (−2, 0, 2) → (0, 2,−2) → (2,−2, 1).

Case 2, s = − 3
2 : If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1,−1) → (1,−1, 1) → (−1, 1, 0) → (1, 0,−1) → (0,−1, 2) → (−1, 2,−2) →
(2,−2,−1) → (−2, 1, 1) → (1, 1,−2) → (1,−2, 2) → (−2, 2,−1) → (2,−1, 0) → (−1, 0, 1).
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Case 3, − 3
2 < s < 2: If (s, t) is in this range, τ(t,st+1,s+t) admits the periodic orbit

(−1, 0, 1) → (0, 1,−1) → (1,−1, 1) → (−1, 1, 0) → (1, 0,−1) →
(0,−1, 2) → (−1, 2,−2) → (2,−2, 2) → (−2, 2,−1) → (2,−1, 0) → (−1, 0, 1).

�

4. Calculating preimages of τr

The present section is devoted to the treatment of the sets C1, C2, C3 and C5. Indeed, we prove

that the parameters contained in these sets cannot belong to D(0)
3 .

We first deal with the preimage of τr for certain r ∈ D3. We describe these preimages in a form
that is adapted to later use.

In order to simplify the notation we will sometimes write τ−1
r

S instead of τ−1
r

(S).

Lemma 4.1. Let s, t ∈ R and t > 0. Then the preimage of (x1, x2, x3) ∈ Z
3 under τ(t,st+1,s+t) is

given by
{

(i, x1, x2) ∈ Z
3 :

−x1 − sx2 − x3

t
≤ i + sx1 + x2 <

−x1 − sx2 − x3 + 1

t

}

.

Proof. Using (1.3) we find
{

(i, x1, x2) ∈ Z
3 :

−(st + 1)x1 − (s + t)x2 − x3

t
≤ i <

−(st + 1)x1 − (s + t)x2 − x3 + 1

t

}

which immediately implies the result. �

In particular we are interested in the preimages mentioned in the following corollary.

Corollary 4.2. (i) τ−1
(t,st+1,s+t)(0) =

{

(i, 0, 0) ∈ Z
3 : 0 ≤ i < 1

t

}

.

(ii) For i ∈ Z we have

(4.1) τ
−1
(t,st+1,s+t)(i, 0, 0) =

{

(j, i, 0) ∈ Z
3 : −

i

t
≤ j + si <

−i + 1

t

}

.

(iii) We have the particular preimages

(4.2) τ
−1
(t,st+1,s+t)(−2, 1, 0) =

{

(ℓ,−2, 1) ∈ Z
3 :

2 − s

t
≤ ℓ − 2s + 1 <

3 − s

t

}

,

(4.3) τ
−1
(t,st+1,s+t)(−1, 1,−1) =

{

(ℓ,−1, 1) ∈ Z
3 :

2 − s

t
≤ ℓ − s + 1 <

3 − s

t

}

,

(4.4) τ
−1
(t,st+1,s+t)(−1, 1, 0) =

{

(ℓ,−1, 1) ∈ Z
3 :

1 − s

t
≤ ℓ − s + 1 <

2 − s

t

}

,

(4.5) τ
−1
(t,st+1,s+t)(−1, 1, 1) =

{

(ℓ,−1, 1) ∈ Z
3 :

−s

t
≤ ℓ − s + 1 <

1 − s

t

}

,

(4.6) τ
−1
(t,st+1,s+t)(0, 0, 1) =

{

(ℓ, 0, 0) ∈ Z
3 : −

1

t
≤ ℓ < 0

}

,

(4.7) τ
−1
(t,st+1,s+t)(0, 1, 0) =

{

(ℓ, 0, 1) ∈ Z
3 :

−s

t
≤ ℓ + 1 <

1 − s

t

}

,

(4.8) τ
−1
(t,st+1,s+t)(0, 1, 1) =

{

(ℓ, 0, 1) ∈ Z
3 :

−1 − s

t
≤ ℓ + 1 <

−s

t

}

,

(4.9) τ
−1
(t,st+1,s+t)(0, 2, 1) =

{

(ℓ, 0, 2) ∈ Z
3 :

−1 − 2s

t
≤ ℓ + 2 <

−2s

t

}

,

(4.10) τ
−1
(t,st+1,s+t)(1,−1, 1) =

{

(ℓ, 1,−1) ∈ Z
3 :

s − 2

t
≤ ℓ + s − 1 <

s − 1

t

}

,

(4.11) τ
−1
(t,st+1,s+t)(1, 1, 0) =

{

(ℓ, 1, 1) ∈ Z
3 :

−1 − s

t
≤ ℓ + s + 1 <

−s

t

}

,
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(4.12) τ
−1
(t,st+1,s+t)(1, 1, 1) =

{

(ℓ, 1, 1) ∈ Z
3 :

−2 − s

t
≤ ℓ + s + 1 <

−1 − s

t

}

,

and

(4.13) τ
−1
(t,st+1,s+t)(2, 1, 1) =

{

(ℓ, 2, 1) ∈ Z
3 :

−3 − s

t
≤ ℓ + 2s + 1 <

−2 − s

t

}

.

Proof. Each assertion follows immediately from Lemma 4.1 by inserting the appropriate values. �

Now we describe the action of τr for r ∈ D(0)
3 ∩ ∂D3 in a form which makes it accessible to

further calculation. Of course, we pursue the goal to show that such a vector r cannot exist.

Lemma 4.3. Let r = (t, st + 1, s + t) ∈ E
(C)
3 with s ∈ (−2, 2) be given. Then for all x ∈ Z

3 there
is some ε ∈ [0, 1) such that

(4.14) τr(x) = V ΛV −1x + (0, 0, ε)

where

(4.15) Λ =





−t 0 0
0 ℜ(λ) ℑ(λ)
0 −ℑ(λ) ℜ(λ)



 , V =





1 1 0
−t ℜ(λ) ℑ(λ)
t2 ℜ(λ2) ℑ(λ2)





and λ is a root of the polynomial X2 + sX + 1 with ℑ(λ) 6= 0. The first row of the matrix V −1 is

given by
1

1 + t2 + 2tℜ(λ)
(1,−2ℜ(λ), 1).

Proof. Clearly, −t, λ, λ are the eigenvalues of the R(r), and we have

R(r) = V ΛV −1.

Now (1.2) yields (4.14). The assertion on the inverse of V can easily be checked by direct calcu-
lation. �

A crucial role is played by the set L = Lr which we introduce in the following lemma.

Lemma 4.4. Let r = (t, st + 1, s + t) ∈ E
(C)
3 with

0 < t < 1, −2 < s < 2, s 6= 0,

V ∈ R
3×3 the matrix defined by (4.15) and

L =

{

x ∈ Z
3 :

∣

∣(V −1x)1
∣

∣ >
1

(1 + t)2(1 − t)

}

.

(i) Set

(4.16) f(s, t) :=
1 − st + t2

(1 + t)2(1 − t)
.

Then for x = (x1, x2, x3) ∈ Z
3 we have

x ∈ L ⇐⇒ |x1 + sx2 + x3| > f(s, t).

(ii) For all n ∈ N we have
τ−n
r

(L) ⊆ L.

Proof. (i) By Lemma 4.3 we have

(V −1x)1 =
1

1 − st + t2





1
s
1



 · x,

hence L is bounded by the two planes

± u + σ1





1
ℜ(λ)
ℜ(λ2)



 + σ2





0
ℑ(λ)
ℑ(λ2)



 (σ1, σ2 ∈ R) with u =
1

(1 + t)2(1 − t)





1
−t
t2



 .
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In view of (here “×” denotes the vector product)




1
ℜ(λ)
ℜ(λ2)



 ×





0
ℑ(λ)
ℑ(λ2)



 =





ℑ(λ)
−2ℜ(λ)ℑ(λ)

ℑ(λ)





a normal vector on these planes is given by n = (1, s, 1), hence, x belongs to L if and only if

|x · u| > |n · u|.
Finally we observe

|n · u| =

∣

∣1 − st + t2
∣

∣

(1 + t)2(1 − t)
=

1 − st + t2

(1 + t)2(1 − t)
.

(ii) Using induction it suffices to prove the statement for n = 1. Let y ∈ τ−1
r

(L), hence, y ∈ Z
3

and there is some x ∈ L with τr(y) = x. Using (i) and (4.14) we find

1 − st + t2

(1 + t)2(1 − t)
<

∣

∣(V −1x)1
∣

∣ =
∣

∣(ΛV −1y)1
∣

∣ =
∣

∣−t(V −1y)1
∣

∣ = t
∣

∣(V −1y)1
∣

∣ <
∣

∣(V −1y)1
∣

∣

which implies our assertion. �

Using Lemma 4.4 we will show now that C1, C2, C3 and C5 do not contain elements of D(0)
3 . In

particular, let us assume that there is some r ∈ D(0)
3 ∩ E

(C)
3 . We intend to show that in this case

the set

B = Br =
(

⋃

n≥1

τ−n
r

(0)
)

\ L

is bounded which is a contradiction because for r ∈ D(0)
3 we would find

⋃

n≥1

τ−n
r

(0) = Z
3,

hence, B = Z
3 \ L which is unbounded. As τ−n

r
(0) is bounded for each fixed n, in view of

Lemma 4.4 (ii) it is sufficient to find some positive integer n and a finite set T = Tr ⊂ Z
3 \ L

satisfying

τ−n
r

(0) \ L ⊆ T and τ−1
r

(T ) \ L ⊆ T.(4.17)

The set C1 is settled in the following lemma.

Lemma 4.5. Let C1 be given as in Lemma 2.6. Then

C1 ∩ D(0)
3 = ∅.

Proof. Recall that C1 is the set of all parameters r = (t, st+1, s+ t) satisfying − 1+2t
1+t

≤ s < 0 and

0 < t ≤ 1
2 . We distinguish two cases.

(i) The case −1 ≤ s < 0: For this interval we have f(s, t) < 8
5 where f is defined as in (4.16).

By Corollary 4.2 (i) we get

τ−1
(t,st+1,s+t)(0) =

{

(i, 0, 0) ∈ Z
3 : 0 ≤ i <

1

t

}

.

By Lemma 4.4 (i) we get that (i, 0, 0) 6∈ L yields i ∈ {0, 1}. Thus

(4.18) τ−1
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0)} .

By Corollary 4.2 (ii) we have

τ−1
(t,st+1,s+t)(1, 0, 0) =

{

(i, 1, 0) ∈ Z
3 : −1

t
≤ i + s < 0

}

.

By Lemma 4.4 (i) the assumption (i, 1, 0) 6∈ L implies |i + s| ≤ 8
5 . Thus easy calculations

yield

(4.19) τ−1
(t,st+1,s+t)(1, 0, 0) \ L ⊆ {(0, 1, 0), (−1, 1, 0)} .
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Combining (4.18) and (4.19) we get

(4.20) τ−2
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 1, 0)} .

Thus we have to consider the preimages of the elements (0, 1, 0) and (−1, 1, 0). Combining
(4.7) and Lemma 4.4 (i) and taking into account that −1 ≤ s < 0 we easily find

(4.21) τ−1
(t,st+1,s+t)(0, 1, 0) \ L ⊆

{

(i, 0, 1) : −s ≤ i + 1 < −s +
1

t
, |i + 1| <

8

5

}

= {(0, 0, 1)}.

Moreover, in the same way we obtain

(4.22) τ−1
(t,st+1,s+t)(−1, 1, 0)\L ⊆

{

(i,−1, 1) :
1 − s

t
≤ ℓ − s + 1 <

2 − s

t
, |ℓ − s + 1| <

8

5

}

= ∅.

Combining (4.18), (4.19), (4.20), (4.21), and (4.22) yields

τ−3
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 1, 0), (0, 0, 1)} .

Now we have to treat (0, 0, 1). Arguing as above and using (4.6) yields

τ−1
(t,st+1,s+t)(0, 0, 1) \ L ⊆ {(−1, 0, 0)}

which gives

(4.23) τ−4
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 1, 0), (0, 0, 1), (−1, 0, 0)} .

It remains to treat the element (−1, 0, 0). Since by (4.1) we have

τ−1
(t,st+1,s+t)(−1, 0, 0) \ L = ∅

we get

(4.24) τ−5
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 1, 0), (0, 0, 1), (−1, 0, 0)} .

Thus choosing

T := {(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 1, 0), (0, 0, 1), (−1, 0, 0)}
equations (4.23) and (4.24) yield that τ−1

r
(T ) \ L ⊆ T . Therefore this case is finished in

view of (4.17).

(ii) The case − 1+2t
1+t

< s < −1:

Since for 0 < t ≤ 1
2 we have − 4

3 ≤ − 1+2t
1+t

we may assume − 4
3 ≤ s < −1. Easy

calculations show that we have f(s, t) < 2 in this parameter region. By Corollary 4.2 (i)
and Lemma 4.4 (i) we get

τ−1
(t,st+1,s+t)(0) \ L = {(0, 0, 0), (1, 0, 0)} .

Now by Corollary 4.2 (ii) we have

τ−1
(t,st+1,s+t)(1, 0, 0) =

{

(i, 1, 0) ∈ Z
3 : −1

t
≤ i + s < 0

}

.

By Lemma 4.4 (i) the assumption (i, 1, 0) 6∈ L implies |i + s| < 2. Thus, since − 4
3 ≤ s <

−1, easy calculations yield

τ−1
(t,st+1,s+t)(1, 0, 0) \ L ⊆ {(0, 1, 0), (1, 1, 0)} .

Thus

(4.25) τ−2
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)} .

The new elements are (0, 1, 0) and (1, 1, 0). Firstly, observe that by (4.7)

(4.26) τ−1
(t,st+1,s+t)(0, 1, 0) \ L ⊆

{

(i, 0, 1) : −s

t
− 1 ≤ i <

1 − s

t
− 1, |i + 1| < 2

}

= ∅.
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Secondly, by (4.11) we have

(4.27) τ−1
(t,st+1,s+t)(1, 1, 0) \ L ⊆

{

(i, 1, 1) :
−1 − s

t
≤ i + s + 1 <

−s

t
, |i + s + 1| < 2

}

.

Observing that the conditions on i in the set defined in (4.27) imply

0 < −1 + s

t
≤ i + s + 1 < 2

which is satisfied for i ∈ {1, 2} we arrive at

(4.28) τ−1
(t,st+1,s+t)(1, 1, 0) \ L ⊆ {(1, 1, 1), (2, 1, 1)} .

From (4.25), (4.26) and (4.28) we deduce

(4.29) τ−3
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)} .

We have to scrutinize (1, 1, 1) and (2, 1, 1). Firstly, by (4.12)
(4.30)

τ−1
(t,st+1,s+t)(1, 1, 1) \ L ⊆

{

(i, 1, 1) :
−2 − s

t
≤ i + s + 1 <

−1 − s

t
, |i + s + 1| < 2

}

⊆ {(−1, 1, 1), (0, 1, 1), (1, 1, 1), (2, 1, 1)} .

Moreover, by (4.13)
(4.31)

τ−1
(t,st+1,s+t)(2, 1, 1) \ L ⊆

{

(i, 2, 1) :
−3 − s

t
≤ i + 2s + 1 <

−2 − s

t
, |i + 2s + 1| < 2

}

⊆ {(0, 2, 1)} .

From (4.29), (4.30), and (4.31) we get

(4.32)
τ−4
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1),

(−1, 1, 1), (0, 1, 1), (0, 2, 1)}.
In the next step we have to deal with the elements (−1, 1, 1), (0, 1, 1), and (0, 2, 1). Firstly,
(4.5) implies

(4.33) τ−1
(t,st+1,s+t)(−1, 1, 1) \ L = ∅,

secondly, by (4.8)

(4.34) τ−1
(t,st+1,s+t)(0, 1, 1) \ L ⊆

{

(i, 0, 1) : −s + 1

t
≤ i + 1 < −s

t
, |i + 1| < 2

}

⊆ {(0, 0, 1)}

and thirdly, (4.9) implies

(4.35) τ−1
(t,st+1,s+t)(0, 2, 1) \ L = ∅.

Combining (4.32), (4.33), (4.34), and (4.35) now yields

τ−5
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1),

(−1, 1, 1), (0, 1, 1), (0, 2, 1), (0, 0, 1)}.
It remains to deal with (0, 0, 1). But since by (4.6) we get

τ−1
(t,st+1,s+t)(0, 0, 1) \ L = ∅,

thus this case is also finished because (4.17) is true for the choice

T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1),
(−1, 1, 1), (0, 1, 1), (0, 2, 1), (0, 0, 1)}. �

The proofs of the next two lemmas are completely analogous.

Lemma 4.6. Let C2 be given as in Lemma 2.6. Then

C2 ∩ D(0)
3 = ∅.
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Proof. Recall that C2 consists of the elements r = (t, st + 1, s + t) with 0 < s < 1, 0 < t ≤ 1
2 . One

easily checks that for this parameter range we get (f is defined as in (4.16))

f(s, t) < 10/9,

hence, analogously as in the proof of Lemma 4.5 we get

τ−1
(t,st+1,s+t)(0) \ L ⊆ {(0, 0, 0), (1, 0, 0)} .

We distinguish two subcases.

(i) The case s ≤ 8/9:

In this case we have

τ−1
(t,st+1,s+t)(1, 0, 0) \ L ⊆ {(−1, 1, 0)}

because by Corollary 4.2 (ii) we have to study

i + s < 0, |i + s| < 10/9,

which easily implies i = −1. Using (4.4) we further have

τ−1
(t,st+1,s+t)(−1, 1, 0) \ L = ∅.

Therefore this case is settled by (4.17) with n = 2 and T = {0, (1, 0, 0), (−1, 1, 0)}.
(ii) The case s > 8/9:

By Corollary 4.2 (ii) we have

τ−1
(t,st+1,s+t)(1, 0, 0) \ L ⊆ {(−1, 1, 0), (−2, 1, 0)}

In the next step we consider the elements in τ−1
(t,st+1,s+t)(−1, 1, 0) \ L, thus by (4.4)

and Lemma 4.4 (i) the integer solutions of

|i − s + 1| < 10/9,
1 − s

t
≤ i − s + 1 .

This yields i > s − 1 > −1, hence i ≥ 0, and further i < 2 because otherwise

10/9 > 2 − s + 1 > 2.

Therefore i ∈ {0, 1}. But i = 0 is impossible because this would imply

1 − s

t
≤ 1 − s.

Thus

τ−1
(t,st+1,s+t)(−1, 1, 0) \ L ⊆ {(1,−1, 1)}

Similarly, using (4.2), we find

τ−1
(t,st+1,s+t)(−2, 1, 0) \ L = ∅.

Moreover, by (4.10) we have

τ−1
(t,st+1,s+t)(1,−1, 1) \ L ⊆ {(−1, 1,−1)} ,

and (4.3) yields

τ−1
(t,st+1,s+t)(−1, 1,−1) \ L = ∅.

Again we are done by (4.17).

�

Lemma 4.7. Let C3 be given as in Lemma 2.6. Then

C3 ∩ D(0)
3 = ∅.

Proof. Recall that C3 consists of the elements r = (t, st + 1, s + t) with 1 < s < 2, 0 < t ≤ 4
5 . We

distinguish two cases.
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(i) The case t ≤
√

3 − 1: For this interval we have f(s, t) < 1 (where f is defined in (4.16)),
hence,

(4.36) τ−1
(t,st+1,s+t)(0) \ L = {0} .

(ii) The case t >
√

3 − 1: Here we have to consider two subcases. For s ≥ 4/3 we again
find f(s, t) < 1 and (4.36) holds again. Now let s < 4/3. One easily checks that for this
parameter range we get

f(s, t) < 13/10 .

By Corollary 4.2 (i) and Lemma 4.4 (i) we get

τ−1
(t,st+1,s+t)(0) \ L ⊆ {0, (1, 0, 0)} .

Then by (4.1) with i = 1 we find

τ−1
(t,st+1,s+t)(1, 0, 0) \ L ⊆ {(−2, 1, 0)}

because −2 is the only integer solution of

−1

t
≤ j + s < 0 .

Finally,

τ−1
(t,st+1,s+t)(−2, 1, 0) \ L = ∅

because by (4.2) and Lemma 4.4 (i) we have to study the inequalities

2 − s

t
≤ 1 − 2s + 1 and |i − 2s + 1| <

13

10
.

These yield

i ≥ 5(2 − s)

4
+ 2s− 1,

hence i ≥ 3, and further
13

10
> 4 − 2s

implying the absurd inequality

8

3
> 2s > 4 − 13

10
.

In all cases, choosing T appropriately, we are done by (4.17). �

5. Treatment of the region near (s, t) = (1, 1)

In this section we deal with the region C5. This requires to study preimages τ−n
r

(0) for large
values of n.

We define the following elements. For n ≥ 0 set

(5.1)

d
(1)
n = (n,−(n − 1), n − 1), d

(4)
n = (−(n + 2), n + 2,−(n + 1)),

d
(2)
n = (−(n + 1), n,−(n− 1)), d

(5)
n = (n + 2,−(n + 2), n + 2),

d
(3)
n = (n + 2,−(n + 1), n), d

(6)
n = (−(n + 2), n + 2,−(n + 2)).

The basis for the treatment of C5 is contained in the following lemma.

Lemma 5.1. Let r = (t, st + 1, s + t) ∈ C5 be given. For n > 0 and k ∈ {1, . . . , 6} let d
(k)
n =

(d
(k)
n1 , d

(k)
n2 , d

(k)
n3 ) be as in (5.1). Then

d(k)
n 6∈ L =⇒ τ−1

r
{d(k)

n } = {d(k+1)
n } (k ∈ {1, . . . , 5}),

d(6)
n 6∈ L =⇒ τ−1

r
{d(6)

n } = {d(1)
n+3}.
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Proof. Note that Lemma 4.4 implies that d
(k)
n 6∈ L holds if and only if |d(k)

n1 +s d
(k)
n2 +d

(k)
n3 | ≤ f(s, t).

By Lemma 4.1 the preimage τ−1
r

{d(k)
n } is given by the set

{

(i, d
(k)
n1 , d

(k)
n2 ) :

−(st + 1)d
(k)
n1 − (s + t)d

(k)
n2 − d

(k)
n3

t
≤ i <

−(st + 1)d
(k)
n1 − (s + t)d

(k)
n2 − d

(k)
n3 + 1

t

}

.

Thus, if k ∈ {1, . . . , 5} then τ−1
r

{d(k)
n } = {d(k+1)

n } holds if and only if the inequalities

(5.2)

−(st + 1)d
(k)
n1 − (s + t)d

(k)
n2 − d

(k)
n3

t
> d

(k+1)
n,1 − 1,

−(st + 1)d
(k)
n1 − (s + t)d

(k)
n2 − d

(k)
n3 + 1

t
≤ d

(k+1)
n1 + 1

are satisfied. Moreover, τ−1
r

{d(6)
n } = {d(1)

n+3} holds if and only if the inequalities

(5.3)

−(st + 1)d
(6)
n1 − (s + t)d

(6)
n2 − d

(6)
n3

t
> d

(1)
n+3,1 − 1,

−(st + 1)d
(6)
n1 − (s + t)d

(6)
n2 − d

(6)
n3 + 1

t
≤ d

(1)
n+3,1 + 1

are satisfied. Therefore, the lemma is proved if we can show that for positive n the inequality

|d(k)
n1 + s d

(k)
n2 + d

(k)
n3 | ≤ f(s, t) implies (5.2) for k ∈ {1, . . . , 5} and (5.3) for k = 6.

The proof is split up into the six possible values for k. We start with k = 1. Suppose that
n ≥ 0 and

(5.4) |n − s(n − 1) + (n − 1)| ≤ f(s, t).

Then we have to show that

(5.5)

−(st + 1)n + (s + t)(n − 1) − n + 1

t
> −n − 2,

−(st + 1)n + (s + t)(n − 1) − n + 2

t
≤ −n.

As (s, t) are parameter values of the set C5 we can write s = 1 + α and t = 1 − β with
0 < α < β < 1

5 . Now (5.4) reads

n(1 − α) + α ≤ 1 − (α + β)(1 − β)

4β − 4β2 + β3

which, combined with the fact that n > 0, is equivalent to

(5.6) 0 < n ≤ 1 − (α + β)(1 − β)

(1 − α)(4β − 4β2 + β3)
− α

1 − α
.

On the other hand, (5.5) is equivalent to

(5.7)
β − α

β(1 − α)
≤ n <

1 − α − β

(1 − α)β
.

As, for α, β in the indicated range, we have

β − α

β(1 − α)
< 1

and (as easy calculations show)

1 − (α + β)(1 − β)

(1 − α)(4β − 4β2 + β3)
− α

1 − α
<

1 − α − β

(1 − α)β

the lemma is proved for the case k = 1. The cases k = 2, . . . , 6 can be shown in the same way and
we omit the details. �

The region C5 is settled in the following lemma.
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Lemma 5.2. Let C5 be given as in Lemma 2.6. Then

C5 ∩ D(0)
3 = ∅.

Proof. Arguing along the lines of the lemmas in the previous section it is easy to see that for each
r ∈ C5 we have τ−2

r
{0} = τ−1

r
{0} ∪ {(−2, 1, 0)}.

Using the notation of Lemma 5.1 we see that (−2, 1, 0) = d
(2)
1 . Thus, Lemma 5.1 completely

describes the sets τ−n
r

{(−2, 1, 0)} as long as they are not contained in L. As |n−s(n−1)+n−1| is
not uniformly bounded in n, the definition of L implies that d

(1)
n ∈ L for n large enough. Therefore,

there is some n0 such that τ−n0+1
r

{(−2, 1, 0)} ∩ L = ∅ and τ−n0

r
{(−2, 1, 0)} ⊂ L (Indeed, each of

these sets contains exactly one element in view of Lemma 5.1.) Thus, Lemma 4.4 (ii) implies that
τ−n
r

{(−2, 1, 0)} ⊂ L for n ≥ n0. From this inclusion we get that

B =
⋃

n≥1

τ−n
r

(0) \ L =

n0+1
⋃

n=1

τ−n
r

(0) \ L,

which is a bounded set. This proves the lemma by the remarks after the proof of Lemma 4.4. �

6. Conclusion

The proof of the main theorem now follows by collecting the results that we achieved in the
previous sections.

Proof of the main theorem. This follows immediately from Lemmas 2.6, 4.5, 4.6, 4.7, 5.2, 3.2 and
3.3. �

Remark 6.1. We expect that a similar result can also be proved for three dimensional ε-SRS in the
sense of Surer [14]. With similar methods (but considerably more computational effort) it should
be possible to settle Conjecture 1.1 for the case d = 4. However, for proving the conjecture in full
generality, new ideas are needed.

Acknowledgment. The first author wishes to express his heartfelt thanks to the Montanuni-
versität Leoben for their hospitality during the preparation of the manuscript.
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