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5.1 Introduction

This chapter focuses on multiple tilings associated with substitutive dy-

namical systems. We recall that a substitutive dynamical system (Xσ, S)

is a symbolic dynamical system where the shift S acts on the set Xσ of

infinite words having the same language as a given infinite word which is

generated by powers of a primitive substitution σ. We restrict to the case

where the inflation factor of the substitution σ is a unit Pisot number.

With such a substitution σ, we associate a multiple tiling composed of tiles

which are given by the unique solution of a set equation expressed in terms

of a graph associated with the substitution σ: these tiles are attractors of a

graph-directed iterated function system (GIFS). They live in Rn−1, where n

stands for the cardinality of the alphabet of the substitution. Each of these

tiles is compact, it is the closure of its interior, it has non-zero measure

and it has a fractal boundary that is also an attractor of a GIFS. These

tiles are called central tiles or Rauzy fractals, according to G. Rauzy who

introduced them in (Rauzy 1982).

Central tiles were first introduced in (Rauzy 1982) for the case of the Tri-

bonacci substitution (1 7→ 12, 2 7→ 13, 3 7→ 1), and then in (Thurston 1989)

for the case of the beta-numeration associated with the Tribonacci number

(which is the positive root of X3 − X2 − X − 1). One motivation for

Rauzy’s construction was to exhibit explicit factors of the substitutive dy-

namical system (Xσ, S) as translations on compact abelian groups, under

the hypothesis that σ is a Pisot substitution.

By extending the seminal construction in (Rauzy 1982), it has been

proved that central tiles can be associated with Pisot substitutions (see for

instance (Arnoux and Ito 2001) or (Canterini and Siegel 2001b)) as well as
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with beta-numeration with respect to Pisot numbers (cf. (Thurston 1989),

(Akiyama 1999) and (Akiyama 2002)). They are conjectured to induce

tilings in all these cases. The tiling property is known to be equivalent

to the fact that the dynamical system (Xσ, S) has pure discrete spectrum

(see (Pytheas Fogg 2002, Chapter 7) and (Barge and Kwapisz 2006)) when

σ is a unit Pisot irreducible substitution.

We have chosen here to concentrate on tilings associated with substitu-

tions for the sake of clarity. A similar study can be performed in the frame-

work of beta-numeration, with both viewpoints being intimately connected

through the notion of beta-substitution. Indeed, a beta-substitution can be

associated with any Parry number β (for more details, see Exercise 5.1 and

Section 5.11). In the case where β is a Pisot number, the associated substi-

tution can be Pisot reducible as well as Pisot irreducible. The exposition

of the theory of central tiles is much simpler when σ is assumed to be Pisot

irreducible, even if it extends to the Pisot reducible case. Hence, we will

restrict ourselves to the Pisot irreducible case.

There are several approaches for the definition of central tiles. We de-

tail below a construction for unit Pisot substitutions based on a broken

line which is defined in terms of the abelianisation of an infinite word gen-

erated by σ. Projecting the vertices of this broken line to the contrac-

tive subspace of the incidence matrix of σ along its expanding direction

and taking the closure of this set yields the central tile. For more de-

tails on different approaches, see the surveys in (Pytheas Fogg 2002, Chap-

ters 7 and 8) and (Berthé and Siegel 2005), as well as the discussion in

(Barge and Kwapisz 2006) and (Ito and Rao 2006).

The aim of this chapter is to list a great variety of tiling conditions, by

focusing on effectivity issues. These conditions rely on the use of various

graphs associated with the substitution σ.

This chapter is organised as follows. Section 5.2 gathers all the introduc-

tory material. We assume that we are given a unit Pisot irreducible sub-

stitution σ. A suitable decomposition of the space Rn−1 is first introduced

in Section 5.2.1 with respect to the eigenspaces of the incidence matrix Mσ

of σ. A definition of the central tile associated with σ as well as its de-

composition into subtiles is then provided in Section 5.2.2. We discuss the

graph-directed set equation satisfied by the subtiles in Section 5.2.3. Two

(multiple) tilings associated with σ are then introduced in Section 5.3. The

first one, introduced in Section 5.3.2, is called tiling of the expanding line.

This tiling by intervals tiles the expanding line of the incidence matrix Mσ

of σ. The second one is a priori not a tiling, but a multiple tiling. It

is defined on the contracting space of the incidence matrix Mσ, and it is
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made of translated copies of the subtiles of the central tile. It is called the

self-replicating multiple tiling. Note that it is conjectured to be a tiling.

It will be the main objective of the present chapter to introduce various

graphs that provide conditions for this multiple tiling to be a tiling.

The first series of tiling conditions is expressed in geometric terms directly

related to properties of the self-replicating multiple tiling. We start in Sec-

tion 5.4.1 with a sufficient tiling property inspired by the so-called finiteness

property (F) (discussed in Section 2.3.2.2). This leads us to introduce suc-

cessively several graphs in Section 5.4 and Section 5.5, yielding necessary

and sufficient conditions. We then discuss in Section 5.6, 5.7 and 5.8 fur-

ther formulations for the tiling property expressed in terms of the tiling of

the expanding line. They can be considered as dual to the former set of

conditions. In particular, a formulation in terms of the so-called overlap

coincidence condition is provided in Section 5.7, as well as, in Section 5.8,

a further effective condition based on the notion of balanced pairs.

5.2 Basic definitions

We use the terminology of Section 1.4. Let σ be a substitution over the

alphabet A = {1, 2, . . . , n}. In all that follows σ is assumed to be a unit

substitution that is Pisot irreducible. In particular, σ is primitive by The-

orem 1.4.9. Let us recall that a primitive substitution always admits a

power that is prolongable (see Definition 1.2.18 and (Queffélec 1987, Propo-

sition V.1)), and which thus generates an infinite word. For the sake of

simplicity, we assume that σ generates an infinite word according to Defi-

nition 1.2.18, that will be denoted as u = u0u1 · · · . We will see later that

this causes no loss of generality (see Theorem 5.3.16 and Remark 5.3.17).

Let us note that u is uniformly recurrent by Proposition 1.4.6, and that

σ(u) = u, i.e., u is a fixed point of σ.

5.2.1 Space decomposition

We want to give a geometric interpretation of the fixed point u = u0u1 · · ·

of the unit Pisot irreducible substitution σ. In the present section we first

introduce some algebraic formalism in order to embed u in a subspace of

Rn spanned by the eigenvectors associated with the algebraic conjugates of

the Perron–Frobenius eigenvalue of the incidence matrix of σ (see Theorem

1.4.2). Since σ is Pisot irreducible, this subspace turns out to be a hyper-

plane. We define a suitable projection of Rn onto this hyperplane. The

closure of the projections of the abelianised subwords P(u0u1 · · ·uN−1), for
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N ∈ N, will comprise the so-called central tile or Rauzy fractal that will be

defined in Section 5.2.2.

Eigenvectors and eigenvalues. Let σ be a unit Pisot irreducible substi-

tution. We want to decompose Rn with respect to certain eigenspaces of

the incidence matrix Mσ of σ. Let β be the Perron–Frobenius eigenvalue of

Mσ. According to our assumptions β is a Pisot unit and n is the algebraic

degree of β.

Let r − 1 be the number of real conjugates of β (distinct from β). They

are denoted by β(2), . . ., β(r). Each corresponding eigenspace has dimension

one according to Perron–Frobenius’ theorem (Theorem 1.4.2). Let 2s be the

number of complex conjugates of β. They are denoted by β(r+1), β(r+1),

. . ., β(r+s), β(r+s). Each pair of a complex eigenvector together with its

complex conjugate generates a two-dimensional plane. One has n = r + 2s

since σ is Pisot irreducible.

Let vβ be a left eigenvector ofMσ (i.e., an eigenvector of
tMσ) associated

with the eigenvalue β having positive entries contained in Z[β]. Such a

vector exists by Perron–Frobenius’ theorem. Let uβ be the right eigenvector

of Mσ associated with β, and normalised by 〈vβ ,uβ〉 = 1. The eigenvector

uβ is well defined by the above conditions once vβ is given. Again by

Perron–Frobenius’ theorem, uβ has positive coordinates in Q(β). We obtain

left eigenvectors vβ(i) for the algebraic conjugates β(i) of β by replacing β

by β(i) in the coordinates of the vector vβ . We similarly obtain the right

eigenvectors uβ(i) . Furthermore, the coordinates of vβ are easily seen to be

linearly independent over Q. The same holds for the coordinates of uβ .

Remark 5.2.1 Note that this normalisation convention for uβ a priori

does not correspond to the normalised Perron–Frobenius eigenvector of The-

orem 1.4.5 and Proposition 10.4.2 whose coordinates give the frequencies of

letters in u (in this latter case, the sum of coordinates equals 1). See also

the discussion in Section 5.11.

The right and left eigenvectors are easily seen to satisfy the following

relations, for k ≥ 2, i ≥ 2, k 6= i

〈vβ ,uβ(k)〉 = 0, 〈vβ(i) ,uβ(k)〉 = 0, 〈vβ(k) ,uβ(k)〉 = 1. (5.1)

For more details see (Canterini and Siegel 2001b, Section 2),

(Ei, Ito, and Rao 2006, Lemma 2.5), (Baker, Barge, and Kwapisz 2006) or

(Siegel and Thuswaldner 2010).

A suitable decomposition of the space. Using the eigenvectors defined

above we can decompose Rn as follows. The contracting space of the matrix
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Mσ is the subspace Hc generated by the eigenvectors uβ(i) associated with

the n− 1 conjugates of β (each of which has modulus less than one). The

expanding line of Mσ is the real line He generated by the eigenvector uβ .

Note that the subscripts c and e stand here as abbreviations for contracting

and expanding, respectively. The space Hc has dimension r+2s−1 = n−1

so that Hc ≃ Rn−1. Moreover, Hc is orthogonal to vβ , according to (5.1).

We denote by hσ : Hc → Hc the restriction of Mσ to Hc. The mapping

hσ is a uniform contraction whose eigenvalues are the conjugates of β. Note

that it scales down the (n− 1)-dimensional Lebesgue measure by the factor

|β(2) · · ·β(r)| |β(r+1)|2 · · · |β(r+s)|2 = 1/β, since β is a unit. This contraction

mapping will play a prominent role in the sequel.

In order to make the distinction between elements of the n-dimensional

space Rn and elements of the (n− 1)-dimensional space Hc, we restrict the

use of bold symbols for the vectors and linear mappings of Rn.

We denote by µk the k-dimensional Lebesgue measure. In particular, we

work with µn−1 on Hc, and with µ1 on He.

Projections on the eigenspaces. Let πc : Rn → Hc be the projection of

Rn onto Hc along He, according to the natural decomposition Rn = Hc⊕He.

We recall that P denotes the abelianisation mapping defined in Section 1.4.

The relation P(σ(w)) = MσP(w) for all w ∈ A∗ implies the commutation

relation

∀w ∈ A∗, πc ◦P ◦ σ(w) = hσ ◦ πc ◦P(w). (5.2)

Relation (5.2) reads as follows: when applying σ to a word w, the abelian-

isation P(w) is mapped onto MσP(w), which has a priori larger entries

since Mσ has non-negative entries, and thus ‘moves away’ from the origin.

However, when considering the projection on Hc of the abelianisations, the

point πc ◦P(w), which is mapped to the point hσ ◦πc ◦P(w) when applying

σ, gets closer to the origin since hσ is a uniform contraction. The relation

(5.2) will play a key role in the sequel.

We deduce from (5.1) that any element x ∈ Rd admits the decomposition

x = 〈x,vβ〉uβ +

r+2s
∑

i=2

〈x,vβ(i) 〉uβ(i) . (5.3)

For more details, see (Canterini and Siegel 2001b, Section 2.1). This implies

that the projection of x onto He along Hc is equal to 〈x,vβ〉uβ . We thus

define

πe : Rn → R, x 7→ 〈x,vβ〉. (5.4)

The mapping πe is the projection of Rn onto the expanding line along the
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contracting space Hc followed by a suitable renormalisation that makes it

into a mapping with values in R and not in He. One has πe(Hc) = 0. The

mapping πe measures in some sense the distance to the hyperplane Hc. We

thus define the height of a vector x ∈ Rn as 〈x,vβ〉 = πe(x).

One deduces furthermore from simple algebraic considerations applied to

(5.3) that

∀x,y ∈ Qn, πc(x) = πc(y) ⇐⇒ 〈x,vβ〉 = 〈y,vβ〉 ⇐⇒ x = y. (5.5)

For more details, see (Canterini and Siegel 2001b, Section 2.1).

5.2.2 Central tile

We first introduce the notion of a broken line associated with the fixed point

u of σ.

Definition 5.2.2 The broken line Lu associated with the fixed point u of

the unit Pisot irreducible substitution σ is defined as the broken line in Rn

whose set of vertices is given by {P(u0 · · ·uN−1) | N ∈ N}.

We can also describe the broken line as a stair made of a union of seg-

ments. More precisely, for x ∈ Zn and i ∈ A, we denote by [x, i]g the

segment {x + θei | θ ∈ [0, 1]}. We call such a segment a basic geometric

strand, according to (Barge and Kwapisz 2006). We will use and develop

this terminology in Section 5.6.1. The broken line associated with u is thus

the union of the basic geometric strands [P(u0 · · ·uN−1), uN ]g, for N ∈ N,

i.e.,

Lu =
⋃

N∈N

[P(u0 · · ·uN−1), uN ]g.

Definition of the central tile. The central tile (or Rauzy fractal) asso-

ciated with the unit Pisot irreducible substitution σ is the closure of the

projection by πc onto the contracting space Hc of the vertices of the broken

line Lu associated with the fixed point u of σ, i.e.,

Tσ := {πc ◦P(u0 · · ·uN−1) | N ∈ N}.

Subtiles of the central tile Tσ are defined according the the letter uN occur-

ring after the word u0 · · ·uN−1. Indeed, we set for each i ∈ A

Tσ(i) := {πc ◦P(u0 · · ·uN−1) | N ∈ N, uN = i}.

By definition, the central tile Tσ consists of the finite union of its subtiles,



Substitutions, Rauzy fractals and tilings 255

i.e.,

Tσ =
⋃

i∈A

Tσ(i).

We will see later (see Corollary 5.2.8, Theorem 5.3.16 and Remark 5.3.17)

that the central tile Tσ and the subtiles Tσ(i) do not depend on the choice

of u. They only depend on the substitution σ.

Theorem 5.2.3 Let σ be a unit Pisot irreducible substitution. The central

tile Tσ and the subtiles Tσ(i) associated with σ are compact sets.

Proof Note that the compactness of the subtiles Tσ(i) is a direct con-

sequence of the compactness of Tσ, since they are closed subsets of Tσ.

To prove the compactness of Tσ, it is enough to show that the points

πc ◦P(u0 · · ·uN−1), for N ∈ N, remain at a uniformly bounded distance of

the origin in Hc.

In order to prove this, we use a decomposition of the prefixes u0 · · ·uN−1

into images by powers of σ of a finite number of words. Since σ(u) = u,

there exists a unique L ≤ N such that σ(u0 · · ·uL−1) is a proper prefix

of u0 · · ·uN−1, and u0 · · ·uN−1 is a prefix of σ(u0 · · ·uL). In other words,

there exists a proper prefix p of σ(uL), such that

u0 · · ·uN−1 = σ(u0 · · ·uL−1) p with σ(uL) = p uN s. (5.6)

By iterating this process, one gets for every N an expansion of the form

u0 · · ·uN−1 = σK(pK)σ
K−1(pK−1) · · ·σ(p1)p0,

where the pi belong to a finite set of words that only depends on σ.

Note that we have obtained a numeration system on words, the so-called

Dumont–Thomas numeration (see Sections 9.4.2 and 5.11 for more details).

By (5.2), one has

πc ◦P(u0 · · ·uN−1) = hK
σ ◦ πc ◦P(pK) + · · ·+ hσ ◦ πc ◦P(p1) + πc ◦P(p0).

We know that hσ is a uniform contraction on Hc. As the P(pi) take finitely

many values, this implies that the points πc ◦ P(u0 · · ·uN−1), for N ∈ N,

remain at a uniformly bounded distance from the origin, which ends the

proof.

5.2.3 A graph-directed iterated function system

We now discuss a key property of the central tile and its subtiles, namely

they satisfy a set equation. By the solution of a set equation we mean
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Fig. 5.1. The central tile and its subtiles for the substitution σ(1) = 112, σ(2) =
113, σ(3) = 1 (left), and its decomposition into subtiles (right).

the following. We are given a collection of finitely many compact sets

{K1, . . . , Kq}. Each set Ki can be decomposed as a union of contracted

copies of itself and the other sets Kj . Associated with such a set equation

there is a natural graph: its set of vertices is given by {Ki | 1 ≤ i ≤ q}

and there is an edge e (labelled i
e
−→ j) from Ki to Kj if Kj appears in the

decomposition of Ki.

Let us formalise this concept by introducing the notion of graph-directed

iterated function system. We consider a finite directed graph G with set of

vertices {1, . . . , q} and set of edges E for which each vertex has at least one

outgoing edge. With each edge e of the graph, is associated a contractive

mapping τe : Rn → Rn. We call (G, {τe}e∈E) a graph-directed iterated

function system (GIFS, for short, see (Mauldin and Williams 1988)).

It can be shown by a fixed point argument that given a GIFS (G, {τe}e∈E)

there exists a unique collection of non-empty compact sets K1, . . . , Kq ⊂ Rn

having the property that

Ki =
⋃

i
e−→j

τe(Kj),

where the union runs over all edges in G leading away from the vertex

i. The sets Ki are called GIFS attractors or solutions of the GIFS. Note

that the uniqueness statement does not hold for general sets, but only for

non-empty compact sets.

Let us see how to apply this formalism to the subtiles Tσ(i). The graph

that will be used is the so-called prefix-suffix graph. This graph describes

the way images of letters under σ can be decomposed, according to the

proof of Theorem 5.2.3. It is the starting point for the construction of

several kinds of graphs introduced later in this chapter. For more on this

graph, see (Canterini and Siegel 2001a, Canterini and Siegel 2001b).

Definition 5.2.4 (Prefix-suffix graph) Let σ be a substitution over the
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alphabet A. Let Pσ be the finite set

Pσ := {(p, i, s) ∈ A∗ ×A×A∗ | ∃ j ∈ A, σ(j) = pis}. (5.7)

The set of vertices of the prefix-suffix graph Gσ of σ is the alphabet A.

There is an edge labelled by (p, i, s) ∈ Pσ from i towards j if, and only if,

pis = σ(j). We then use the notation i
(p,i,s)
−−−−→ j.

Example 5.2.5 Let us consider as an example the substitution σ(1) = 112,

σ(2) = 113, σ(3) = 1, whose central tile is depicted on the left side of

Figure 5.1. Its prefix-suffix graph is depicted in Figure 5.2. We recall that

ε is the empty word.

1 2

3

(ε, 1, 13)

(1, 1, 13)

(11, 2, ε)

(ε, 1, ε)

(11, 3, ε)

(ε, 1, 12)

(1, 1, 2)

Fig. 5.2. The prefix-suffix graph for σ(1) = 112, σ(2) = 113, σ(3) = 1.

By associating with the edge e = (p, i, s) the contraction mapping

τe : ν ∈ Rn 7→ hσ(ν) + πc ◦P(p) ∈ Rn,

we get the GIFS (Gσ , {τe}e∈Pσ
). We now can give explicitly the set equation

satisfied by the subtiles of the central tile. This is the content of the follow-

ing theorem (see (Sirvent and Wang 2002) and also (Ito and Rao 2006)).

Theorem 5.2.6 (Sirvent and Wang 2002) Let σ be a unit Pisot irre-

ducible substitution over the alphabet A. The subtiles Tσ(i) are the solutions

of the GIFS (Gσ, {τe}e∈Pσ
), i.e.,

∀ i ∈ A, Tσ(i) =
⋃

j∈A,

i
(p,i,s)
−−−−→j

hσ(Tσ(j)) + πc ◦P(p). (5.8)
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Furthermore, the union in (5.8) is a measure disjoint union.

Before giving a proof of this theorem, let us illustrate it on an example.

Example 5.2.7 We continue with the substitution σ of Example 5.2.5. In

order to decompose Tσ(1) by (5.16) we look for the outgoing edges for the

vertex 1 in the prefix-suffix graph. Equation (5.8) gives

Tσ(1) =hσ(Tσ(1)) ∪ (hσ(Tσ(1)) + πc(e1)) ∪ hσ(Tσ(2))

∪ (hσ(Tσ(2)) + πc(e1)) ∪ hσ(Tσ(3)),

Tσ(2) =hσ(Tσ(1)) + 2πc(e1),

Tσ(3) =hσ(Tσ(2)) + 2πc(e1).

Hence, the largest subtile Tσ(1) can be decomposed into two shrunken copies

of Tσ(1), two shrunken copies of Tσ(2) and one shrinked copy of Tσ(3). The

subtile Tσ(2) is the geometrically similar image of Tσ(1), and Tσ(3) is the

image of Tσ(2). This decomposition is illustrated in Figure 5.1 above. Note

that the number of pieces in the decomposition of the subtile Tσ(i) is equal

to the number of outgoing edges of the vertex i in the prefix-suffix graph.

Proof of Theorem 5.2.6 We fix i ∈ A and assume that uN = i. By

definition, one has πc ◦ P(u0 · · ·uN−1) ∈ Tσ(i). By (5.6), there exist L

and a decomposition of σ(uL) as σ(uL) = puNs = pis such that πc ◦

P(u0 · · ·uN−1) = hσ ◦ πc ◦ P(u0 · · ·uL−1) + πc ◦ P(p). We thus get πc ◦

P(u0 · · ·uN−1) ∈ hσ(Tσ(uL)) + πc ◦ P(p). As this is true for each N with

uN = i, by grouping by the values of uL and taking the closure, we obtain

the decomposition (5.8) for Tσ(i), i.e.,

Tσ(i) =
⋃

(p,j,s), σ(j)=pis

hσ(Tσ(j)) + πc ◦P(p).

Recall that hσ scales down the (n−1)-dimensional Lebesgue measure µn−1

by the factor 1/β. We deduce from (5.8) that

∀ i ∈ A, β µn−1(Tσ(i)) ≤
∑

j∈A

mij µn−1(Tσ(j)), (5.9)

where the coefficients mji denote the entries of the incidence matrix Mσ.

As β is the Perron–Frobenius eigenvalue of Mσ, Lemma 1.4.4 implies the

reverse inequality. We thus get equality in (5.9). This implies that no

overlap with positive measure occurs in the union in (5.8).

Note that (5.8) admits the following k-fold iteration for any k ∈ N and
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i ∈ A

Tσ(i) =
⋃

(p,j,s), σk(j)=pis

hk
σ(Tσ(j)) + πc ◦P(p). (5.10)

From the uniqueness of the solution of (5.8) for non-empty compact sets

we deduce the following result.

Corollary 5.2.8 Let σ be a unit Pisot irreducible substitution. The central

tiles Tσ and the subtiles Tσ(i), for i ∈ A, do not depend on the choice of the

fixed point u of σ.

We know so far that each subtile Tσ(i) can be decomposed into shrunken

copies of the subtiles (namely into sets of the form hσ(Tτ (j))+πc◦P(p)) that

are disjoint in measure. To ensure that the subtiles Tσ(i), for i ∈ A, them-

selves are pairwise disjoint in measure, we introduce the following combina-

torial condition on substitutions. For substitutions of constant length this

condition goes back to (Dekking 1978), see details in (Pytheas Fogg 2002,

Chapter 7).

Definition 5.2.9 (Arnoux and Ito 2001) A substitution σ over the al-

phabet A satisfies the combinatorial strong coincidence condition if for every

pair (j1, j2) ∈ A2, there exist k ∈ N and i ∈ A such that σk(j1) = p1is1 and

σk(j2) = p2is2 with P(p1) = P(p2).

The combinatorial strong coincidence condition is satisfied by

every Pisot irreducible substitution over a two-letter alphabet

(Barge and Diamond 2002). It is conjectured that every Pisot irre-

ducible substitution satisfies this condition.

The following theorem relates the combinatorial strong coincidence con-

dition to the disjointness of the interiors of the subtiles Tσ(i), i ∈ A.

Theorem 5.2.10 (Arnoux and Ito 2001) Let σ be a unit Pisot irre-

ducible substitution. If σ satisfies the combinatorial strong coincidence con-

dition, then the subtiles Tσ(i) of the central tile Tσ are measure disjoint.

Proof The combinatorial strong coincidence condition implies that for every

pair of letters (j1, j2) there exist a common letter i, a positive integer k and

a common abelianised prefix P(p) such that hk
σ(Tσ(j1)) + πc ◦ P(p) and

hk
σ(Tσ(j2)) + πc ◦ P(p) both appear in the k-fold iteration (5.10) of the

decomposition of Tσ(i) given by (5.8). Theorem 5.2.6 yields that these tiles

are disjoint in measure.
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5.3 Tilings

In this section we define a tiling as well as a multiple tiling associated with

a unit Pisot irreducible substitution σ. We start with some definitions.

5.3.1 General definitions

Let Ki, i ∈ A, be a finite collection of compact sets of a subspace H of Rn,

with each of the Ki being the closure of its interior. Let p be a positive

integer. A multiple tiling of degree p of the space H by the compact sets Ki

is a collection of translated copies of the sets Ki of the form I := {Ki + γ |

(γ, i) ∈ Γ}, where Γ is a subset H×A, that satisfies the following conditions.

(i) The entire space H is covered by the elements of I, i.e.,

H =
⋃

(γ,i)∈Γ

Ki + γ. (5.11)

(ii) Each compact subset of H intersects a finite number of elements of

I.

(iii) Almost every point in H (with respect to the Lebesgue measure) is

covered exactly p times.

The set Γ is called the translation set. If the union {Ki + γ | (γ, i) ∈ Γ}

only satisfies (i), it is said to be a covering of H. The sets Ki+γ are called

tiles. In other words, a multiple tiling is a union of tiles
⋃

(γ,i)∈ΓKi+γ that

covers the full spaceH with possible overlaps in such a way that almost every

point belongs to exactly p tiles. This is illustrated in Figure 5.3 for p = 2

with an example obtained in the framework of symmetric beta-expansions

taken from (Kalle and Steiner 2009). If p = 1, then the multiple tiling is

called a tiling. See also Figure 5.7 for an example of a tiling.

Condition (ii) means that the first coordinate projection of Γ into H is

a locally finite subset of H, i.e., each point in H has a neighbourhood that

intersects only finitely many projected elements of Γ. We also say that Γ is

a locally finite set.

Dynamical systems can be associated with tilings in close analogy to

dynamical systems associated with substitutions. Indeed, the terminology

introduced in Chapter 1 concerning words extends in a natural way to

tilings. For more on tiling dynamical systems, see (Solomyak 1997) and

(Robinson 2004).

Consider a collection of non-empty compact sets {Ki + γ | (γ, i) ∈ Γ}

(that is not necessarily a covering or a multiple tiling). A set Ki + γ is

said to occur in {Ki + γ | (γ, i) ∈ Γ} if (γ, i) ∈ Γ. A patch is defined as
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Fig. 5.3. A multiple tiling with p = 2.

a finite subset of Γ. It corresponds to a finite union of tiles that occur in

{Ki + γ | (γ, i) ∈ Γ}. The translate of a patch P = {(γ1, i1), . . . , (γn, in)}

by ν0 ∈ H is defined as P + ν0 := {(γ1 + ν0, i1), . . . , (γn + ν0, in)}. Two

patches P = {(γ1, i1), . . . , (γn, in)} and P ′ = {(γ′1, i
′
1), . . . , (γ

′
n, i′n)} are said

to be equivalent if they coincide up to a translation vector, that is, if there

exists ν0 ∈ H such that P ′ = {(γ1 + ν0, i1), . . . , (γn + ν0, in)}.

We now consider a covering of H. We say that a ball B(ν, R) in H is

contained in a patch P = {(γ1, i1), . . . , (γn, in)} if B(ν, R) is a subset of the

convex hull of the points γ such that (γ, i) ∈ P . We define in a similar way

the fact that a patch is contained in a ball. The set Γ is said to be repetitive

if for any finite patch P , there exists R > 0 such that every ball of radius R

in H contains a patch which is equivalent to P . This notion is an analogue

of the notion of uniform recurrence for words (see Definition 1.2.9).

A subset of Rn is said to be a Delone set if it is both uniformly discrete

(there exists r > 0 such that any open ball of radius r contains at most one

point of this set) and relatively dense (there exists R > 0 such that every

closed ball of radius R contains at least one point of this set). We say by

extension that Γ is a Delone set if its first coordinate projection on H is a

Delone set. Delone sets have been introduced in the context of point sets and

model sets, see e.g. (Moody 1997). See also (Lagarias and Pleasants 2002)

and (Lagarias and Pleasants 2003) for complexity results on Delone sets

that can be compared with analogous results in combinatorics of words on

the factor complexity and on the recurrence function.

5.3.2 Tiling of the expanding line

We first associate with σ a tiling by intervals of the expanding half-line

R+uβ ⊂ He. It is obtained by projecting the broken line Lu associated with

u (see Definition 5.2.2) onto the expanding line He along the contracting
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hyperplaneHc (see Figure 5.4). This induces a tiling of the half-lineR+uβ ⊂

He. Using the projection πe : Rn → R, x 7→ 〈x,vβ〉, we even get a tiling

of R+ whose tiles are certain translates of the intervals Ii = [0, 〈ei,vβ〉] for

i = 1, . . . , n. In particular, this tiling is obtained by taking the tiles Iu0 ,

Iu1 , . . . adjacent to each other, starting from the origin. The translation set

is called the self-similar translation set and is equal to

Γe = {(πe ◦P(u0 · · ·uN−1), uN) | N ≥ 0}.

Since 0 is an endpoint of a tile and since we have assumed that the co-

ordinates of vβ belong to Z[β], the endpoints of all tiles are contained in

Z[β].

We denote the resulting tiling of R+ by Eu and refer to it as the self-

similar tiling of the expanding line. For an illustration, see Figure 5.4.

One has

Eu := {πe[x, i]g | [x, i] ∈ Γe}, (5.12)

where the basic geometric strand [x, i]g is equal to the segment {x + θei |

θ ∈ [0, 1]}.

The repetitivity of the tiling Eu is an easy consequence of the fact that u is

uniformly recurrent (see Proposition 1.4.6). The terminology ‘self-similar’

comes from the fact that the set of endpoints of tiles in Eu is stable by

multiplication by β. Sections 5.6, 5.7 and 5.8 rely on this tiling.

Fig. 5.4. Projecting the broken line Lu. In order to illustrate the relation between
the tiling Eu and the broken line Lu we draw the tiling Eu parallel to the expanding
eigendirection uβ of Mσ and not in the real line, for σ(1) = 112, σ(2) = 21.

5.3.3 Self-replicating translation set

We now introduce a multiple tiling associated with the substitution σ. The

tiles of this multiple tiling are given by the subtiles Tσ(i), i ∈ A. The
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corresponding set of translation vectors is obtained by projecting a suitable

subset of points of Zn on the contracting space Hc. Let us define this set.

Following (Reveillès 1991), we define a notion of discretisation for the

hyperplane Hc. The discretised hyperplane is usually called standard arith-

metic discrete hyperplane. We will use here the shorthand terminology

discrete hyperplane. We recall that Hc is the hyperspace orthogonal to the

vector vβ .

Definition 5.3.1 (Discrete hyperplane) The discrete hyperplane asso-

ciated with Hc is defined as the set of points x ∈ Zn that satisfy

0 ≤ 〈x,vβ〉 <
∑

i∈A

〈ei,vβ〉 = ||vβ ||1. (5.13)

A discrete hyperplane is a discrete set of points. We now introduce a ‘con-

tinuous’ counterpart to this notion.

Definition 5.3.2 (Stepped hyperplane) The stepped hyperplane associ-

ated with Hc is defined as the union of faces of unit cubes whose vertices

belong to the discrete hyperplane associated with Hc.

We now want to label the faces contained in a stepped hyperplane. For

x ∈ Zn and i ∈ A, the face of type i located at x is defined as the face

orthogonal to the ith canonical vector of the translate of the unit cube

located at x, i.e.,

x+ {θ1e1 + · · ·+ θi−1ei−1 + θi+1ei+1 + · · ·+ θnen | θj ∈ [0, 1] for j 6= i}.

One checks that a face of type i located at x is a subset of the stepped

hyperplane if, and only if, one has

0 ≤ 〈x,vβ〉 < 〈ei,vβ〉. (5.14)

For more details, see for instance the references (Berthé and Vuillon 2000),

(Arnoux, Berthé, and Ito 2002) or else (Arnoux, Berthé, and Siegel 2004).

Note that a stepped hyperplane is a hypersurface that lives in Rn, whereas

a discrete hyperplane is a subset of Zn. The discrete hyperplane contains

all the vertices of the faces contained in the stepped hyperplane, whereas

faces of the stepped hyperplane are labelled by pairs (x, i) that satisfy

(5.14). This labelling thus consists in selecting some vertices among all the

vertices of the discrete hyperplane according to the value 〈x,vβ〉, hence the

difference between the right-hand sides of Inequalities (5.13) and (5.14).

We now project the faces of the stepped hyperplane by πc.
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Proposition 5.3.3 The collection of projections of the faces of the stepped

hyperplane, i.e.,

{πc([x, i]g) | x ∈ Zn, i ∈ A, 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉}

is a polyhedral tiling of Hc by n types of projected faces.

For an explicit proof, see (Berthé and Vuillon 2000) or

(Arnoux, Berthé, and Ito 2002). A piece of a stepped hyperplane to-

gether with its projection by πc is depicted in Figure 5.5.

Note that in the Pisot reducible case, Hc is no longer a hyperplane and the

projections of faces do overlap. There is no universal construction known to

obtain an analogue polyhedral tiling (for special cases where this is possible,

see (Ei and Ito 2005, Ei, Ito, and Rao 2006)). Nevertheless, one obtains a

polyhedral covering.

Fig. 5.5. A stepped hyperplane and its projection on Hc as a polyhedral tiling.

We are now going to replace in this polyhedral tiling projected faces by

corresponding subtiles (see Figure 5.7). We will see in Section 5.3.5 that

this will yield a multiple tiling (Theorem 5.3.13) which is conjectured to

be a tiling. This multiple tiling will be called the self-replicating multiple

tiling.

With each face of type i located at x included in the stepped hyperplane,

we associate a copy of the tile Tσ(i) located at πc(x) in the contracting

space Hc. The self-replicating translation set Γc is defined as

Γc = {(γ, i) ∈ πc(Z
n)×A | γ = πc(x), x ∈ Zn, 0 ≤ 〈x,vβ〉 < 〈ei,vβ〉}.

(5.15)

An element of the form (γ, i) ∈ πc(Z
n)×A is called a tip. We denote it by

[γ, i]∗. Tips can be considered as symbolic representations of projections of

faces. We denote by [γ, i]∗g the projection by πc of the face of type i located

at x, with γ = πc(x), i.e.,

[γ, i]∗g := πc([x, i]∗) with γ = πc(x).



Substitutions, Rauzy fractals and tilings 265

We thus make the distinction, thanks to the subscript g, between the pro-

jected face [πc(x), i]
∗
g and the tip [πc(x), i]

∗. The definition of the graphs

and the formalism introduced in Sections 5.4 and 5.5 will illustrate the

importance of working with symbolic representations.

Note that the discretisation process underlying Definition 5.3.1 is in some

sense ‘dual’ to the notion of broken line (see Definition 5.2.2), hence, the

superscript ‘∗’ in the notation [x, i]∗g. Projected faces and segments can

also be considered as ‘dual’. The use of the symbol ‘∗’ allows us to make

the distinction between the notation used for segments and tips. We will

develop this duality idea in Section 5.6.1.

Before stating and proving Proposition 5.3.6 below, we need a density

result (see Corollary 5.3.5). This density result will be a direct consequence

of Kronecker’s theorem that we recall here without proof (a proof of this

theorem can be found for instance in (Hardy and Wright 1985)).

Theorem 5.3.4 (Kronecker’s theorem) Let r ≥ 1 and let α1, . . . , αr be

real numbers such that 1, α1, . . . , αr are rationally independent. For every

ε > 0 and for every (x1, . . . , xr) ∈ Rr, there exist an element N ∈ N and

(p1, . . . , pr) ∈ Zr such that

∀i ∈ {1, . . . , r}, |Nαi − pi − xi| < ε.

The proof of the following corollary of Kronecker’s theorem can be easily

adapted from the proof of (Akiyama 1999, Proposition 1) where it is given

in the framework of the beta-numeration, by recalling that the coordinates

of vβ are rationally independent. A similar argument can be found in

(Canterini and Siegel 2001b, Section 3) stated in terms of minimality of a

toral addition.

Corollary 5.3.5 Let σ be a unit Pisot irreducible substitution. The set

πc({z ∈ Zn | 〈z,vβ〉 ≥ 0}) is dense in Hc.

Proposition 5.3.6 Let σ be a unit Pisot irreducible substitution. Then the

following assertions are true.

(i) The set Γc is a Delone set.

(ii) The union {Tσ(i) + γ | [γ, i]∗ ∈ Γc} is a covering of Hc.

Proof By Proposition 5.3.3, the projections of the faces of the stepped

hyperplane by πc form a polyhedral tiling of Hc with translation set Γc,

which implies (i).

Let us prove (ii). Let z ∈ Zn with 〈z,vβ〉 ≥ 0. There exists N ∈ N
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such that if we set x := P(u0 · · ·uN−1), then 〈x,vβ〉 ≤ 〈z,vβ〉 < 〈x,vβ〉+

〈euN
,vβ〉, where euN

= P(uN ). One deduces that z − x satisfies (5.14)

with i = uN . As z = x + (z − x) this implies that πc(z) ∈ Tσ(i) + γ for

[γ, i]∗ ∈ Γc with γ = πc(z− x) and i = uN .

Let ν ∈ Hc. By Corollary 5.3.5 there exists a sequence (πc(zk))k∈N with

〈zk,vβ〉 ≥ 0 for all k that converges to ν. Furthermore, we have seen that

for each k, there exists [γk, ik]
∗ ∈ Γc such that πc(zk) ∈ Tσ(ik) + γk. Since

the subtiles Tσ(i), for i ∈ A, are bounded and Γc is uniformly discrete, there

are infinitely many k for which (γk, ik) takes the same value, say (γ, i). We

thus get ν ∈ Tσ(i) + γ, which implies the covering property. This ends the

proof of (ii).

Corollary 5.3.7 The subtiles Tσ(i), for i ∈ A, have non-empty interior.

Proof Since the set Γc is countable and according to Proposition 5.3.6

(ii), we deduce from Baire’s theorem that there exists i ∈ A such that the

interior of Tσ(i) is not empty. We then deduce from the GIFS equation (5.8)

and from the primitivity of σ which implies that the prefix-suffix graph Gσ

is strongly connected that all subtiles have non-empty interior.

5.3.4 Tip substitutions

It remains to prove that the collection Iσ := {Tσ(i) + γ | [γ, i]∗ ∈ Γc}

yields a multiple tiling of Hc. This will be the content of Theorem 5.3.13

in Section 5.3.5. In order to prove this theorem, we first need to highlight

the self-replicating properties of Γc. Indeed, Γc is stabilised by an inflation

mapping acting on πc(Z
n) × A. This inflation mapping is nothing but a

substitution on tips (or, equivalently, on faces of cubes), that is inspired

by the GIFS equation (5.8) satisfied by the subtiles. We explain this more

precisely in the present section.

Definition 5.3.8 (GIFS substitution) The (n-dimensional) GIFS sub-

stitution on tips associated with the (one-dimensional) substitution σ, de-

noted by E∗1, is defined on patches of tips by

E∗1{[γ, i]∗} =
⋃

(p,j,s), σ(j)=pis

{[h−1σ (γ + πc ◦P(p)), j]∗}, (5.16)

E∗1(X1) ∪E∗1(X2) = E∗1(X1 ∪X2).

We will use the notation E∗1([γ, i]∗) for E∗1{[γ, i]∗}.

Note that we use here the assumption that σ is a unimodular substitution

(i.e., its incidence matrix Mσ has determinant ±1) to ensure that h−1σ maps
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πc(Z
n) onto πc(Z

n). Indeed, we use the fact that hσ ◦ πc = πc ◦Mσ (see

(5.2)), and that the first coordinate γ of a tip belongs to πc(Z
n).

There is a deep relation between the GIFS substitution E∗1 and the GIFS

equation (5.8), which can indeed be rewritten as

∀ [γ, i]∗ ∈ Γc, Tσ(i) + γ =
⋃

[η,j]∗∈E∗1([γ,i]∗)

hσ(Tσ(j) + η). (5.17)

This formalism will thus be a particularly convenient way to describe the

GIFS equation (5.8) in the graph constructions of Section 5.5. It has been

introduced by (Arnoux and Ito 2001) and (Sano, Arnoux, and Ito 2001)

(under the name generalised substitutions with the notation E∗1 (σ)). We

omit here the reference to σ for the sake of simplicity in the notation E∗1.

The subscript of E∗1 stands for the codimension of faces (in the present

chapter, they are codimension one faces of hypercubes), while the super-

script of E∗1 indicates that it is the dual mapping of some mapping E1, that

we will introduce in Section 5.6.1. Examples of generalised substitutions

are given in (Pytheas Fogg 2002, Chapter 8). Extensions to more general

spaces based on faces of hypercubes having higher codimension have also

been provided in (Sano, Arnoux, and Ito 2001).

Example 5.3.9 We continue with the substitution σ(1) = 112, σ(2) = 113,

σ(3) = 1 considered in Examples 5.2.5 and 5.2.7.

In order to compute E∗1([0, i]
∗) by (5.16) we look for the occurrences of

the letter 1 in σ(1), σ(2) and σ(3). This yields

E∗1([0, 1]
∗) = [0, 1]∗∪[0, 2]∗∪[0, 3]∗∪[h−1σ ◦πc◦P(1), 1]

∗∪[h−1σ ◦πc◦P(1), 2]
∗.

We similarly compute

E∗1([0, 2]
∗) = [h−1σ ◦ πc ◦P(11), 1]∗, E∗1(0, 3]

∗) = [h−1σ ◦ πc ◦P(11), 2]∗.

By applying the commutation relation h−1c ◦ πc = πc ◦M−1
σ (see (5.2)),

one gets h−1σ ◦ πc ◦P(1) = h−1σ ◦ πc(e1) = πc(M
−1
σ (e1)) = πc(e3). We thus

deduce the following relations

E∗1([0, 1]
∗) = [0, 1]∗ ∪ [0, 2]∗ ∪ [0, 3]∗ ∪ [πc(e3), 1]

∗ ∪ [πc(e3), 2]
∗

E∗1([0, 2]
∗) = [2πc(e3), 1]

∗

E∗1([0, 3]
∗) = [2πc(e3), 2]

∗.

These images are depicted in Figure 5.6, by representing tips as projected

faces. Compare with the computation of the decomposition of the subtiles

given in Example 5.2.7 which is illustrated in Figure 5.1.
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7→

E
∗

1([0, 1]∗)

7→

E
∗

1([0, 2]∗)

7→

E
∗

1([0, 3]∗)

Fig. 5.6. An illustration of the images of the tips [0, i]∗, for i = 1, 2, 3, under E
∗

1

for the substitution σ(1) = 112, σ(2) = 113, σ(3) = 1. We represent here the tip
[πc(x), i]∗ by its projection [πc(x), i]∗g .

Important properties of E∗1 are subsumed in the following the-

orem. For a proof, see (Arnoux and Ito 2001) and see also

(Arnoux, Berthé, and Siegel 2004).

Theorem 5.3.10 (Arnoux and Ito 2001) Let σ be a unit Pisot irre-

ducible substitution. Let E∗1 be its associated GIFS substitution.

(i) The images of two different tips in Γc under E∗1 share no tip in

common.

(ii) The translation set Γc is stable under the action of the mapping E∗1.

(iii) The substitution E∗1 maps Γc onto Γc, i.e., E∗1(Γc) = Γc.

According to Assertion (iii) of Theorem 5.3.10, the set of positions of

tiles (given by Γc) is stable under the action of an inflation rule, namely

the mapping E∗1, which plays the role of the multiplication by β acting

on the tiling of the expanding line introduced in Section 5.3.2. In other
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words, Γc can be seen as the fixed point of a multidimensional combinatorial

transformation, namely E∗1. This explains why the set Γc is called self-

replicating translation set. Note that we use the term ‘self-replicating’ and

not ‘self-similar’ since the mapping hσ is possibly not a similarity.

This was the first step towards the proof of the multiple tiling property

of {Tσ(i) + γ | (γ, i) ∈ Γc}. Before detailing the proof of this property, let

us state the following fundamental result.

Proposition 5.3.11 Let σ be a unit Pisot irreducible substitution and E∗1
be its associated GIFS substitution. If [η1, j1]

∗, [η2, j2]
∗ ∈ E∗1

N [γ, i]∗ holds

for some [γ, i]∗ ∈ Γc and some N , then

µn−1((Tσ(j1) + η1) ∩ (Tσ(j2) + η2)) = 0.

Proof As the GIFS equation (5.17) can be iterated, we obtain the following

N -fold iteration of the decomposition of Tσ(i), i.e.,

∀ [γ, i]∗ ∈ Γc, Tσ(i) + γ =
⋃

[η,j]∗∈E∗1
N ([γ,i]∗)

hN
σ (Tσ(j) + η). (5.18)

According to Theorem 5.2.6 we know that all pairs of pieces in the union

on the right-hand side intersect on a set with zero measure.

Thus [η1, j1]
∗, [η2, j2]

∗ ∈ E∗1
N [γ, i]∗ implies that the intersection

hN
σ (Tσ(j1) + η1) ∩ hN

σ (Tσ(j2) + η2) has zero measure, which yields that

the intersection (Tσ(j1) + η1) ∩ (Tσ(j2) + η2) has measure zero, too.

This proposition can be read as follows: the GIFS equation (5.17) implies

that tiles translated by vectors issued from the tips in E∗1
N ([γ, i]∗) cannot

intersect. This property will be exploited all through this chapter.

5.3.5 Self-replicating multiple tiling

We are now going to prove the multiple tiling property. First we need

the following statement on subtiles, whose proof follows the proofs of

(Praggastis 1999, Proposition 1.1) and (Sing 2006, Proposition 4.99).

Theorem 5.3.12 Let σ be a unit Pisot irreducible substitution. The bound-

ary of the central tile Tσ as well as the boundary of each of its subtiles Tσ(i)

has zero measure. Moreover, Tσ as well as each of its subtiles is the closure

of its interior.

Proof One has τe(∂X) = ∂(τe(X)), for every e ∈ Pσ and every set X , since

in the GIFS equation (5.8) defining the subtiles Tσ(i) the mappings τe are
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homeomorphisms. One has furthermore ∂(A∪B) ⊆ ∂A ∪ ∂B. We use the

same notation as in the proof of Theorem 5.2.6. From (5.8) we deduce that

β µn−1(∂Tσ(i)) ≤
∑

j∈A

mij µn−1(∂Tσ(j)). (5.19)

Similarly as in the proof of Theorem 5.2.6, we obtain equality in (5.19). As

the union in (5.8) is measure disjoint, the same is true for the sets ∂Tσ(i),

for i ∈ A. In particular, they have either all positive measure, or all zero

measure. Assume that they have all positive measure. By Corollary 5.3.7,

the subtiles Tσ(i) have non-empty interior. Let i ∈ A. Take an open ball B

included in the interior of Tσ(i). We consider (5.18) applied to Tσ(i), i.e.,

Tσ(i)) =
⋃

[η,j]∗∈E∗1
N ([0,i]∗)

hN
σ (Tσ(j) + η). (5.20)

We then take N large enough for τN
e (Tσ(j)) ⊆ B, for some j such that

σN (j) = pis and e = (p, i, s) ∈ PσN . Here e = (p, i, s) is an edge of the

prefix-suffix graph associated with σN . One has τe(ν) = hN
σ (ν) + πc ◦P(p)

for ν ∈ Hc. Note also that such an integer N exists since the mappings

τe are contractions. This implies that ∂(τN
e (Tσ(j))) ∩ ∂Tσ(i) = ∅. We also

assume N to be large enough for mN
ij > 0 (here we use the primitivity of

Mσ and mN
ij are the entries of MN

σ ). We deduce from (5.20) that

∂Tσ(i) ⊆
⋃

[η,k]∗∈E∗1
N ([0,i]∗), [η,k]∗ 6=[πc◦P(p),j]∗

∂hN
σ (Tσ(k) + η). (5.21)

This implies that

µn−1(∂Tσ(i)) < β−N
∑

k∈A

mN
ik µn−1(∂Tσ(k)),

by recalling that the sets in the union on the right-hand side of (5.21) are

disjoint in measure. However, this contradicts with the Nth iteration of

(5.19) (where the inequality has been proved to be an equality). We thus

have proved that the boundary of each subtile has measure zero.

Let us prove now that each subtile is the closure of its interior. Let

i ∈ A and let ν ∈ Tσ(i). Let B be an open ball with centre ν. We use

as previously the Nth decomposition formula (5.18) for N large enough,

and obtain ν ∈ τN
e (Tσ(j)) ⊆ B, for some j such that σN (j) = pis and

e = (p, i, s) ∈ PσN . By Corollary 5.3.7, Tσ(j) has non-empty interior, and

so does τN
e (Tσ(j)). Hence, B contains interior points of Tσ(i). We thus

have proved that any open ball centred at ν contains interior points of

Tσ(i). Since ν was an arbitrary element of Tσ, we conclude that Tσ(i) is the

closure of its interior. As Tσ(i) =
⋃

i∈A Tσ(i) the same is true for Tσ.
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We now have gathered all prerequisites to be able to prove the follow-

ing theorem (see (Sirvent and Wang 2002), (Berthé and Siegel 2005) and

(Ei, Ito, and Rao 2006)).

Theorem 5.3.13 Let σ be a unit Pisot irreducible substitution. The col-

lection Iσ = {Tσ(i) + γ | [γ, i]∗ ∈ Γc} is a multiple tiling of Hc. Moreover,

Γc is repetitive.

Proof We subdivide the proof into three parts.

The translation set Γc is locally finite. As Tσ(i) is compact for each

i ∈ A and as Γc is a uniformly discrete set according to Proposition 5.3.6,

the collection Iσ is locally finite, i.e., there exists a positive integer p such

that each point of Hc is covered at most p times.

The translation set Γc is repetitive. We have to prove that for each

patch P , there exists R > 0 such that each ball of radius R contains a

translate of P . Let us fix a finite patch P = {[πc(zk), ik]
∗ | 1 ≤ k ≤ ℓ} of

Γc. Let RP be chosen in a way that the ball B(0, RP ) contains the patch

P .

We introduce the notion of slice above Hc. We denote by L[a, b] = {x ∈

Zn | a ≤ 〈x,vβ〉 < b} the set of points whose height is between a and b.

Recall that the set Γc corresponds to the projection of points in L[0, ||vβ||∞].

By (5.15), there exists εk > 0 such that zk belongs to the slice L[0, (1−

εk)〈eik
,vβ〉] for each k ∈ {1, . . . , ℓ}. Set ε := 1

2 mink〈εkeik
,vβ〉 (note that

ε > 0 since P is finite). Still by the definition of Γc, we deduce that for

every x ∈ Zn, assuming x ∈ L[0, ε] implies that the patch πc(x)+P belongs

to Γc.

It now remains to prove that there exists R > 0 such that any ball

of radius R in Hc contains a point πc(x) with x ∈ L[0, ε]. Recall that

the coordinates of vβ are rationally independent. By Kronecker’s theorem

(Theorem 5.3.4), there exists x0 ∈ Zn such that x0 ∈ L[0, ε/2]. Let us

divide the slice L[0, ||vβ||∞] into N = ⌈||vβ ||∞2/ε⌉ slices L[jε/2, (j+1)ε/2]

of height ε/2. Since 0 < 〈x0,vβ〉 < ε/2, each slice can be translated into

L(0, ε): for all j ≤ N , there exists mj such that mjx0+L[jε/2, (j+1)ε/2] ⊂

L[0, ε].

Let us fix a point ν in Hc. We use the fact that Γc is a Delone set, and in

particular, that it is relatively dense (see Proposition 5.3.6). Let R′ > 0 such

that every ball of radius R′ > 0 contains the image by πc of a point of the

discrete hyperplane (see Definition 5.3.1). In particular, the ball B(ν, R′)

contains a point πc(x) with x ∈ L[0, ||vβ ||∞]. There exists j such that the

point x belongs to one slice L[jε/2, (j + 1)ε/2], hence there exists mj such
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that x + mjx0 ∈ L[0, ε]. From above, this implies that πc(x + mjx0) + P

occurs in Γc.

We deduce that the ball centred at ν with radius R := R′ +

maxk ||mkx0||+RP contains a copy of the initial patch P up to translation.

As ν ∈ Hc was arbitrary this proves the repetitivity of Γc.

The collection Iσ is a multiple tiling. Suppose that this is wrong.

Since the boundary of each subtile has measure zero by Theorem 5.3.12,

the union of the boundaries of all elements of Iσ also has measure zero.

Thus there are ν1, ν2 ∈ Hc, positive integers ℓ1 6= ℓ2 and ε > 0 such that

B(νj , ε) is covered exactly ℓj times by the collection Iσ, for j = 1, 2, i.e.,

the points contained in B(νj , ε) belong to exactly ℓj tiles of the collection

Iσ. More precisely, there are patches P1, P2 ⊂ Γc of cardinality ℓ1 and

ℓ2, respectively, such that B(νj , ε) ⊂
⋂

[γ,i]∗∈Pj
(Tσ(i) + γ), for j = 1, 2.

Moreover, B(νj , ε) has empty intersection with each tile of Iσ that is not

contained in Pj . We assume w.l.o.g. that ℓ1 < ℓ2.

Consider now the inflated family h−m
σ Iσ (we recall that the inverse of hσ is

an expansive mapping). By the arguments above each point in h−m
σ B(ν1, ε)

is contained in exactly ℓ1 tiles of h−m
σ Iσ. By Theorem 5.3.10 (iii), each tile

of h−m
σ Iσ has the shape h−m

σ (Tσ(i) + γ), with [γ, i]∗ ∈ Γc. By (5.17) and

Proposition 5.3.11, such a tile can be decomposed as a finite union of tiles

in Iσ which are pairwise disjoint in measure. Thus almost each point in

h−m
σ B(ν1, ε) is contained in exactly ℓ1 tiles of the family Iσ.

Since the translation set Γc is repetitive, we can choose m so large that

h−m
σ B(ν1, ε) contains a translated copy P2+γ of the patch P2. This means

that B(ν2, ε) + γ is contained in h−m
σ B(ν1, ε) for a large enough m. Recall

that B(ν2, ε) is covered exactly ℓ2 times by Iσ. There is a priori no reason

for B(ν2, ε) + γ to be covered exactly ℓ2 times by Iσ. Indeed other tiles

might ‘invade’ B(ν2, ε) + γ. Nevertheless, it is covered by each element of

the patch P2+γ which implies that B(ν2, ε)+γ is covered at least ℓ2 times

by elements of Iσ. This yields a contradiction since almost every point in

h−m
σ B(ν1, ε) is contained in exactly ℓ1 tiles of Iσ, and ℓ1 < ℓ2.

Definition 5.3.14 Let σ be a unit Pisot irreducible substitution. We call

the multiple tiling Iσ defined in Theorem 5.3.13 the self-replicating multiple

tiling associated with σ.

For all known examples of unit Pisot irreducible substitutions the self-

replicating multiple tiling is indeed a tiling, as illustrated in Figure 5.7, for

instance.
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Fig. 5.7. The self-replicating (multiple) tiling for σ(1) = 112, σ(2) = 113, σ(3) =
1. This multiple tiling is indeed a tiling for this substitution.

Definition 5.3.15 (Tiling property) A unit Pisot irreducible substitu-

tion σ satisfies the tiling property if the self-replicating multiple tiling is a

tiling.

The Pisot conjecture states that as soon as σ is a unit Pisot irreducible

substitution, the tiling property holds. Let us note that the Pisot conjec-

ture has been proved to hold for unit Pisot irreducible substitutions over a

two-letter alphabet in (Hollander and Solomyak 2003). The proof strongly

relies on the fact that the combinatorial strong coincidence condition is

satisfied by every Pisot irreducible substitution over a two-letter alphabet

(Barge and Diamond 2002), although the combinatorial strong coincidence

condition does not imply the tiling property for a general alphabet.

Note that an immediate reformulation of the tiling property is that

µn−1((T (i) + γ) ∩ (T (j) + η)) = 0, for every pair of distinct tiles

{T (i) + γ, T (j) + η} of the self-replicating multiple tiling.

Note also that in view of the following theorem the assumption that u is

generated by σ causes no loss of generality.

Theorem 5.3.16 Let σ be a unit Pisot irreducible substitution. Let k, ℓ be

two positive integers. One has Tσk = Tσℓ . Furthermore, the substitution σk

satisfies the tiling property if, and only if, σℓ satisfies the tiling property.

Proof Let us note that hσk = hk
σ for all k. According to (5.10), the central

tiles Tσk and Tσℓ are seen to satisfy
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∀ i ∈ A, Tσk(i) =
⋃

j,(p,i,s), σkℓ(j)=pis

hkℓ
σ (Tσk (j)) + πc ◦P(p) and

∀ i ∈ A, Tσℓ(i) =
⋃

j,(p,i,s), σkℓ(j)=pis

hkℓ
σ (Tσℓ(j)) + πc ◦P(p),

respectively. One deduces that Tσk(i) and Tσℓ(i) satisfy the same GIFS

equation, and thus, that they coincide. Furthermore, the set Γc only de-

pends on vβ , which is a common left eigenvector for σk and σℓ. This

concludes the proof.

Remark 5.3.17 Let σ be a unit Pisot irreducible substitution that is pos-

sibly not prolongable. Assume that σk is prolongable for some k (such a k

always exists by primitivity of σ). Let u be generated by σk with σk(u) = u.

We define the central tile associated with σ as Tσ :=
⋃

i∈A Tσ(i), where the

non-empty compact sets Tσ(i) are uniquely determined by the following

GIFS equation

∀ i ∈ A, Tσ(i) =
⋃

j,(p,i,s), σj=pis

hσ(Tσ(j)) + πc ◦P(p).

By taking the k-fold iteration of this equation and by uniqueness of its

solution, we deduce that Tσ(i) = Tσk (i), for every i ∈ A.

5.4 Ancestor graphs and tiling conditions

In the remaining part of this chapter we present various conditions for the

self-replicating multiple tiling to be a tiling. Recall that the substitution σ

satisfies the tiling property if, and only if, each intersection of distinct tiles in

the self-replicating multiple tiling has zero measure. In the present section

we focus on effective ways to control the measure of intersections of tiles.

In Section 5.4.1 we introduce a sufficient condition for the tiling property.

In Section 5.4.2 we define a graph that provides an effective way to check

this sufficient condition. This leads us to introduce a more intricate graph

in Section 5.4.3. This graph yields a necessary and sufficient condition for

the tiling property.

5.4.1 Finiteness properties

We have already gained information on intersections of subtiles with zero

measure. Indeed, Theorem 5.2.6 states that the shrunken copies of subtiles

occurring in the decomposition of each subtile Tσ(i) are disjoint in measure.

Moreover, by Theorem 5.2.10, the subtiles Tσ(i), i ∈ A, are disjoint if the
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substitution σ satisfies the combinatorial strong coincidence condition. We

now define a sufficient condition that allows this information to be spread

on zero measure intersections throughout the self-replicating multiple tiling,

and thus, to exhibit a sufficient condition for the multiple tiling to be indeed

a tiling.

Let U denote the patch

U := [0, 1]∗ ∪ [0, 2]∗ ∪ · · · ∪ [0, n]∗. (5.22)

It is easy to see that U ⊂ Γc by (5.15). Pursuing the analogy between

tips and their geometric representations in terms of projected faces (see

Section 5.3.3) we call U by slight abuse of language the lower unit cube.

One easily checks that U is contained in E∗1(U). Indeed, for any j ∈ A,

[0, j∗] is contained in E∗1([0, i]
∗), where i is the first letter of σ(j). Hence, we

deduce from Theorem 5.3.10 (ii) that the sequence of patches (E∗1
m(U))m≥0

is an increasing sequence of subsets of Γc with respect to inclusion. A spe-

cific case occurs when E∗1
m(U) eventually covers the entire self-replicating

translation set Γc if m tends to infinity. As an illustration, the set E∗1
m(U)

is depicted in Figures 5.8 and 5.9, in each case for a specific m, for the

substitutions σ(1) = 112, σ(2) = 113, σ(3) = 1 and τ(1) = 2, τ(2) = 3,

τ(3) = 12. These pictures indicate that E∗1
m(U) eventually covers the whole

self-replicating translation set Γc in the case of σ, but not in the case of τ .

Fig. 5.8. The patch E
∗

1

5(U) for the substitution σ(1) = 112, σ(2) = 113, σ(3) = 1.

Definition 5.4.1 (Geometric finiteness property) Let σ be a unit

Pisot irreducible substitution and E∗1 be its associated GIFS substitution
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Fig. 5.9. The patch E
∗

1

15(U) for the substitution τ (1) = 2, τ (2) = 3, τ (3) = 12.

on tips. We say that σ satisfies the geometric finiteness property if

Γc =
⋃

m∈N

E∗1
m(U). (5.23)

Let us see how to propagate information on zero measure intersections

inside the subtiles Tσ(i) to all intersections occurring in the self-replicating

tiling when σ satisfies the geometric finiteness property.

Theorem 5.4.2 Let σ be a unit Pisot irreducible substitution. If σ sat-

isfies both the geometric finiteness property and the combinatorial strong

coincidence condition, then the self-replicating multiple tiling is a tiling.

Proof Let us consider two tiles in the self-replicating multiple tiling, namely

Tσ(i1) + γ1 and Tσ(i2) + γ2. By the geometric finiteness property and by

(5.17), there exist N , j1, j2 such that Tσ(i1)+γ1 (respectively Tσ(i2)+γ2) is

a piece of theNth level decomposition (5.18) of a subtile Tσ(j1) (respectively

Tσ(j2)). If j1 = j2, we are done because we fall into the assumptions of

Proposition 5.3.11. If j1 6= j2, we know from Theorem 5.2.10 and the

combinatorial strong coincidence assumption that Tσ(j1) and Tσ(j2) are

disjoint up to a set of zero measure.

A more restrictive condition for tiling is the following superfiniteness prop-

erty (compare with Definition 5.4.1).
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Definition 5.4.3 (Geometric superfiniteness property) Let σ be a

unit Pisot irreducible substitution and E∗1 be its associated GIFS substitu-

tion on tips. We say that σ satisfies the geometric superfiniteness property

if there exists i ∈ A such that

Γc =
⋃

m∈N

E∗1
m([0, i]∗).

Note that in this case, the proof of Theorem 5.4.2 applies without requiring

the assumption of the combinatorial strong coincidence.

5.4.2 The ancestor graph

We will now discuss how to check in an effective way whether the geometric

finiteness property holds. The idea is to prove that the geometric finiteness

property is satisfied if, and only if, an explicit finite patch (depending on

σ) is eventually covered by the iterations of E∗1 on the lower unit cube U .

As a consequence of Theorem 5.3.10, every tip has a unique pre-image

under the action of E∗1. We will refer to this pre-image as ancestor .

Definition 5.4.4 (Ancestor of a tip) The ancestor of [η, j]∗ ∈ Γc is the

unique tip [γ, i]∗ ∈ Γc for which [η, j]∗ ∈ E∗1([γ, i]∗).

We have worked so far with the Euclidean norm in Hc. We now introduce

a more convenient norm based on (5.3). Let || · ||c denote the maximum

norm on Hc with respect to vectors uβ(i) for i ≥ 2, i.e.,

∀ ν ∈ Hc, ||ν||c = max{|〈ν,vβ(i)〉| | i = 2, . . . , r + s}. (5.24)

Let βmax := max{|β(j)| | j ≥ 2}. One has

||hσ(ν)||c ≤ βmax ||ν||c for all ν ∈ Hc. (5.25)

We denote by Bc(ν, R) the ball centred at ν of radius R with respect to

this norm. Let Mσ := max{||πc ◦P(p)||c | (p, a, s) ∈ Pσ} (see (5.7) for the

definition of Pσ).

Definition 5.4.5 (Seed patch) The seed patch Vσ associated with the

substitution σ is defined as

Vσ :=

{

[γ, i]∗ ∈ Γc | ||γ||c ≤
Mσ

1− βmax

}

. (5.26)

Remark 5.4.6 Note that Mσ/(1 − βmax) is an upper bound for the di-

ameter of the tiles Tσ(i), according to the proof of Corollary 5.2.8. Thus

0 ∈ Tσ(j) + γ implies that [γ, j]∗ ∈ Vσ.
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Theorem 5.4.7 Let σ be a unit Pisot irreducible substitution. One has

Γc =
⋃

m∈N

E∗1
m(Vσ).

Proof The definition of E∗1 yields that if [γ, i]∗ is the ancestor of the tip

[η, j]∗, then

γ = hσ(η)− πc ◦P(p), (5.27)

where p is a prefix of σ(i). We fix [η, j]∗ ∈ Γc. Following Definition 5.4.4,

let [γk, ik]
∗ be the successive ancestors of [η, j]∗, i.e., [η, j]∗ ∈ E∗1([γ1, i1]

∗)

and [γk, ik]
∗ ∈ E∗1([γk+1, ik+1]

∗) for all k ≥ 1. By (5.27), one has γk+1 =

hσ(γk)− πc ◦P(p) where p is a prefix of σ(ik). Therefore we have by (5.25)

||γk+1||c ≤ βmax||γk||c +Mσ. (5.28)

Let α ∈ (βmax, 1). Then, if a ≥Mσ/(α−βmax), one has βmaxa+Mσ ≤ αa.

This implies

||γk||c ≥
Mσ

α− βmax
=⇒ ||γk+1||c ≤ α||γk||c. (5.29)

Let V (α) :=
{

[η, j]∗ ∈ Γc | ||γ||c < Mσ

α−βmax

}

. All the V (α) are finite

patches since Γc is uniformly discrete. We also notice that
⋂

βmax<α<1

V (α) = Vσ.

Therefore, there exists α0 < 1 such that V (α0) = Vσ for all α0 ≤ α < 1.

By iterating (5.29) we deduce that there is k ∈ N such that the kth

ancestor [γk, ik]
∗ of [η, j]∗ satisfies [γk, ik]

∗ ∈ Vα0 . As V (α0) = Vσ, this

implies that Γc =
⋃

m∈N
E∗1

m(Vσ).

Theorem 5.4.7 is based on the fact that β is a Pisot num-

ber. Analogous statements appear in various frameworks, see for in-

stance the references (Akiyama 2000), (Arnoux, Berthé, and Siegel 2004),

(Barge and Diamond 2002), (Barge and Kwapisz 2006), (Fernique 2006),

(Fuchs and Tijdeman 2006) or (Ito and Rao 2006).

Remark 5.4.8 According to (5.28), one checks that Vσ contains the ances-

tors of all its elements (but note also that Vσ is not stable under the action

of E∗1). Furthermore, the seed patch Vσ is easily seen to be effectively

computable. Note also that U ⊆ Vσ.

We deduce from Theorem 5.4.7 the following corollary.
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Corollary 5.4.9 If there exists m ≥ 1 such that E∗1
m(U) contains Vσ,

then the geometric finiteness property holds. In this case, we can effectively

exhibit such an m.

The proof of Theorem 5.4.7 mostly relies on the notion of ancestor. In

order to obtain an algorithmic way to check the geometric finiteness prop-

erty, we construct a directed graph based on the notion of ancestor and on

the seed patch.

Definition 5.4.10 (Ancestor graph) The vertices of the ancestor graph

are the tips that occur in the seed patch Vσ introduced in Definition 5.4.5.

There is an edge from [η, j]∗ to [γ, i]∗ if [γ, i]∗ is the ancestor of [η, j]∗, i.e.,

[η, j]∗ ∈ E∗1([γ, i]∗).

The computation of the ancestor graph is straightforward. First, list the

tips that belong to the seed patch Vσ. Then, for every [γ, i]∗ ∈ Vσ, compute

the tips [η, j]∗ ∈ E∗1([γ, i]∗), and draw an edge from every [η, j]∗ to [γ, i]∗,

if [η, j]∗ ∈ Vσ .

Remark 5.4.11 The choice of orientation we have made here for the an-

cestor graph (which consists in following the ancestor relation) might seem

to be counter-intuitive at first sight, and in contradiction with the orien-

tation of edges in the prefix-suffix graph. Note that a converse choice has

been made in (Siegel and Thuswaldner 2010) for similar graph construc-

tions. Their purpose was to study the boundary of subtiles and thus, to be

able to zoom inside the subtiles. On the opposite, here we want to be able

to zoom outside the subtiles in order to cover the self-replicating multiple

tiling, hence, to trace back ancestors.

By uniqueness of the ancestor and by stability of Vσ with respect to

ancestors, every vertex in the ancestor graph admits exactly one outgoing

egde. This implies that every sufficiently long path in this finite graph

reaches a cycle and cannot exit from it. By a cycle, we mean a closed

directed path. Note furthermore that a tip of the form [0, j]∗ admits a

unique outgoing edge which is also of the form [0, i]∗. Indeed, the (unique)

ancestor of [0, j]∗ is the tip [0, i]∗ where i is the first letter of σ(j). Hence,

once a cycle contains a tip of U , it contains only elements of U . We say

that it is contained in U . This provides a simple effective condition to check

the geometric finiteness property.

Proposition 5.4.12 Let σ be a unit Pisot irreducible substitution. The

geometric finiteness property is satisfied if, and only if, all cycles in the

ancestor graph are contained in U .
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Proof If the geometric finiteness property holds, then any sufficiently long

path in the ancestor graph contains a tip of U , and thus any cycle in the

ancestor graph is contained in U . Conversely, assume that any cycle is

contained in U . Any tip in Vσ admits in its sequence of successive ancestors

one element that belongs to a cycle, hence to U , which ends the proof in

view of Corollary 5.4.9.

Example 5.4.13 Two examples of ancestor graphs are depicted in Fig-

ures 5.10 and 5.11. One can see that the graph corresponding to σ(1) = 112,

σ(2) = 113, σ(3) = 1 satisfies the condition of Proposition 5.4.12, whereas

the graph corresponding to τ(1) = 2, τ(2) = 3, τ(3) = 12 does not satisfy

it. In this second example one can see that the graph, which is made of two

connected components, admits two cycles, only one of them made of tips of

U .

Fig. 5.10. The ancestor graph for the substitution σ(1) = 112, σ(2) = 113, σ(3) =
1. To keep notation simple in the picture of the graph, we omitted the projection
πc in the labels of the vertices.

5.4.3 The two-piece ancestor graph

The geometric finiteness property means that the self-replicating translation

set Γc can be covered by iterating E∗1 on the patch U . It turns out that
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Fig. 5.11. The ancestor graph for the substitution τ (1) = 2, τ (2) = 3, τ (3) = 12.
To keep notation simple in the picture of the graph, we omitted the projection πc

in the labels of the vertices.

this condition is not necessary for the tiling property. To overcome this,

we will use the repetitivity of Γc, and deal with translations of the sets

E∗1
m(U). This will lead us to introduce a further graph, inspired by the

ancestor graph, which will allow an algorithmic criterion equivalent to the

tiling property to be given, and not only a sufficient condition, such as

Proposition 5.4.12.

Theorem 5.4.14 (Ito and Rao 2006) Let σ be a unit Pisot irreducible

substitution and E∗1 be its associated GIFS substitution on tips. The self-

replicating multiple tiling is a tiling if, and only if, for every i ∈ A, the

radius of the largest ball contained in the union
⋃

[γ,j]∗∈E∗1
m([0,i]∗)

[γ, j]∗g (5.30)

tends to infinity with m.

Proof Let us note that this statement does not depend on the choice of

the norm by the equivalence of norms. Assume that σ satisfies the tiling

property. We fix i ∈ A. For m ∈ N, let Bc(δm, Rm) be the ball (for the

norm || · ||c) with largest radius contained in h−m
σ (Tσ(i)). Since Tσ(i) has

non-empty interior (Corollary 5.3.7) and since h−1σ is an expansion, we have

that limm→+∞Rm = ∞. The GIFS equation (5.17) yields that h−m
σ Tσ(i)

is covered by the tiles Tσ(j) + γ with [γ, j]∗ ∈ E∗1
m([0, i]∗). From the tiling
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assumption, we deduce that for every tip [η, k]∗ 6∈ E∗1
m([0, i]∗), the tile

Tσ(k) + η is measure disjoint from Bc(δm, Rm). Let C denote the diameter

of the central tile Tσ, i.e., C = sup{||ν−ν′||c | ν, ν′ ∈ Tσ}. Therefore, every

tip [γ, j]∗ with ||γ − δm||c < Rm − C has to belong to E∗1
m([0, i]∗). This

implies that the radius of the largest ball contained in the union in (5.30)

tends to infinity with m.

Conversely, assume that the radius of the largest ball contained in the

union in (5.30) tends to infinity with m. Let P be a patch of Γc. By

repetitivity (Theorem 5.3.13), P is contained, up to a translation vector, in

any large enough ball of Γc. Therefore there exist ν ∈ Hc and m > 0 such

that ν + P ⊂ E∗1
m([0, i]∗), and thus P ⊂ E∗1

m([hm
σ ν, i]∗) by the definition

of E∗1 in (5.16). Proposition 5.3.11 then yields that the tiles Tσ(j) + γ with

[γ, j] ∈ P have pairwise disjoint interiors. This implies that σ satisfies the

tiling property.

Corollary 5.4.15 Let σ be a unit Pisot irreducible substitution. The self-

replicating multiple tiling is a tiling if, and only if, for every pair of tips

([η1, j1]
∗, [η2, j2]

∗) ∈ Γ2c there exist δ ∈ Hc, m ≥ 0, and i ∈ A such that

δ + {[η1, j1]
∗, [η2, j2]

∗} ⊂ E∗1
m([0, i]∗). (5.31)

Proof If this condition is satisfied, Proposition 5.3.11 implies that Tσ(j1)+η1
and Tσ(j2) + η2 do not overlap for arbitrarily chosen [η1, j1]

∗ and [η2, j2]
∗.

Therefore the tiling property is satisfied. Conversely, by Theorem 5.4.14,

the tiling property implies that E∗1
m([0, i]∗) contains arbitrarily large balls

for large m. Thus, by the repetitivity assertion of Theorem 5.3.13, a trans-

lation of each patch {[η1, j1]
∗, [η2, j2]

∗} ⊂ Γc occurs in E∗1
m([0, i]∗) for some

i ∈ A and some m ∈ N.

The formulation of the tiling property given by Corollary 5.4.15 means

that every pair of tips belongs to the image of a tip in U up to a common

translation vector. In order to check (5.31), we need to trace back ancestors

of patches up to a translation vector. When dealing with (5.31), we will use

the existence of the translation vector δ in order to work only with pairs of

tips for which at least one of the elements η1, η2 equals 0. We thus introduce

the following definition.

Definition 5.4.16 (Two-piece ancestor) Let {[η1, j1]∗, [η2, j2]∗} be a

two-piece patch in Γc. A two-piece ancestor of this patch is a two-piece

patch of the shape {[0, i1]∗, [γ, i2]
∗} ⊂ Γc for which there exists δ ∈ Hc such

that

{[η1, j1]
∗, [η2, j2]

∗} ⊂ δ +E∗1{[0, i1]
∗, [γ, i2]

∗} (5.32)
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with {[η1, j1]∗, [η2, j2]∗} ∩ (δ+E∗1[0, i1]
∗) 6= ∅ and {[η1, j1]∗, [η2, j2]∗} ∩ (δ+

E∗1[γ, i2]
∗) 6= ∅.

In other words, this means that {[η1, j1]∗, [η2, j2]∗} appears in the im-

age of the patch {[0, i1]∗, [γ, i2]
∗} up to a translated vector, and that the

two images of [0, i1]
∗ and [γ, i2]

∗ both have non-empty intersection with

{[η1, j1]
∗, [η2, j2]

∗}. Note that, contrary to the uniquely defined ancestor of

a tip (see Definition 5.4.4), a two-piece patch can have several two-piece

ancestors. This is due to the freedom given by the translation vector δ.

Another important remark is that the tips [η1, j1]
∗ and [η2, j2]

∗ in Defini-

tion 5.4.16 are not required to be different. The same holds for [0, i1]
∗ and

[γ, i2]
∗.

In order to check the tiling condition (5.31), we need to recursively check

ancestor relations. We thus define a new graph, namely the two-piece an-

cestor graph. To this end we need a new seed patch which is defined as

follows.

Definition 5.4.17 (Two-piece seed patch) The two-piece seed patch

Wσ associated with the substitution σ is defined as

Wσ :=

{

[γ, i]∗ ∈ Γc | ||γ||c ≤
2Mσ

1− βmax

}

. (5.33)

Remark 5.4.18 Note that 2Mσ/(1 − βmax) is at least twice as large as

the diameter of the tiles Tσ(i). Thus Tσ(i) ∩ (Tσ(j) + γ) 6= ∅ implies that

[γ, j]∗ ∈ Wσ.

Moreover, we represent the pair of tips {[0, k]∗, [γ, ℓ]∗} as [k, γ, ℓ]∗, with

k ≤ ℓ if γ = 0. The condition k ≤ ℓ if γ = 0 simply avoids redundancies.

Definition 5.4.19 (Two-piece ancestor graph) The set of vertices of

the two-piece ancestor graph is equal to

{[k, γ, ℓ]∗ | (k, γ, ℓ) ∈ A×Hc × A, [γ, ℓ]∗ ∈Wσ, k ≤ ℓ if γ = 0}.

There is an edge from [j1, η, j2]
∗ to [i1, γ, i2]

∗ if the patch {[0, i1]∗, [γ, i2]
∗}

is a two-piece ancestor of the patch {[0, j1]∗, [η, j2]
∗}.

One checks that each vertex admits at least one outgoing edge. Never-

theless, there might be several outgoing edges.

Following (Siegel and Thuswaldner 2010), the construction of this graph

is straightforward when recalling that similar to Vσ, the two-piece seed

patch Wσ can be explicitly computed (see Section 5.4.2). The construction

can thus be performed in two steps. One first computes the list of vertices
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[i1, γ, i2]
∗ of the graph, based on the computation of the two-piece seed

patch Wσ. Then, by noticing that [η, j]∗ ⊂ δ + E∗1([γ, i]∗) if, and only if,

there exists a prefix p of σ(j) such that σ(j) = pis and δ = η − h−1σ (γ +

πc ◦P(p)), one checks whether condition (5.32) is satisfied for each pair of

vertices ([j1, η, j2]
∗, [i1, γ, i2]

∗).

We need the following easy lemma.

Lemma 5.4.20 Let {[γ1, i1]∗, [γ2, i2]∗} be a patch in Γc. Then at least one

of the sets {[0, i1]∗, [γ2 − γ1, i2]
∗} and {[0, i2]∗, [γ1 − γ2, i1]

∗} is a patch in

Γc.

Proof By (5.5), there exists a unique pair vectors {x1,x2} ⊂ Zn such that

γi = πc(xi), for i = 1, 2. If 〈x1,vβ〉 ≤ 〈x2,vβ〉 then {[0, i1]
∗, [γ2 − γ1, i2]

∗}

is a patch of Γc. If the reverse inequality holds, {[0, i2]∗, [γ1− γ2, i1]
∗} ⊂ Γc

and we are done.

We now can state the main result of this section.

Theorem 5.4.21 (Two-piece ancestor graph tiling condition) Let

σ be a unit Pisot irreducible substitution. The substitution σ satisfies the

tiling condition if, and only if, from any vertex in the two-piece ancestor

graph, there exists a path to a vertex of the shape [i, 0, i]∗, for i ∈ A.

Proof The tiling property is equivalent to (5.31), which is itself equivalent

to the following condition: for every two-piece patch {[0, j1]∗, [η, j2]
∗}, there

existm ∈ N, i ∈ A and δ ∈ Hc such that {[0, j1]∗, [η, j2]
∗} ⊂ δ+E∗1

m([0, i]∗).

By the definition of the two-piece ancestor this is equivalent to the fact that

for each {[0, j1]∗, [η, j2]
∗} there is m ∈ N and i ∈ A such that

{[0, i∗], [0, i∗]} is an mth ancestor of {[0, j∗1 ], [η, j∗2 ]}. (5.34)

In order to deduce Theorem 5.4.21, it is sufficient to show that we can

assume w.l.o.g. that [η, j2]
∗ ∈ Wσ holds in (5.34).

Suppose on the contrary that [η, j2]
∗ 6∈Wσ. Then

||η||c >
2Mσ

1− βmax
. (5.35)

There exists a unique set of two elements {[γ1, i1]∗, [γ2, i2]∗} ⊂ Γc such that

[0, j1]
∗ ∈ E∗1[γ1, i1]

∗ and [η, j2]
∗ ∈ E∗1[γ2, i2]

∗. (5.36)

By Lemma 5.4.20 one of the sets {[0, i1]∗, [γ2 − γ1, i2]
∗}, {[0, i2]∗, [γ1 −

γ2, i1]
∗} is contained in Γc. Assume that this is true for the first one (the
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second alternative is handled analogously). Then {[0, i1]∗, [γ2 − γ1, i2]
∗} is

a two-piece ancestor of {[0, j1]∗, [η, j2]
∗}. By (5.27) and (5.36) we have

||γ1||c ≤ Mσ and ||γ2||c ≤ βmax||η||c +Mσ

which implies together with (5.35) that ||γ2−γ1||c ≤
2Mσ

1−βmax
< ||η||c. Thus,

arguing in the same way as in the proof of Theorem 5.4.7 we see that there

is a positive integer m′ such that {[0, j1]
∗, [η, j2]

∗} admits an m′th two-

piece ancestor {[0, k1]∗, [γ′, k2]∗} which satisfies γ′ ∈ Wσ . Thus it suffices

to assume [η, j2]
∗ ∈Wσ in (5.34) and we are done.

5.5 Boundary and contact graphs

The tiling condition of Theorem 5.4.21 can be checked in an effective way

by constructing the two-piece ancestor graph. However, it turns out that

the two-piece ancestor graph is not so easy to handle. Indeed, it can be

quite big especially if n is large, and as a second drawback, contrary to the

ancestor graph it is not deterministic. We thus introduce two subgraphs

of the two-piece ancestor graph, and establish associated tiling conditions,

inspired by Proposition 5.4.12 and Theorem 5.4.21.

5.5.1 Boundary graphs

We first state as an immediate consequence of Lemma 5.4.20 the following

proposition which shows that we only have to consider intersections between

the subtiles T (i), i ∈ A, and their neighbours in Iσ (see Definition 5.3.14)

to check the tiling property.

Proposition 5.5.1 The tiling property is satisfied if, and only if, Tσ(i) ∩

(Tσ(j) + γ) has zero measure for every i ∈ A and every [γ, j]∗ ∈ Γc with

[γ, j]∗ 6= [0, i]∗.

Proof The tiling property holds if, and only if, for any two distinct tips

[γ, i]∗, [η, j]∗ ∈ Γc, we have µn−1((Tσ(i) + γ) ∩ (Tσ(j) + η)) = 0. But

(Tσ(i)+γ)∩(Tσ(j)+η) is equal, up to a translation, to Tσ(i)∩(Tσ(j)+η−γ),

and to Tσ(j)∩(Tσ(i)+γ−η). Lemma 5.4.20 implies that either [η−γ, j]∗ ∈

Γc or [γ − η, i]∗ ∈ Γc. This ends the proof.

As a motivation for the definition of the boundary graph (see Definition

5.5.3 below), let us dwell upon the topological information provided by

cycles in the ancestor graph.



286 V. Berthé, A. Siegel, J. Thuswaldner

Lemma 5.5.2 A vertex [γ, i]∗ belongs to a cycle in the ancestor graph if,

and only if, 0 ∈ Tσ(i) + γ.

Proof We first assume that [γ, i]∗ belongs to a cycle of the ancestor graph.

Thus, there exists m > 0 such that [γ, i]∗ ∈ E∗1
m([γ, i]∗). In view of (5.17)

this implies hm
σ (Tσ(i) + γ) ⊂ Tσ(i) + γ. By iterating this relation and by

using the fact that hσ is a contraction, we deduce that 0 ∈ Tσ(i) + γ.

Conversely, assume that 0 ∈ Tσ(i) + γ. We decompose the tile Tσ(i) + γ

according to (5.17). Since 0 ∈ Tσ(i) + γ, for every m ≥ 1 there exists

[γm, im]
∗ ∈ E∗1

m([γ, i]∗) such that 0 ∈ Tσ(im) + γm. As, by Remark 5.4.6,

we see that 0 ∈ Tσ(im) + γm implies that γm ∈ Vσ, the element [γm, im]
∗ is

a vertex of the ancestor graph. Thus we get the walk

[γm, im]
∗ → · · · → [γ1, i1]

∗ → [γ, i]∗

in this graph. By the finiteness of Vσ, the sequence ([γm, im]
∗)m≥1 takes

twice the same value. Let m1 < m2 be such that [γm1 , im1 ] = [γm2 , im2 ],

with m1 6= m2. Then, [γm1 , im1 ]
∗ is contained in a cycle of this graph.

Furthermore, there is a walk from [γm1 , im1 ]
∗ to [γ, i]∗ in the ancestor

graph. Since each vertex in the ancestor graph has a single outgoing edge,

this implies that [γ, i]∗ belongs to the same cycle of the ancestor graph as

[γm1 , im1 ]
∗.

Lemma 5.5.2 indicates that non-emptyness for solutions of a GIFS equa-

tion can be deduced from cycles of the related graph. We now apply this

idea together with Proposition 5.5.1 to the two-piece ancestor graph.

Definition 5.5.3 (Boundary graph) Let σ be a unit Pisot irreducible

substitution. The boundary graph of σ is the subgraph of the two-piece

ancestor graph that contains the vertices [i, γ, j]∗ with γ 6= 0 or i 6= j, for

i, j ∈ A, that belong to a cycle, as well as vertices contained in paths leading

away from these cycles.

The motivation for this definition will become clearer in the sketch of the

proof of next theorem.

Theorem 5.5.4 (Boundary graph tiling condition) Let σ be a unit

Pisot irreducible substitution. The tiling condition is satisfied if, and only

if, the spectral radius of the boundary graph (that is, the largest eigenvalue

of its adjacency matrix) is strictly smaller than the Perron–Frobenius eigen-

value β of Mσ. If this relation holds, the boundary graph provides a GIFS

description of the boundary.
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Proof [Sketch] First note that (5.17) implies, assuming the first alternative

of Lemma 5.4.20 (the second one can be handled analogously), that

Tσ(i1) ∩ (Tσ(i2) + γ) = hσ









⋃

[η1,j1]
∗∈E∗1 [0,i1]

∗

[η2,j2]
∗∈E∗1 [γ,i2]

∗

((Tσ(j1) + η1) ∩ (Tσ(j2) + η2))









= hσ









⋃

[0,j1]
∗∈−η1+E∗1 [0,i1]

∗

[η2−η1,j2]
∗∈−η1+E∗1 [γ,i2]

∗

((Tσ(j1) ∩ (Tσ(j2) + η2 − η1)) + η1)









.

Since, in view of Remark 5.4.18, the intersections are non-empty only for

η2 − η1 ∈Wσ, the equation can be rewritten as

Tσ(i1)∩(Tσ(i2)+γ) = hσ





⋃

[j1,η,j2]∗→[i1,γ,i2]∗

((Tσ(j1) ∩ (Tσ(j2) + η)) + δ)





(5.37)

where the union is taken over all edges of the two-piece ancestor graph which

lead to the vertex [i1, γ, i2]
∗. Such an intersection is interesting if [i1, γ, i2]

∗

is not of the form [i, 0, i]∗ for some i ∈ A since we are only interested in

intersections of two different tiles of Iσ. If the union on the right-hand side

of (5.37) is empty, i.e., if a vertex of the two-piece ancestor graph has no

incoming edge, then also the intersection on the left-hand side is empty.

Thus we may successively delete all vertices from the two-piece ancestor

graph which have no incoming edges. However, as the two-piece ancestor

graph is finite these are vertices which either belong to a cycle or to a path

that leads away from a cycle. We may also cancel the vertices of the form

[i, 0, i]∗, for i ∈ A. Indeed, an edge from a vertex of the form [i, 0, i]∗ reaches

a vertex which is also of the same form [j, 0, j]∗ for some j ∈ A. Hence if

[i1, γ, i2]
∗ is not of the form [i, 0, i]∗, then no vertex of this form admits an

edge to it. The graph obtained when removing all these vertices is exactly

the boundary graph.

Since hσ is a contraction whose application scales down the (n − 1)-

dimensional Lebesgue measure by the factor 1/β, one deduces that the

intersection Tσ(i1) ∩ (Tσ(i2) + γ) has zero measure if the largest eigenvalue

of the adjacency matrix of the boundary graph is strictly smaller than β.

The proof of the converse, i.e., that the tiling property implies that the

spectral radius of the boundary graph is smaller than β is left as an exercise

(see Exercise 5.3).
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Note that (5.37) can be regarded as a GIFS equation for the intersections

Tσ(i1) ∩ (Tσ(i2) + γ). In view of Proposition 5.5.5 below, this GIFS can be

used to describe ∂Tσ(i) if the tiling condition holds, hence the terminology

‘boundary graph’. For more details, see (Siegel and Thuswaldner 2010).

Proposition 5.5.5 Let σ be a unit Pisot irreducible substitution. One has

∂Tσ(i) ⊆
⋃

[γ,j]∗ 6=[0,i]∗, [γ,j]∗∈Γc

Tσ(i) ∩ (Tσ(j) + γ),

where equality holds if the tiling property is satisfied.

Proof We fix i ∈ A. Let ν ∈ ∂Tσ(i) and assume that ν is not contained

in an intersection of the form Tσ(i) ∩ (Tσ(j) + γ), for Tσ(j) + γ 6= Tσ(i).

Since the tiles Tσ(j) + γ are compact, local finiteness implies that the set
⋃

[γ,j]∗ 6=[0,i]∗, [γ,j]∗∈Γc
(Tσ(j)+ γ)) is a closed set in Hc, and thus its comple-

ment in Hc is an open set. Since the complement contains ν, there exists

an open neighbourhood B of ν which contains only points of Tσ(i), and

no point of other tiles of the self-replicating multiple tiling Iσ of Defini-

tion 5.3.14. However, since ν ∈ ∂Tσ(i), there is some point ν′ ∈ B which

is not contained in Tσ(i). But then ν′ is contained in no tile of Iσ, which

contradicts the covering property of Iσ. We thus have proved the inclusion.

Assume now that the tiling property holds. Moreover, assume that there

is ν ∈ int(Tσ(i)) which is contained in Tσ(j) + γ for some [γ, j]∗ ∈ Γc.

Then, because Tσ(i) as well as Tσ(j) + γ is the closure of its interior (The-

orem 5.3.12), there is a ν′ ∈ int(Tσ(i)) ∩ int(Tσ(j) + γ). Thus, there is a

small disk around ν′ which is covered by both of these tiles, a contradiction

to the tiling property.

Note that we deduce the following interesting corollary. We only give a

proof of the ‘if’ implication. For a proof of the converse implication, see

(Siegel and Thuswaldner 2010).

Corollary 5.5.6 Let σ be a unit Pisot irreducible substitution. The sub-

stitution σ satisfies the geometric finiteness property if, and only if, 0 is an

inner point of the central tile Tσ =
⋃

i∈A Tσ(i), and 0 belongs to no other

tile of the self-replicating tiling.

Proof By Proposition 5.4.12 and by Lemma 5.5.2, the geometric finiteness

property implies that 0 belongs to no tile of the form Tσ(i) + γ with γ 6= 0

and i ∈ A. Since the tiling property holds and by Proposition 5.5.5, the

boundary of Tσ =
⋃

i∈A Tσ(i) is exactly described by the intersections of

Tσ =
⋃

i∈A Tσ(i) with the other tiles of the tiling Iσ. We deduce that 0
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does not belong to the boundary of Tσ(i), and thus that 0 is an inner point

of Tσ =
⋃

i∈A Tσ(i).

Remark 5.5.7 Corollary 5.5.6 was already stated in (Akiyama 2002) in

the beta-numeration context. The union of cycles in the ancestor graph is

called the zero-expansion graph in (Siegel and Thuswaldner 2010). Follow-

ing the proof of Lemma 5.5.2, labels of edges in cycles allow all Dumont–

Thomas expansions (see Sections 5.11 and 9.4.2 for more details) that can

be obtained for 0 to be computed explicitly, hence the terminology ‘zero-

expansion’. Compare also with the notion of zero automaton in Chapter 2.

The zero-expansion graph allows tiles in Iσ that contain 0 (they are related

to cycles in the ancestor graph) to be characterised, and thus, to give a

further characterisation of the geometric finiteness property.

Let us end this section with the following statement (given without a

proof) that is an analogue of Lemma 5.5.2 and which provides an explicit

description of the neighbours of a subtile Tσ(i) with respect to the boundary

graph. For a proof, see (Siegel and Thuswaldner 2010).

Proposition 5.5.8 Let σ be a unit Pisot irreducible substitution. Let i ∈ A

and let [γ, j]∗ ∈ Γc with γ 6= 0 or i 6= j. The intersection Tσ(i)∩ (Tσ(j)+γ)

is non-empty if, and only if, [i, γ, j]∗ is a vertex of the boundary graph.

5.5.2 Approximations of the boundary and contact graphs

Even if the boundary graph is much smaller than the two-piece ancestor

graph, its computation relies on the pre-computation of the two-piece seed

patch Wσ. However, there is another approach which does not require

the pre-computation of this patch. The underlying idea is developed in

(Thuswaldner 2006), based on polyhedral approximations of the central tile

and its subtiles. Recall that with each tip [γ, i]∗ we associate the compact

polyhedron [γ, i]∗g which is obtained by projecting the corresponding face of

type i by πc (see Section 5.3.3 for details).

Definition 5.5.9 Let σ be a unit Pisot irreducible substitution. The mth

polyhedral approximation of a subtile Tσ(i) is the union of polyhedra given

by

T (m)
σ (i) :=

⋃

[γ,i]∗∈E∗1
m[0,i]∗

hm
σ ([γ, i]∗g).
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Proposition 5.5.10 The Hausdorff limit of the polyhedral approximations

T
(m)

σ (i) for m →∞ is the subtile Tσ(i).

Proof This is a direct consequence of the definition ofE∗1, the GIFS equation

(5.8) and the uniqueness of the solution of a GIFS. For more details, see

(Arnoux and Ito 2001).

Remark 5.5.11 Figure 5.9 depicts the image of
⋃

i∈A T
(15)

τ (i) inflated by

h−15τ , for the substitution τ(1) = 2, τ(2) = 3, τ(3) = 12. We have seen in

Example 5.4.13 that σ does not satisfy the geometric finiteness property.

Note that Figure 5.9 gives some indication of the fact that 0 (which is

dotted) is not an interior point of the central tile.

Definition 5.5.12 (Contact graph) Let σ be a unit Pisot irreducible

substitution. A 0 level vertex of the two-piece ancestor graph is a ver-

tex of the form [i, γ, j]∗, such that the ((n− 1)-dimensional) geometric tips

[0, i]∗g and [γ, j]∗g intersect on exactly one face of dimension n− 2. The con-

tact graph is the subgraph of the two-piece ancestor graph whose vertices

are the 0 level vertices together with all vertices that can be reached by a

path in the two-piece ancestor graph starting at a 0 level vertex.

The contact graph is described in (Thuswaldner 2006). Among the

graphs considered for tiling criteria so far, the contact graph is the one

which is easiest to compute. Indeed, it can be computed with a recursive

procedure that always terminates and does not require the computation of

the two-piece seed patch Wσ. We first compute the set of 0 level vertices.

For (i, j) ∈ A2, we take the triple [i, πc(ej), i]
∗ if 〈vβ , ej〉 < 〈vβ , ei〉, or

[i, πc(ej − ei), j]
∗, otherwise. Note that this proves that the tips coming

from a 0 level vertex belong to Wσ. We then construct recursively the con-

tact graph, by computing successors (in the two-piece ancestor graph) of

already computed vertices. The choice of the initial set implies that such

a vertex always belongs to the two-piece ancestor graph (note that these

computations do not require the knowledge of the two-piece ancestor graph;

we only use the definition of its edges to compute the successors). The con-

struction ends when no additional edge can be added to the graph, which

always happens according to (Thuswaldner 2006).

It turns out that the contact graph provides also a suitable decomposition

of the boundary of the central tile, which in turn provides a very simple

tiling condition. For a complete proof, see (Thuswaldner 2006) together

with (Siegel and Thuswaldner 2010).
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Theorem 5.5.13 (Contact graph tiling condition) Let σ be a unit

Pisot irreducible substitution. The tiling property is satisfied if, and only if,

the spectral radius of the contact graph is strictly smaller than the Perron–

Frobenius eigenvalue β of Mσ.

Proof [Sketch] In (Thuswaldner 2006) it is proved that all overlaps (Tσ(k1)+

γ1)∩ (Tσ(k2) + γ2) of the self-replicating multiple tiling Iσ are translations

of overlaps of the form Tσ(i1) ∩ (Tσ(i1) + γ), where [i1, γ, i2]
∗ is a vertex

of the contact graph. Note that the proof heavily relies on the polyhedral

tiling of Proposition 5.3.3. Moreover, (Thuswaldner 2006) shows that these

intersections are the solution of the GIFS equation

Tσ(i1) ∩ (Tσ(i2) + γ) =
⋃

[j1,η,j2]∗→[i1,γ,i2]∗

((Tσ(j1) ∩ (Tσ(j2) + η)) + δ)

(5.38)

where the union is taken over all edges of the contact graph which lead to

the vertex [i1, γ, i2]
∗. The proof can now be finished in the same way as the

proof of Theorem 5.5.4.

This tiling condition is definitely the simplest tiling condition that we

have considered so far since the contact graph can be computed recursively

without the precomputation of the two-piece seed patch Wσ.

It also provides a ‘minimal’ GIFS for the boundary of the central tile

in the sense that it removes from the boundary graph all the intersections

that are redundant, i.e., that are included in other intersections. For details

and examples of contact graphs for families of substitutions associated with

beta-numeration we refer again to (Thuswaldner 2006).

5.6 Geometric coincidences

We consider now a further set of conditions each of which is equivalent to

the tiling property. Using the concept of duality, they can be expressed in

terms of the tiling of the expanding line.

5.6.1 Strands and duality

Up to now, we have worked with the set Γc consisting of tips which cor-

respond to projections of faces by πc. The notion of tip has allowed us

to define the GIFS substitution E∗1 (see Definition 5.3.8) inspired by the

action of the GIFS equations (5.8) that govern the subtiles Tσ(i), for i ∈ A.

The tiling property (see Definition 5.3.15) was then expressed in terms of

pre-images of tips under E∗1 (see e.g. Theorem 5.4.21).
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We now wish to adopt a dual one-dimensional viewpoint. Instead of

working with faces of hypercubes, we will work with line segments, and the

projection πe will play the role of the projection πc. We consider formal

strands to represent stairs joining points in the integer grid Zn. An element

of the form (x, i) ∈ Zn×A is called a basic formal strand. In the sequel, we

use the notation [x, i] instead of (x, i) for this object. The basic geometric

strand [x, i]g is defined as the segment connecting x with x+ ei. A formal

strand is then defined as a union of basic formal strands. We similarly define

a geometric strand.

Note that there is no more ‘∗’ in the notation for strands: [y, j]g repre-

sents a segment in Rn while [γ, i]∗g is the projection in Hc of a face. Faces

of hypercubes and segments can be considered as dual in the sense of the

duality principle of linear algebra (see (Arnoux and Ito 2001)). Note that

in (Sano, Arnoux, and Ito 2001) a Poincaré type duality between generali-

sations of faces and segments is established. As we shall see in the sequel,

this duality will allow us to translate properties of the set Γc into properties

of the self-similar translation set Γe, and thus to work with the tiling Eu of

the expanding line.

If we consider a word w ∈ A∗, the point P(w) ∈ Zn is the abelianisation

of w and one builds in a natural way a formal strand and a geometric

strand from 0 to P(w) by simply reading the letters in w. Strands allow

one to keep track of the combinatorics of a word that would be lost in the

abelianisation process.

We now extend the action of σ to unions of basic strands [x, i] ∈ Zn×A,

according to the formalism of (Arnoux and Ito 2001).

Definition 5.6.1 (Geometric realisation of a substitution) Let σ be

a unit Pisot irreducible substitution. The one-dimensional geometric reali-

sation of σ is defined on the sets of formal strands by

E1{[y, j]} =
⋃

(p,i,s,), σ(j)=pis

{[Mσy +P(p), i]},

E1(Y1 ∪ Y2) = E1(Y1) ∪E1(Y2).

We also use here the notation E1[y, j] for E1{[y, j]}. With this formalism

at hand, the set
⋃

k≥0Ek
1 [0, u0] generates the broken line Lu, by replacing

formal strands by geometric strands. This implies that the broken line Lu

is invariant under the action of E1.

The following lemma enhances the relation between E1 and the GIFS

substitution E∗1 acting on the translation set Γc.
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Lemma 5.6.2 (Duality lemma) Let x,y ∈ Zn. Then

[πc(y), j]
∗ ∈ E∗1([πc(x), i]

∗)⇐⇒ [−x, i] ∈ E1([−y, j]).

Proof Let x,y ∈ Zn. Then [πc(y), j]
∗ ∈ E∗1([πc(x), i]

∗) if, and only if,

there exists p such that σ(j) = pis and πc(y) = h−1σ (πc(x) + πc(P(p))) =

πc(M
−1
σ x+P(p)). Equivalently by (5.5) we have y = M−1

σ (x+P(p)), i.e.,

−x = Mσ(−y) +P(p), which gives [−x, i] ∈ E1([−y, j]).

By defining suitable vector spaces on strands and tips, E∗1 and E1 are

linked to each other by the duality principle of linear algebra (up to a reverse

of the orientation of the space that leads to introduce the ‘−’ sign in the

statement of Lemma 5.6.2). This is worked out in (Arnoux and Ito 2001).

As a geometric interpretation, we can also say that the broken line Lu and

the stepped hyperplane are dual to each other.

From Lemma 5.6.2 and the definition of the self-replicating translation

set Γe, we deduce the following dictionary. The proof is immediate.

Lemma 5.6.3 (Dictionary) Let σ be a unit Pisot irreducible substitution.

The following assertions are true.

(i) Ancestor. A tip [πc(x), i]
∗ is the ancestor of [πc(y), j]

∗ if, and only

if, [−x, i] is a segment of the strand E1[−y, j].

(ii) Common ancestor. Two tips [πc(y1), j1]
∗ and [πc(y2), j2]

∗ have a

common ancestor [πc(x), i]
∗ if, and only if, the strands E1[−y1, j1]

and E1[−y2, j2] both contain the segment [−x, i].

(iii) Two-piece ancestor Equation (5.32). There exists δ such

that {[πc(y1), j1]
∗, [πc(y1), j2]

∗} ⊂ δ + E∗1{[0, i1]
∗, [πc(x), i2]

∗} if,

and only if, there exists z such that z + {[0, i1], [−x, i2]} ⊂

E1{[−y1, j1],E1[−y2, j2]}.

(iv) Two-piece patch ancestor. There exists an element δ such that

{[πc(y1), j1]
∗, [πc(y2), j2]

∗} ⊂ δ + E∗1([0, i]
∗) if, and only if, there

exists z such that [z, i] ∈ E1[−y1, j1] ∩E1[−y2, j2].

5.6.2 Super coincidence condition

The relations established in Section 5.6.1 naturally lead to the following def-

inition which extends the notion of combinatorial strong coincidence intro-

duced in Definition 5.2.9. It can be considered as the dual property of having

a common ancestor. This condition was first defined in (Ito and Rao 2006).

Definition 5.6.4 (Geometric strong coincidence) We say that the
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basic strands [y1, j1] and [y2, j2] have geometric strong coincidence if there

exists a positive integer such that EN
1 [y1, j1] and EN

1 [y2, j2] have at least

one basic formal strand in common.

Note that the combinatorial strong coincidence condition of Defini-

tion 5.2.9 is equivalent to the fact that [0, j1] and [0, j2] have geometric

strong coincidence for each pair (j1, j2) ∈ A2. Indeed, assume that EN
1 [0, j1]

and EN
1 [0, j2] have one basic formal strand in common, say [x, i]. This

is equivalent to the existence of the decompositions σN (j1) = p1is1 and

σN (j2) = p2is2, with πe(x) = πe ◦ P(p1) = πe ◦ P(p2). We deduce from

(5.5) that P(p1) = P(p2).

As we shall see, one checks that a two-piece patch

{[πc(y1), j1]
∗, [πc(y2), j2]

∗} is a patch of Γc up to translation (i.e.,

there exists δ such that {[πc(y1) + δ, j1]
∗, [πc(y2) + δ, j2]

∗} ⊂ Γc) if, and

only if, the projections of the segments [−y1, j1]g and [−y2, j2]g along

the expanding direction intersect on a non-degenerate interval. Before

we make this more precise, we introduce the following definition, due to

(Barge and Kwapisz 2006).

Definition 5.6.5 (Height) We say that the basic strands [x, i] and [y, j]

have the same height if

int(πe([x, i])g) ∩ int(πe([y, j]g)) 6= ∅.

Lemma 5.6.6 Let x,y ∈ Zn such that 〈x,vβ〉 ≤ 〈y,vβ〉. Then for each

i ∈ A the following assertions are equivalent.

• The tip [πc(−x+ y), i]∗ belongs to Γc.

• For each j ∈ A, the basic strands [x, i] and [y, j] have the same height.

Proof Let [x, i] and [y, j] be two formal strands having the same height

with 〈x,vβ〉 ≤ 〈y,vβ〉. By (5.4) we have that

〈x,vβ〉 ≤ 〈y,vβ〉 < 〈x+ ei,vβ〉.

This implies that 0 ≤ 〈−x+y,vβ〉 < 〈ei,vβ〉. We thus deduce that [πc(−x+

y), i]∗ ∈ Γc. The proof of the converse implication follows along the same

lines.

Definition 5.6.7 (Super coincidence condition) A unit Pisot irre-

ducible substitution σ satisfies the super coincidence condition if any two

basic strands [x, i] and [y, j] have geometric strong coincidence whenever

they have the same height.
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Fig. 5.12. The super coincidence condition.

An illustration of the notion of super coincidence is given in Figure 5.12.

According to (Barge and Kwapisz 2006, Ito and Rao 2006), the tiling

condition of Corollary 5.4.15 can be restated as follows.

Theorem 5.6.8 (Ito and Rao 2006) A unit Pisot irreducible substitu-

tion σ satisfies the super coincidence condition if, and only if, the tiling

property is satisfied.

Proof By Corollary 5.4.15, the tiling property is satisfied if, and only if, for

any [πc(y1), j1]
∗, [πc(y2), j2]

∗ ∈ Γc there is δ ∈ Hc and i ∈ A such that

{[πc(y1), j1]
∗, [πc(y2), j2]

∗} ⊂ δ +E∗1([0, i]
∗).

Lemma 5.6.3 (iv) implies that this is equivalent to the fact that there exists

z such that [z, i] ∈ E1[−y1, j1] ∩ E1[−y2, j2]. Thus, the tiling property is

satisfied if, and only if, [y1, j1] and [y2, j2] have geometric strong coincidence

for any [πc(y1), j1]
∗, [πc(y2), j2]

∗ ∈ Γc. In view of Lemma 5.4.20, we may

assume w.l.o.g. that [πc(y1) − πc(y2), j1]
∗ ∈ Γc. Since [y1, j1] and [y2, j2]

have geometric strong coincidence if, and only if, [y1−y2, j1] and [0, j2] have

geometric strong coincidence, the above assertion is equivalent to the fact

that [y, j1] and [0, j2] have geometric strong coincidence if [πc(y), j1]
∗ ∈

Γc. By Lemma 5.6.6 this is equivalent to the fact that [y, j1] and [0, j2]

have geometric strong coincidence if [y, j1] and [0, j2] have the same height.

However, as [y1, j1] and [y2, j2] have the same height if, and only if, the

same is true for [y1 − y2, j1] and [0, j2], this is equivalent to the super

coincidence condition.

We now define a graph that turns out to be isomorphic to the two-piece

ancestor graph. This graph is described in (Barge and Kwapisz 2006).
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Similarly as in Section 5.4.3 we introduce the notation [i1,x, i2] for triples

(i1,x, i2) ∈ A×Zn×A with [−πc(x), i2]
∗ ∈ Wσ where we assume that i1 ≤ i2

if x = 0 to avoid redundancies. The triple [i1,x, i2] represents the pair of

tips [0, i1] and [−x, i2] having the same height by Lemma 5.6.6.

Definition 5.6.9 (Configuration graph) The set of vertices of the con-

figuration graph is equal to

{[i1,x, i2] | (i1,x, i2) ∈ A× Zn ×A, [−πc(x), i2]
∗ ∈Wσ, i1 ≤ i2 if x = 0}.

There is an edge from [j1,y, j2] to [i1,x, i2] if there exists z ∈ Zn such

that

z+ {[0, i1], [x, i2]} ⊂ E1{[0, j1], [y, j2]}

with z+[0, i1]∩E1{[0, j1], [y, j2]} 6= ∅ and z+[x, i2]∩E1{[0, j1], [y, j2]} 6= ∅.

Using the duality statements of Lemma 5.6.3 we obtain the following

isomorphic graphs.

Proposition 5.6.10 The configuration graph and the two-piece ancestor

graph are isomorphic.

Proof By definition, [i1,x, i2] is a vertex of the configuration graph if, and

only if, [i1,−πc(x), i2]
∗ is a vertex of the two-piece ancestor graph. By

(5.15), we thus get a one-to-one correspondence between the sets of vertices

of each graph. Let us consider now edges. According to Lemma 5.6.3 (iii),

there exists δ ∈ Hc such that

{[0, j1]
∗, [πc(y), j2]

∗} ⊂ δ +E∗1{[0, i1]
∗, [πc(x), i2]

∗}

with

{[0, j1]
∗, [πc(y), j2]

∗} ∩ (δ +E∗1([0, i1]
∗)) 6= ∅ and

{[0, j1]
∗, [πc(y), j2]

∗} ∩ (δ +E∗1([πc(x), i2]
∗)) 6= ∅

if, and only if, there exists z ∈ Zn such that

z+ {[0, i1], [−x, i2]} ⊂ E1{[0, j1], [−y, j2]}

with

(z+ [0, i1]) ∩E1{[0, j1], [−y, j2]} 6= ∅ and

(z+ [−x, i2]) ∩E1{[0, j1], [−y, j2]} 6= ∅.

Hence, also the edges of the configuration graph are in one-to-one corre-

spondence with the edges of the two-piece ancestor graph .
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The following theorem, which has been first proved in

(Barge and Kwapisz 2006, Proposition 17.1), is a direct consequence

of Proposition 5.6.10 and Theorem 5.4.21.

Theorem 5.6.11 (Barge and Kwapisz 2006, Proposition 17.1) A

unit Pisot irreducible substitution σ satisfies the tiling property if, and only

if, from every vertex in the configuration graph, there exists a path to a

vertex of the shape [k,0, k].

5.7 Overlap coincidences

We are now going to introduce a new viewpoint on configuration graphs

and on the super coincidence condition, following the concept of overlap

coincidence. Overlap coincidence was first used in (Solomyak 1997) for

two-dimensional tilings, and later extended to one-dimensional substitution

tilings in (Sirvent and Solomyak 2002). As we shall see, this framework

allows a graph to be defined that is related to the configuration graph (and

the two-piece ancestor graph). Moreover, it provides a simple combinatorial

algorithm which allows the tiling property to be decided. In particular, this

algorithm avoids having to compute the two-piece seed patch Wσ .

5.7.1 Definitions

So far we have considered pairs of basic strands in Rn with the same height

and checked whether a common basic strand occurs under iterations of E1.

This is the super coincidence condition. By projecting basic strands of

the same height by πe, one recovers intersecting segments, called overlaps.

The viewpoint used here is to work directly with such intersections. We

do not consider all pairs of basic strands with the same height, but we

restrict ourselves to basic strands which occur in some translated copies of

the broken line Lu.

In order to define suitable translation vectors for the translated copies of

Lu, we introduce the set of all possible distances between two tiles of the

same type in the self-similar tiling of the expanding line Eu = {πe([x, i]g) |

[x, i] ∈ Γe}. Since tiles in the tiling Eu are ordered according to the fixed

point u = u0u1u2 · · · , the set of distances between tiles is described by

Ξ(Eu) = {λ ∈ R+ | λ = πe ◦P(uN · · ·uN+m−1), N, m ≥ 0, uN = uN+m}

= {λ ∈ R+ | ∃T, T ′ ∈ Eu, T ′ = T + λ}.

One has Ξ(Eu) ⊆ Z[β], since each coordinate of vβ belongs to Z[β]. Note

that we get β Ξ(Eu) ⊂ Ξ(Eu) by using the invariance of u under σ.
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We first introduce the notion of overlap which corresponds to the inter-

section of the projections of basic geometric strands of the same height,

following (Sirvent and Solomyak 2002). Let S, T be two tiles occurring in

the self-similar tiling Eu. Note that S and T are intervals. For λ ∈ R+, the

triple (T, S, λ) is called overlap if int(T ∩ (S−λ)) 6= ∅. See Figures 5.13 and

5.14 for an illustration.

We now restrict ourselves to sets of pairs of tiles T, S in the self-similar

tiling Eu that are separated by a length belonging to Ξ(Eu), i.e.,

Ou = {(T, S, λ) | int(T ∩ (S − λ)) 6= ∅, T, S ∈ Eu, λ ∈ Ξ(Eu)}.

The reason for this restriction for the set of lengths λ will become clear in

Section 5.7.2.

λ

0

ov
erl
ap
s

λ

E

E −  

u

u

Fig. 5.13. In order to illustrate the relation between the tiling Eu and the broken
lines in Rn we draw the tilings Eu and Eu − λ parallel to the expanding eigendi-
rection of Mσ and not in the real line for σ(1) = 112, σ(2) = 21.

λ

λ

0

overlaps

λ

E

E −  
u

u

Fig. 5.14. An example of overlaps of a tiling in the real line for σ(1) = 112,
σ(2) = 21.
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The overlaps contained in Ou can be built in a quite simple geometric

way. Indeed, we consider the tiling Eu, and look at the distance λ between

two tiles of the same type in Eu. We then shift the tiling Eu by λ, and take

the new tiling by intervals (Eu − λ) ∩ R+, which is not ‘synchronised’ with

Eu, i.e., endpoints of tiles in each tiling do not correspond. We thus define

the synchronised tiling associated with two tilings by intervals as the tiling

by intervals obtained when taking the union of the set of endpoints of both

tilings. We use the notation E ∩ E ′ for the synchronised tiling associated

with E and E ′. We say that we synchronise two tilings when we take their

synchronised tiling. Synchronising the two tilings Eu and Eu−λ thus creates

new smaller tiles, corresponding to overlaps inOu. In more geometric terms,

we work with the projections of Lu and Lu − z, with πe(z) = λ (see again

Figures 5.13 and 5.14).

The number of overlaps in the pair (Eu, (Eu−λ)∩R+) of self-similar tilings

is infinite. We now classify them, up to a translation vector, according to

the following equivalence relation: two overlaps (T, S, λ), (T ′, S′, λ′) are said

to be equivalent if there exists δ ∈ R such that T ′ = T+δ, S′−λ′ = S−λ+δ.

The equivalence class of (T, S, λ) is denoted by [T, S, λ], i.e,

[T, S, λ] = {(T ′, S′, λ′) ∈ Ou | T
′ = T + δ, S′ − λ′ = S − λ+ δ, δ ∈ R}.

The set of equivalence classes of elements in Ou is denoted by [Ou]. Let

us note that [Ou] obviously depends on the substitution σ. However, it is

independent of the choice of the fixed point u (see Exercise 5.5).

Remark 5.7.1 An equivalence class [T, S, λ] is clearly determined by the

type of T , the type of S and the difference ν of the starting points of T and

S − λ.

For a fixed λ ∈ Ξ(Eu) let Ou(λ) be the set of all overlaps (T, S, λ) with

S, T ∈ Eu and denote by [Ou(λ)] the corresponding set of equivalence

classes. We introduce the following terminology.

• A class [T, S, λ] ∈ [Ou] is called an overlap class.

• An overlap (T, S, λ) is a coincidence overlap if T = S − λ. This notion

extends to overlap classes.

• An overlap (T, S, λ) is a half-coincidence overlap if T and S − λ have at

least one common endpoint. This notion also extends to overlap classes.

A coincidence overlap class is a fortiori a half-coincidence overlap class.

Lemma 5.7.2 Let σ be a unit Pisot irreducible substitution. The set [Ou]

of overlap classes is finite.
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Note that the proof of this lemma uses similar arguments as, for instance,

the proof of Proposition 2.3.33 and Lemma 2.4.7.

Proof Let (T, S, λ) be an overlap. There exist basic geometric strands

[x, i]g, [y, j]g in Lu such that T = πe([x, i]g), S = πe([y, j]g). Let ν =

πe(y − x) − λ be the difference of the starting points of T and S − λ. In

view of Remark 5.7.1 (note that there are finitely many types of tiles), it

suffices to show that only finitely many choices of ν are possible. We have

T ∩ (S − λ) = πe(x) + (πe[0, i]g ∩ (πe[0, j]g + ν)) .

Note that (T, S, λ) is an overlap, if, and only if, −πe(ej) < ν < πe(ei).

Furthermore, since λ ∈ Ξ(Eu), there exists z ∈ Zn such that λ = 〈z,vβ〉.

Recall that we have assumed that the coordinates of vβ all belong to Z[β].

This implies that ν = 〈y−x−z,vβ〉 ∈ Z[β], and that the Galois conjugates

of ν are given by 〈y−x− z,vβ(i)〉. We shall prove that these Galois conju-

gates are uniformly bounded. As they are the coordinates of πc(y− x− z)

in the basis (uβ(i))i≥2, we have to show the boundedness of πc(y − x− z).

Since [x, i]g and [y, j]g are segments Lu, we have πc(x), πc(y) ∈ Tσ. Thus

Theorem 5.2.3 yields that πc(x) and πc(y) are uniformly bounded. More-

over, as πe(z) ∈ Ξ(Eu), we get that πc(z) ∈ Tσ − Tσ. Using Theorem 5.2.3

again, this implies that πc(z) is uniformly bounded, too. Therefore ν and

all its Galois conjugates are uniformly bounded. Since ν ∈ Z[β], there are

only finitely many possibilities for ν.

Remark 5.7.3 This proof yields a strong relation between overlaps and

tips: we have proved that with each overlap class [T, S, λ] we associate the

pair of basic strands ([0, i], [z, j]) that have the same height, with z ∈ Zn

being uniquely determined by πe(y−x)−λ = πe(z), where T = πe([x, i]g),

S = πe([y, j]g). Note that the position of the basic strand [z, j] is very

specific.

With each overlap (T, S, λ) we associate the intersection T ∩ (S − λ).

Recall that by the invariance of the broken line under E1 we have the self-

similarity equation

βπe([y, j]g) =
⋃

[x,i]∈E1[y,j]

πe([x, i]g).

Applying this equation to the intersection T ∩ (S − λ) yields the decom-

position

β(T ∩ (S − λ)) =
⋃

T ′⊂βT, S′⊂βS,T ′∈Eu,S′∈Eu

(T ′ ∩ (S′ − βλ)). (5.39)
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The sets that occur on the right-hand side of (5.39) are tiles of the synchro-

nised tiling associated with the pair (Eu, (Eu − βλ) ∩ R+).

The following graph will allow us to formulate a new notion of coincidence

that will give rise to a further tiling criterion.

Definition 5.7.4 (Graph of overlaps) The graph of overlaps, denoted

by GO, is a directed graph whose set of vertices is the set [Ou] of overlap

classes. There is an edge from [T, S, λ] to [T ′, S′, λ′] if T ′ ∩ (S′−λ′) is non-

empty and appears in the self-similar decomposition (5.39) of β(T∩(S−λ)).

Note that Lemma 5.7.2 implies that the graph of overlaps GO is finite

and does not depend on the choice of u (see Exercise 5.5).

The graph of overlaps is very close to the configuration graph (and thus to

the two-piece ancestor graph). The main difference is that the configuration

graph and the two-piece ancestor graph are defined in terms of tips or basic

strands in the two-piece seed patch Wσ, while the construction of the graph

of overlaps does not involveWσ. Indeed, as seen in the proof of Lemma 5.7.2,

the graph of overlaps selects pairs of tips and pairs of basic strands according

to the set Ξ(Eu). This leads to a finite number of pairs of tips or of pairs

of basic strands and no reduction to the two-piece seed patch is needed any

more.

We introduce a new notion of coincidence which is defined in terms of

the graph of overlaps.

Definition 5.7.5 (Strong overlap coincidence condition) The unit

Pisot irreducible substitution σ satisfies the strong overlap coincidence

condition if each vertex in the graph of overlaps GO admits a path leading

to an overlap coincidence.

We will prove in Section 5.7.2 that this condition together with the com-

binatorial strong coincidence condition is equivalent to the tiling property.

However, checking the strong overlap coincidence condition is hard since a

priori it requires to identify all non-empty overlaps provided by the expand-

ing tiling, i.e., to consider all parameters λ ∈ Ξ(Eu). Thus the first problem

is to determine Ξ(Eu). However, fortunately we will see in Section 5.7.2

that we do not need to work with the whole set Ξ(Eu) in order to check the

strong overlap coincidence condition. Indeed, we can restrict ourselves to an

arbitrary single element λ ∈ Ξ(Eu). In particular, we will have to consider

only synchronisations for the family {Eu, Eu−λ, Eu−βλ, . . . , Eu−βmλ, . . .}.

Definition 5.7.6 (Graph of overlaps of λ) Let λ ∈ Ξ(Eu). The graph
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of overlaps of λ, denoted by GO(λ), is the subgraph of the graph of overlaps

whose vertices belong to
⋃

i≥0 [Ou(β
iλ)].

As for each λ ∈ Ξ(Eu) the graph GO(λ) is a subgraph of the finite graph

of overlaps GO, it is itself a finite graph. Moreover, as a finite graph has

only finitely many pairwise non-isomorphic subgraphs there are only finitely

many different graphs in the class {GO(λ) |λ ∈ Ξ(Eu)}.

To GO(λ) we relate the following coincidence condition which will turn

out to be equivalent to the strong overlap coincidence condition (see Theo-

rem 5.7.13).

Definition 5.7.7 (Weak overlap coincidence) The unit Pisot irre-

ducible substitution σ satisfies the weak overlap coincidence condition if

there exists λ ∈ Ξ(Eu) with λ 6= 0 such that each vertex in its associated

graph of overlaps GO(λ) admits a path to an overlap coincidence.

The advantage of this condition is that it can be checked effectively in an

easy way.

The following lemma contains a first result on the relation between the

strong and the weak overlap coincidence condition.

Lemma 5.7.8 The strong overlap coincidence condition is true if, and only

if, the weak overlap coincidence condition is true for each λ ∈ Ξ(Eu).

Proof Assume that the strong coincidence condition is true and choose λ ∈

Ξ(Eu) arbitrary. Let [T, S, λ] be a vertex of GO(λ). As GO(λ) is a subgraph

of GO, there is a path in GO from [T, S, λ] to a coincidence. However, if

a vertex of GO is contained in GO(λ), then all its successors in GO are

contained in GO(λ) in view of (5.39). Thus the path from [T, S, λ] to a

coincidence which is contained in GO by assumption is also contained in

GO(λ).

To prove the converse assume that the weak overlap coincidence is true

for each λ ∈ Ξ(Eu). Choose a vertex of GO. This vertex is of the form

[T, S, γ] for some γ ∈ Ξ(Eu). Thus, in GO(γ) there is a path from [T, S, γ]

to a coincidence. Since GO(γ) is a subgraph of GO, this path also exists in

GO.

5.7.2 Tiling conditions related to overlap graphs

In this section we have two main aims. First we want to prove that the

combinatorial strong coincidence condition together with the strong overlap

coincidence condition is equivalent to the tiling property. As mentioned
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above, the strong overlap coincidence condition is hard to check. Thus,

in a second step, we show that strong and weak overlap coincidence are

equivalent. Summing up we will arrive at a tiling criterion in terms of

combinatorial strong coincidence and weak overlap coincidence.

In all what follows we enumerate the tiles of Eu starting from the tile

next to the origin by T0, T1, . . . One has Tr = πe[P(u0 · · ·ur−1), ur]g for all

r ∈ N. Moreover, for each λ ∈ Ξ(Eu), we consider the union of tiles T ∈ Eu

such that T + λ also occurs in Eu, i.e.,

Occ(λ) :=
⋃

{T∈Eu |T+λ∈Eu}

T.

We start with the following lemma (cf. (Solomyak 1997, Proposition 6.7)

and (Lee, Moody, and Solomyak 2003, Lemma A.8)), which translates the

weak overlap coincidence condition in combinatorial terms (see also the

related result (Queffélec 1987, Lemma VI.27)).

Lemma 5.7.9 Let λ ∈ Ξ(Eu). The graph of overlaps of λ satisfies the weak

overlap coincidence condition if, and only if, there exists some constant

c ∈ (0, 1) such that

Card{Tr ∈ Eu | r ≤ N, Tr + βmλ 6∈ Eu} ≪ N cm (5.40)

holds for all m ∈ N when N is large enough in terms of m (the implied

constant does not depend on N and m).

Proof We first prove that there is a constant c̃ ∈ (0, 1) such that

lim sup
N→∞

µ1({Tr | r ≤ N, Tr + βmλ 6∈ Eu})

µ1({Tr | r ≤ N})
≪ c̃m (5.41)

if, and only if, there exists some constant c ∈ (0, 1) such that (5.40) holds

for all m ∈ N when N is large enough in terms of m.

Assume that (5.40) holds. Let Lmin and Lmax be the length of the shortest

and longest tile in Eu, respectively. One has for N large enough

µ1({Tr | r ≤ N, Tr + βmλ 6∈ Eu}) ≤ LmaxCard{Tr | r ≤ N, Tr + βmλ 6∈ Eu}

≪ cmN ≤ cm 1

Lmin
µ1({Tr | r ≤ N})

≪ cmµ1({Tr | r ≤ N}).

Hence,

lim sup
N→∞

µ1({Tr | r ≤ N, Tr + βmλ 6∈ Eu})

µ1({Tr | r ≤ N})
≪ cm

and (5.41) is true for c̃ = c.
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Conversely, assume that (5.41) holds for c̃ ∈ (0, 1). Let c ∈ (0, 1) with

c̃ < c. For N large enough in terms of m, one has

µ1({Tr | r ≤ N, Tr + βmλ 6∈ Eu})≪ cmµ1({Tr | r ≤ N}).

Hence,

Card({Tr | r ≤ N, Tr + βmλ 6∈ Eu})

≤
1

Lmin
µ1({Tr | r ≤ N, Tr + βmλ 6∈ Eu})

≪ cmµ1({Tr | r ≤ N}) ≤ cmNLmax ≪ cmN,

which ends the proof of the claimed equivalence.

We now prove (5.41). We first assume that the graph of overlaps GO(λ)

of λ satisfies the weak overlap coincidence condition. By the finiteness of

GO(λ) there exists a positive integer ℓ such that each vertex admits a path

of length bounded by ℓ to an overlap coincidence.

Using (5.39), one checks that GO(βmλ) is a subgraph of GO(λ) whose

paths to overlap coincidences do not get longer as the ones in GO(λ). In

particular, βℓ(T ∩(S−βmλ)) contains an overlap coincidence for each over-

lap (T, S, βmλ). One has µ1(β
ℓ(T ∩ (S−βmλ))) ≤ βℓLmax. Moreover, each

overlap (T, S, βmλ) produces tiles which belong to Occ(βm+ℓλ), and whose

union has length bounded from below by Lmin. Let b :=
(

1− Lmin

Lmaxβℓ

)

.

Since the definition of Occ immediately implies βOcc(βmλ) ⊂ Occ(βm+1λ),

and, hence, βℓOcc(βmλ) ⊂ Occ(βm+ℓλ), we deduce that

lim sup
N→∞

µ1{Tr ∈ Eu | r ≤ N, Tr + βm+ℓλ 6∈ Eu}

µ1{Tr ∈ Eu | r ≤ N}

≤ b lim sup
N→∞

µ1{Tr ∈ Eu | r ≤ N, Tr + βmλ 6∈ Eu}

µ1{Tr ∈ Eu | r ≤ N}
.

Since b < 1 does not depend on m and N , by writing m = kℓ + s with

0 ≤ s < ℓ we easily derive (5.41) by iteration.

To prove the converse assume that (5.41) holds and that GO(λ) does not

satisfy the weak overlap coincidence condition. Then there exists an overlap

class [T, S, βmγ] such that for every ℓ, m > 0

βℓ(T ∩ (S − βmλ)) ⊂ R+ \Occ(β
mλ).

By the repetitivity of Eu this yields

lim sup
N→∞

µ1{Tr ∈ Eu | r ≤ N, Tr + βm+ℓλ 6∈ Eu}

µ1{Tr ∈ Eu | r ≤ N}
≫ 1,
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uniformly in m, which contradicts (5.41).

We now establish the relation between the tiling property and the strong

overlap coincidence condition. The first part of the following lemma is

proved in (Lee 2007) in the general context of substitution Delone sets and

Meyer sets. Indeed, it can be derived from the algebraic coincidence condi-

tion introduced in (Lee 2007). For more details, see the notes at the end of

the present chapter.

Lemma 5.7.10 Let σ be a unit Pisot irreducible substitution. If σ satisfies

the strong overlap coincidence condition, then the following assertions are

true.

• There exists m ∈ N such that βm(Ξ(Eu)− Ξ(Eu)) ∩ R+ ⊂ Ξ(Eu).

• There exists m ∈ N such that βm(Ξ(Eu) + Ξ(Eu)) ⊂ Ξ(Eu).

Proof Let λ1, λ2 ∈ Ξ(Eu) with λ2 − λ1 > 0 be given. Then Lemma 5.7.9

implies that there exists m ∈ N such that for all N large enough and for

i = 1, 2, one has

Card{r ≤ N | Tr + βmλi 6∈ Eu} <
N

3
. (5.42)

This implies that

Card{r ≤ N | Tr + βmλ1 6∈ Eu or Tr + βmλ2 6∈ Eu} <
2N

3
(5.43)

which means that there is some r ∈ N such that Tr + λ1β
m ∈ Eu and

Tr+λ2β
m ∈ Eu. Thus, β

m(λ2−λ1) ∈ Ξ(Eu) which proves the first assertion.

Recall that Lmin denotes the length of the shortest tile in Eu. If N is

large in terms of m, one has moreover

Card{βmλ1/Lmin ≤ r ≤ N | Tr − βmλ1 6∈ Eu} <
N

3

which implies

Card{βmλ1/Lmin ≤ r ≤ N | Tr − βmλ1 6∈ Eu or Tr + βmλ2 6∈ Eu} <
2N

3
.

Thus, if N is large in terms of m, there exists r ≤ N such that Tr−βmλ1 ∈

Eu and Tr + λ2β
m ∈ Eu. Thus, βm(λ2 + λ1) ∈ Ξ(Eu) which proves the

second assertion.

In order to get a relation between the strong overlap coincidence con-

dition and the tiling condition, we need to ensure that all lengths of tiles

in Eu multiplied by some power of β belong to the translation set Ξ(Eu).
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This is realised by assuming the combinatorial strong coincidence condition

introduced in Definition 5.2.9.

Lemma 5.7.11 Let σ be a unit Pisot irreducible substitution that satisfies

the combinatorial strong coincidence condition. Then there exists m such

that βmπe ◦P(i) ∈ Ξ(Eu) for every letter i ∈ A.

Proof Let i ∈ A. Let j ∈ A be such that ij is a factor of the fixed

point u. By the combinatorial strong coincidence condition, there exist

m > 0, a letter k and four words p, q, r, s such that σm(i) = pkq and

σm(j) = rks, with P(p) = P(r). Since σm(ij) is a factor of u, we have

that πe ◦ P(kqr) ∈ Ξ(Eu). The relation P(p) = P(r) yields πe ◦P(kqr) =

πe ◦P(pkq) = πe ◦P(σm(i)) = βmπe ◦P(i) ∈ Ξ(Eu).

We can now derive the following relation between the strong overlap

coincidence condition and the tiling condition.

Theorem 5.7.12 Let σ be a unit Pisot irreducible substitution. Then σ

satisfies the tiling property if, and only if, σ satisfies both the strong overlap

coincidence condition and the combinatorial strong coincidence condition.

Proof We first assume that σ satisfies the tiling property. By Theo-

rem 5.6.8, σ satisfies the super coincidence condition and, in particular,

the combinatorial strong coincidence condition. According to Remark 5.7.3,

each overlap class [T, S, λ] is associated with a pair of basic formal strands

([0, i], [z, j]) having the same height. Since the super coincidence condition

holds, there exists m such that Em
1 [z, i] and Em

1 [0, j] contain a common ba-

sic formal strand. In other words, one gets an overlap coincidence between

βmT and βm(S − λ). Therefore the strong overlap coincidence is satisfied.

The converse is slightly more difficult to establish. This is mostly due

to the specific positions of the vectors z associated with overlap classes as

noticed in Remark 5.7.3. We assume that σ satisfies both the strong overlap

coincidence condition and the combinatorial strong coincidence condition.

Let [x, i] and [y, j] be a pair of basic formal strands with the same height.

Let T := πe([x, i]g) and S := πe([y, j]g). There exist z1, z2 ∈ πe(Z
n)

such that T ∈ Eu − πe(z1) and S ∈ Eu − πe(z2). Assume w.l.o.g. that

πe(z1) < πe(z2). Now set T ′ := T + πe(z1) and S′ := S + πe(z1). Then

T ′ ∈ Eu and S′ ∈ Eu − λ with λ := πe(z2 − z1).

By Lemma 5.7.11, the combinatorial strong coincidence condition implies

that there exists m1 ∈ N such that βm1πe ◦ P(k) ∈ Ξ(Eu) for all k ∈ A.

As {P(1), . . . ,P(n)} = {e(1), . . . , e(n)} forms a basis of the lattice Zn,
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according to Lemma 5.7.10 for each z ∈ Zn there exists m2 ∈ N such that

βm2πe(z) ∈ Ξ(Eu). Thus there exists m ∈ N such that λ ∈ Ξ(Eu). We thus

deduce from the strong overlap coincidence condition that [βmT, βmS, βmλ]

leads to a coincidence overlap. This implies that the super coincidence

condition holds.

We now turn to the second main result of the present section, the equiva-

lence between the strong and the weak overlap coincidence condition. This

is proved in a slightly different context in (Solomyak 1997, Section 6) where

it is shown that both conditions are equivalent to the fact that the dynam-

ical system associated with the tiling has pure discrete spectrum (see also

(Lee 2007, Section 3) where overlap coincidence is related to pure discrete

spectrum). We give a new and direct proof of this result here.

Theorem 5.7.13 Let σ be a unit Pisot irreducible substitution. Then the

following assertions are equivalent.

(i) The substitution σ satisfies the weak overlap coincidence condition.

(ii) The substitution σ satisfies the strong overlap coincidence condition.

In view of Lemmas 5.7.8 and 5.7.9 it is clear that Theorem 5.7.13 is a

direct consequence of the following lemma. In the proof of this lemma we ex-

ploit the fact that weak overlap coincidence implies that the fixed point u of

σ is mean-almost periodic in the sense of (Queffélec 1987, Definition VI.4).

Lemma 5.7.14 Let λ1, λ2 ∈ Ξ(Eu) with λ1 6= 0. If there exists c ∈ (0, 1)

such that

Card{Tr ∈ Eu | r ≤ N, Tr + βmλ1 6∈ Eu} ≪ N cm (5.44)

for all m when N is large enough in terms of m then

Card{Tr ∈ Eu | r ≤ N, Tr + βmλ2 6∈ Eu} ≪ Ncm

for all m when N is large enough in terms of m. The implied constants do

not depend on m and N .

Proof Let λ1 be a non-zero element of Ξ(Eu) such that (5.44) holds and let

λ2 ∈ Ξ(Eu).

We consider a tile T that occurs in Occ(λ2). One has T + λ2 ∈ Eu. By

the repetitivity of Eu, there is a set of tiles W (0) ⊂ Eu such that the union

of tiles of W (0) is a relatively dense set in R+ (i.e., there exists L > 0 such

that every interval of length L in R+ contains at least one point belonging

to one tile of W (0)) and Tr + βλ2 ∈ Eu whenever Tr ∈ W (0).
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We now use the self-similarity of Eu (or equivalently, the fact that σ(u) =

u). We multiply all tiles of W (0) by βm and subdivide accordingly to arrive

again at Eu. Thus, there exist

u
(m)
1 < v

(m)
1 < u

(m)
2 < v

(m)
2 < u

(m)
3 < v

(m)
3 < · · ·

with

min
i
(v
(m)
i − u

(m)
i )≫ βm, max

i
(u
(m)
i+1 − v

(m)
i )≪ βm, u

(m)
1 ≪ βm (5.45)

such that Tr + βmλ2 ∈ Eu whenever Tr ∈ W (m), where W (m) := {Ts | s ∈
⋃

i≥1[[u
(m)
i , v

(m)
i ]]}. All bounds in (5.45) follow from the fact that

∀a ∈ A, βm ≪ |σm(a)| ≪ βm (5.46)

(for more details on (5.46) see Section 4.7.3). To get the upper bound for

maxi(u
(m)
i+1 − v

(m)
i ) also the relative denseness of the union of tiles of W (0)

has to be used.

Let m0 ∈ N be fixed in a way that βm−m0λ1 < mini(v
(m)
i − u

(m)
i ) (such

a constant exists in view of (5.45)).

For each K ∈ N define the ‘exceptional set’

SK := {Tr ∈ Eu | Tr − kβm−m0λ1 6∈ Eu for some 0 ≤ k ≤ K}.

Equation (5.44) implies that

Card(SK ∩ {Tr | r ≤ N})≪ Ncm (5.47)

holds for all m if N large enough (note that the implied constant may

depend on K but this is not relevant for us as K will be fixed in a moment).

By (5.45) and since λ1 6= 0 we may fix K ∈ N in a way that for all Tr ∈ Eu \

SK and allm ∈ N, there exists k ∈ [[0, K]] such that Tr−kβm−m0λ1 ∈W (m).

We set for k ∈ [[0, K]]

E(k,m)
u := {Tr ∈ Eu | Tr − kβm−m0λ1 ∈W (m)}.

Then

{Tr | r ∈ N} =
K
⋃

k=0

E(k,m)
u ∪ SK . (5.48)

Note that

Tr ∈ E
(0,m)
u =⇒ Tr + βmλ2 ∈ Eu.

We now take k 6= 0. Let Tr ∈ E
(k,m)
u such that Tr + βmλ2 6∈ Eu. One has

Tr − kβm−m0λ1 ∈ W (m), hence,

Tr − kβm−m0λ1 + βmλ2 ∈ Eu.
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We thus have

Tr−kβm−m0λ1+βmλ2 ∈ Eu, (Tr−kβm−m0λ1+βmλ2)+kβm−m0λ1 6∈ Eu.

Hence, by recalling that Lmin is the length of the smallest tile in Eu, we get

for N ∈ N

Card
{

Tr ∈ E
(k,m)
u | r ≤ N, Tr + βmλ2 6∈ Eu

}

≤

Card

{

Tr | r ≤ N +
βmλ2
Lmin

, Tr + kβm−m0λ1 6∈ Eu

}

.

Putting this together with (5.48), we obtain

Card {Tr ∈ Eu | r ≤ N, Tr + βmλ2 6∈ Eu}

≤
K

∑

k=0

Card
{

Tr ∈ E
(k,m)
u | r ≤ N, Tr + βmλ2 6∈ Eu

}

+Card(SK ∩ {Tr | r ≤ N})

≤
K

∑

k=0

Card{Tr | r ≤ N +
βmλ2
Lmin

, Tr + kβm−m0λ1 6∈ Eu}

+Card(SK ∩ {Tr | r ≤ N}).

We deduce from (5.44), (5.45) and (5.47) that

Card{Tr ∈ Eu | r ≤ N, Tr + βmλ2 6∈ Eu} ≪

(

N +
Kβmλ2
Lmin

)

cm +Ncm.

This implies that

Card{Tr ∈ Eu | r ≤ N, Tr + βmλ2 6∈ Eu} ≪ Ncm

holds for all m when N is large in terms of m.

As mentioned above, Theorem 5.7.13 is an immediate consequence of the

previous lemma. According to this theorem it is not necessary to build all

of the configuration graph (or of the two-piece ancestor graph) in order to

check the tiling property. Indeed, it is enough to build the graph from all

pairs of tiles in the broken line that are separated by a fixed vector. We

sum this up in the following corollary.

Corollary 5.7.15 Let σ be a unit Pisot irreducible substitution. Then σ

satisfies the tiling property if, and only if, σ satisfies both the weak overlap

coincidence condition and the combinatorial strong coincidence condition.
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The computation of the pairs of such tiles still requires the knowledge

of the language of the fixed point. In Section 5.8, we will take advantage

of the weak overlap property in order to obtain a purely combinatorial

characterisation of the tiling property. To this end we will need the following

corollary which focuses on gaps between overlaps instead of focusing on

density of overlaps. Its proof is an immediate consequence of the proof of

Lemma 5.7.9.

Corollary 5.7.16 Let λ ∈ Ξ(Eu). The weak overlap coincidence condition

is satisfied for a λ ∈ Ξ(Eu) if, and only if, the distance between two succes-

sive coincidence overlaps in (Eu, (Eu − βkλ) ∩ R+) is bounded uniformly in

k.

5.8 Balanced pair algorithm

This section is devoted to a further effective condition for the tiling prop-

erty based on the notion of balanced pairs introduced in (Michel 1978)

and later used e.g. by (Livshits 1987), (Queffélec 1987, Chapter VI),

(Sirvent and Solomyak 2002) and (Martensen 2004). The starting point

for the balanced pair algorithm is Corollary 5.7.16. It states that the tiling

property is strongly related to the uniform boundedness (in k) of the length

of gaps between successive coincidence overlaps in pairs of tilings of the form

(Eu, (Eu − βkλ) ∩R+)). According to Theorem 5.7.13, this property has to

be checked only for one suitable λ ∈ Ξ(Eu). We will choose λ of the form

λ = 〈P(w),vβ〉 for some prefix w of u with u0 = u|w|. For this choice we

get that the first tile in Eu coincides with a tile of (Eu − βkλ)∩R+ for each

k ∈ N. Indeed, for each k one has βkλ = 〈Mk
σP(w),vβ〉 = 〈P(σ

k(w)),vβ〉

where σk(w) is a prefix of u. Note that the first overlap and the last over-

laps of the part of the synchronised tiling Eu ∩ (Eu − βkλ) that is located

between 0 and βkλ are half-coincidences.

In applying the balanced pair algorithm, we will start with gaps be-

tween half-coincidence overlaps in order to get the uniform boundedness

of gaps between successive coincidence overlaps. A gap between two half-

coincidence overlaps can be described as an interval that can be decomposed

in two ways: firstly, as a union of consecutive tiles of Eu and secondly, as a

union of consecutive tiles of (Eu−λβk)∩R+. The types of these consecutive

tiles correspond to two finite subwords v1 and v2 of u, respectively. Since

the coordinates of vβ are rationally independent, we have P(v1) = P(v2).

This leads us to introduce the following combinatorial definition.

Definition 5.8.1 (Balanced pair) A pair (v1, v2) ∈ A∗ ×A∗ is said to
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be a combinatorial balanced pair, or for short, a balanced pair, if P(v1) =

P(v2). A one-letter balanced pair (also called coincidence balanced pair) is

a balanced pair of the form (a, a), with a ∈ A.

An irreducible balanced pair is a pair (v1, v2) with the property that no

pair (v′1, v
′
2), where v′i is a proper prefix vi, i = 1, 2, is balanced.

Note that when (v1, v2) is a balanced pair, (σ(v1), σ(v2)) is balanced as

well. Obviously, each balanced pair can be split up uniquely into irreducible

balanced pairs. This process is called reduction.

The set of irreducible balanced pairs obtained after the reduction of a

balanced pair of finite words (v1, v2) is denoted by B(v1, v2). We say that a

balanced pair (v1, v2) leads to a coincidence if there exists N ∈ N such that

B(σN(v1), σ
N (v2)) contains a one-letter balanced pair.

The following algorithm will lead to a powerful criterion for the tiling

property.

Definition 5.8.2 (Balanced pair algorithm) Let I0 be a non-empty

and finite set of balanced pairs. The balanced pair algorithm applied to

I0 successively computes the sets

Ik :=
⋃

(v1,v2)∈Ik−1

B(σ(v1), σ(v2)).

The algorithm is said to terminate with rank k, k ≥ 1, if Ik+1 = Ik and

each balanced pair (v1, v2) ∈ Ik leads to a coincidence. The algorithm is

said to terminate if it terminates for some rank k ≥ 1.

Let I0 = {(v1, v2)}. If the balanced pair algorithm terminates there exist

only finitely many different words w which occur between two consecutive

one-letter balanced pairs in the pairs (σk(v1), σ
k(v2)). Thus the length of

such gaps is uniformly bounded in k. We formulate this in a more exact way

in the following proposition (see also (Sirvent and Solomyak 2002, Theorem

5.6)).

Proposition 5.8.3 The balanced pair algorithm applied to a non-empty

finite set I0 of balanced pairs terminates if, and only if, the number of

letters between two successive one-letter balanced pairs in (σk(v1), σ
k(v2))

for any (v1, v2) ∈
⋃

k Ik, is bounded uniformly in k.

Example 5.8.4 In this example we want to consider the substitution

σ(1) = 112, σ(2) = 13 and σ(3) = 1. It is easy to check that this is a

unit Pisot irreducible substitution. We want to perform the balanced pair
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algorithm for this example, starting from I0 = {(12, 21), (13, 31), (23, 32)}.

Applying σ and reducing yields

(12, 21)→ (11213, 13112)→ (1, 1)(1213, 3112),

(13, 31)→ (1121, 1112)→ (1, 1)(1, 1)(21, 12),

(23, 32)→ (131, 113)→ (1, 1)(31, 13).

Thus in I1 we have the one-letter pairs (2, 2), (1, 1) and the new pair

(1213, 3112). Repeating the procedure for I1 yields the new reduction

(1213, 3112)→ (112131121, 111211213)→ (1, 1)(1, 1)(21, 12)(31121, 11213).

Now I2 contains the new pair (31121, 11213). It is treated as follows:

(31121, 11213)→ (111211213112, 112112131121)

→ (1, 1)(1, 1)(12, 21)(1, 1)(12, 21)(13, 31)(1, 1)(12, 21).

This implies that I3 contains no new pair. Moreover, each of the occurring

pairs leads to a one-letter balanced pair. Thus the algorithm terminates.

The notions of balanced pair and reduction also make sense for pairs

of infinite words. Let w be a non-empty prefix of the infinite word u. It

is not hard to see that the set of irreducible balanced pairs occurring by

reducing (u, S|w|(u)) (here S denotes the shift) is a finite set (see for instance

(Sirvent and Solomyak 2002, Section 3) and Exercise 5.6). Denote this set

by I0(w). We then consider the balanced pairs in (u, S|σ(w)|(u)), which

amounts to applying the reduction process to all balanced pairs in I0(w).

The balanced pair algorithm starting with the set I0 = I0(w) is called the

balanced pair algorithm associated with w.

The balanced pair algorithm is stated in the literature in several different

forms. Besides taking the set I0(w) associated with some prefix w of u as

the starting point (Sirvent and Solomyak 2002), the initial set I0 is defined

as I0 = {(ij, ji) | i, j ∈ A, i 6= j} in (Barge and Kwapisz 2006). As we will

see, both starting sets lead to the same behaviour. Sometimes, it proves to

be more convenient to start with {(ij, ji) | i 6= j} instead of starting with

I0(w) (even if this latter set can be determined in an effective way).

We now relate the balanced pair algorithm to the overlap coincidence

condition.

Theorem 5.8.5 Let σ be a unit Pisot irreducible substitution. Let w be a

prefix of u with u|w| = u0 and set λ = πe ◦P(w) ∈ Ξ(Eu). The substitution

σ satisfies the weak overlap coincidence condition for λ if, and only if, the

balanced pair algorithm associated with w terminates.
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Proof Since w is a prefix of u, (Eu−λ)∩R+ is obtained from Eu by deleting

the |w| first tiles. This implies that coincidence overlaps between tiles in

(Eu, (Eu−λ)∩R+) are in one-to-one correspondence with one-letter balanced

pairs in (u, S|w|u). The same correspondence holds between (Eu, (Eu −

βkλ) ∩R+) and (u, S|σ
k(w)|u). Now compare a step from Ik(w) to Ik+1(w)

in the balanced pair algorithm with the symbolic interpretation of the self-

similarity equation (5.39). The result now follows from Proposition 5.8.3

and Corollary 5.7.16.

Corollary 5.7.15 and Theorem 5.8.5 immediately imply the following re-

sult (see also (Sirvent and Solomyak 2002, Section 5)).

Corollary 5.8.6 A unit Pisot irreducible substitution σ satisfies the tiling

property if, and only if, the combinatorial strong coincidence condition is

satisfied and there exists a prefix w of u with u0 = u|w| such that the balanced

pair algorithm associated with w terminates.

An even easier criterion for the tiling property can be obtained by start-

ing the balanced pair algorithm with I0 = {(ij, ji) | i 6= j} instead of

I0(w). As will be proved below (see Theorem 5.8.8), applying the bal-

anced pair algorithm with this choice of I0 allows both the combinatorial

strong coincidence condition and the weak overlap condition to be checked

at once. This yields the purely combinatorial algorithm for tiling discussed

in (Barge and Kwapisz 2006). Before stating and proving Theorem 5.8.8,

we establish the following auxiliary result.

Lemma 5.8.7 Let σ be a unit Pisot irreducible substitution. If the balanced

pair algorithm starting with I0 = {(ij, ji) | i 6= j} terminates, then the

balanced pair algorithm starting with any balanced pair (w, w′) ∈ A∗ × A∗

terminates.

Proof We assume that the balanced pair algorithm starting with I0 =

{(ij, ji) | i 6= j} terminates. Let w, w′ ∈ A∗ be such that P(w) = P(w′).

Let ℓ be equal to the common length |w| = |w′| of w and w′. Since P(w) =

P(w′), there exists a permutation ρ of the set [[1, ℓ]] such that w′ = wρ

where wρ is a shorthand for the word wρ(1) · · ·wρ(ℓ). We recall that a

transposition is a permutation that exchanges two elements and that lets the

other elements invariant, and that the symmetric group, i.e., the group of

permutations of [[1, ℓ]] is generated by the permutations τi, for i ∈ [[1, ℓ−1]],

where τi := (i, i+1) is the transposition of [[1, ℓ]] that exchanges i and i+1.

We set T := {τi | i ∈ [[1, ℓ− 1]]}.
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We have to show that the balanced pair algorithm starting with (w, wρ)

terminates for each permutation ρ. We will prove this by induction.

In order to establish the induction start we have to consider the bal-

anced pair algorithm starting with (w, wτ ) for some τ ∈ T . However, since

B(w, wτ ) ⊂ {(i, i)} ∪ {(ij, ji) | i 6= j} we only have to consider elements of

I0 = {(ij, ji) | i 6= j} as the starting set to assure termination of the algo-

rithm. Thus the balanced pair algorithm starting with (w, wτ ) terminates

by the assumptions of the lemma.

The induction step is proved if we establish the following ‘transitiv-

ity property’. Let τ, τ ′ ∈ T . If the balanced pair algorithm starting

with (w, wτ ) terminates, and if the balanced pair algorithm starting with

(wτ , wτ ′◦τ ) terminates, then also the balanced pair algorithm starting with

(w, wτ ′◦τ ) terminates. To show this, according to Proposition 5.8.3, it is suf-

ficient to prove that the occurrences between successive one-letter balanced

pairs in (σk(w), σk(wτ ′◦τ )) are bounded uniformly in k. As the balanced

pair algorithm starting with (w, wτ ) as well as with (wτ , wτ◦τ ′) terminates,

Proposition 5.8.3 implies that there exists a constant C > 0 such that the

occurrences between successive one-letter balanced pairs in (σk(w), σk(wτ ))

and in (σk(wτ ), σ
k(wτ ′◦τ )) are bounded by C for each k.

Let N be large enough such that |σN (a)| ≥ C +1, for every letter a ∈ A.

Fix k ∈ N and let j be the index of a one-letter balanced pair in the pair of

words (σk(w), σk(wτ )), i.e.,

σk(w) = pas, σk(wτ ) = p′as′ with P(p) = P(p′) and |p| = |p′| = j − 1.

Let j′ be the index of the first letter of the image σN (a) of the jth letter

in σk(w) as well as in σk(wτ ) under σN . This implies that each letter with

index ℓ ∈ {j′, . . . , j′ +C} forms a one-letter balanced pair in the reduction

of the pair (σk+N (w), σk+N (wτ )).

Since by assumption the gaps between one-letter balanced pairs in

(σk+N (wτ ), σ
k+N (wτ ′◦τ )) are bounded by C, there is an index j′′ ∈

{j′, . . . , j′ + C} such that the j′′th letters of σk+N (wτ ) and σk+N (wτ ′◦τ )

coincide. However, as j′′ ∈ {j′, . . . , j′+C} also the j′′th letters of σk+N (w)

and σk+N (wτ ) coincide. Combining these two assertions we see that the

j′′th letters of σk+N (w) and σk+N (wτ ′◦τ ) coincide.

Since this argument goes through for every k ∈ N and for ev-

ery index j of a one-letter balanced pair in (σk(w), σk(wτ )), we de-

duce that the occurrences between successive one-letter balanced pairs in

(σk+N (w), σk+N (wτ ′◦τ )) are bounded uniformly in k by (C + 1)||σN || (re-

call that the width ‖σ‖ of σ is defined as ‖σ‖ := maxa∈A |σ(a)| (see Defini-

tion 1.2.20)). This establishes the induction step and the lemma is proved.



Substitutions, Rauzy fractals and tilings 315

Theorem 5.8.8 Let σ be a unit Pisot irreducible substitution. The bal-

anced pair algorithm starting with I0 = {(ij, ji) | i, j ∈ A, i 6= j} terminates

if, and only if, the tiling property is satisfied.

Proof We first prove that if the balanced pair algorithm starting with

I0 = {(ij, ji) | i, j ∈ A, i 6= j} terminates, then σ satisfies the com-

binatorial strong coincidence condition. Let i, j ∈ A. According to

Proposition 5.8.3, the distance between two one-letter balanced pairs in

(σN (i)σN (j)), σN (j)σN (i)) is uniformly bounded in N . As |σℓ(k)| → ∞

for ℓ → ∞ for each k ∈ A this yields the existence of N ∈ N such that

σN (i) and σN (j) can be decomposed as σN (i) = par and σN (j) = qas,

with P(p) = P(q). Hence, σ satisfies the combinatorial strong coincidence

condition.

We now assume that the balanced pair algorithm starting with I0 =

{(ij, ji) | i, j ∈ A, i 6= j} terminates. Let w be a non-empty prefix of u

with u|w| = u0. Let λ = πe ◦P(w) ∈ Ξ(Eu). Lemma 5.8.7 implies that the

balanced pair algorithm associated with w terminates, since the set I0(w)

is finite. Hence, by Corollary 5.8.5, σ satisfies the weak overlap coincidence

condition.

Thus we proved that σ satisfies both the combinatorial strong coincidence

condition and the weak overlap coincidence condition. Corollary 5.7.15 now

implies that the tiling property is satisfied.

Let us now assume that σ satisfies the tiling property. This implies that

both the strong overlap and the combinatorial strong coincidence condi-

tion hold. Let (ij, ji) ∈ I0. Let Ti = πe([0, i]g), Sj = πe([ei, j]g), Tj =

πe([0, j]g), Si = πe([ej , i]g). By construction Ti and Sj are adjacent inter-

vals, as well as Tj, Si, and they cover the same interval I := Ti∪Sj = Tj∪Si.

This interval can be decomposed as the union of three overlap subintervals

O1, O2, O3 that do not necessarily belong to Ou. Assume w.l.o.g. that Ti is

longer than Sj . Then these intervals are equal to Tj , Ti∩Si and Sj . We de-

duce from Lemma 5.7.11 that there exists M such that βMO1, β
MO2, β

MO3

can be decomposed into overlaps that belong to Ou. Corollary 5.7.16 then

implies that gaps between two coincidence overlaps in βk+MO1, βk+MO2,

βk+MO3 are uniformly bounded in k, which implies that gaps between one-

letter balanced pairs (σk(ij), σk(ji)) are also uniformly bounded in k. This

implies that the balanced pair algorithm starting with I0 terminates.

One may define a graph associated with the balanced pair algorithm in

an obvious way. The subgraph of this graph consisting of the coincidences

(i, i) corresponds to a slightly modified prefix-suffix graph. If one removes

this subgraph, and if the balanced pair algorithm ends, the remaining graph
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is finite, and its dominant eigenvalue corresponds to the asymptotic order

of growth of non-coincidences between two different fixed points of powers

of σ.

The balanced pair algorithm only terminates if the substitution satisfies

the tiling property. Even if the super coincidence conjecture is true, it

may well happen that the algorithm takes a long time before it terminates.

We refer the reader to (Sirvent and Solomyak 2002, Section 6) where some

examples are presented. They show that even quite simple looking substi-

tutions may lead to quite large sets Ik. This suggests that it might be hard

to get an analysis of the complexity of the balanced pair algorithm. Nev-

ertheless, it is a useful and easy to implement tool for checking the tiling

property for a given example with a purely combinatorial algorithm.

5.9 Conclusion

As a conclusion, let us summarise the different tiling conditions that we have

encountered in the present chapter. The main condition can be formulated

as follows: every two-piece patch of Γc appears (up to a translation vector)

in the iterated image of a tip [0, i]∗ with i ∈ A. Several variations around

this idea have produced the following graphs.

• The two-piece ancestor graph traces back ancestors of patches under a

generalised substitution that acts on tips that belong to a finite patch

(the two-piece seed patch Wσ) of the self-replicating translation set Γc.

The tiling property is equivalent to the fact that from every vertex , there

exists a path to a vertex with the specific shape [i, 0, i]∗, for i ∈ A.

• The boundary graph is a subset of the two-piece ancestor graph. It de-

scribes the tiles in the self-replicating multiple tiling that intersect the

subtiles of the central tile. The tiling property can be expressed by com-

puting the spectral radius associated with this graph.

• The contact graph is a subgraph of the two-piece ancestor graph that

can be computed iteratively without the knowledge of the two-piece seed

patch. The tiling property can also be expressed in terms of the spectral

radius associated to this graph.

• The configuration graph is isomorphic to the two-piece ancestor graph. It

checks whether every pair of basic strands eventually contains a common

basic strand when applying σ iteratively.

• The graph of overlaps follows the same type of construction scheme as

the the configuration graph. It is restricted to pairs of strands that are

related to the fixed point of the substitution. It has to be combined
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with the combinatorial strong coincidence condition to provide a tiling

property.

• The balanced pair algorithm is a simple combinatorial process that de-

scribes the growth of gaps between coincidence overlaps and checks

whether these gaps are uniformly bounded. It terminates whenever the

tiling property is satisfied.

Among these conditions, the balanced pair algorithm is definitively the

most combinatorial one. However, it does not always terminate. On the

contrary, the contact graph can be computed with a purely algorithmic

process that does not require additional computations, and provides a com-

plete tiling characterisation. Note that the relations between the contact

graph and the balanced pair algorithm remain unclear so far and deserve

specific studies. Note also that the contact graph is not defined in the Pisot

reducible case.

5.10 Exercises

Exercise 5.1 Let β be a Parry number (see Definition 2.3.12). The β-

substitution σβ associated with β is defined over the alphabet {1, · · · , n},

where n stands for the number of states of the automaton Sβ defined in the

proof of Proposition 2.3.18, as follows: j is the kth letter of σβ(i) if, and only

if, there is an arrow in Sβ from the state i to the state j labelled by k − 1.

Give the β-substitution σβ explicitly with respect to dβ(1). Compare its

prefix-suffix automaton with the automaton Sβ . Prove that σβ is primitive.

Show that the Perron–Frobenius eigenvalue of its incidence matrix is equal

to β. For more details, see (Lothaire 2002, Chapter 7).

Exercise 5.2 Prove that the first coordinate projection of Γc on Hc is not

left invariant by any non-zero translation vector.

Exercise 5.3 Prove that the fact that the self-replicating multiple tiling

Iσ is actually a tiling implies that the largest eigenvalue of the adjacency

matrix of the boundary graph (as well as of the contact graph) is strictly

smaller than the largest eigenvalue of Mσ.

Hint: Look at the corresponding result for the contact graph of a self-similar

lattice tiling in (Gröchenig and Haas 1994, Section 4).

Exercise 5.4 Prove that if two basic strands have geometric strong coin-

cidence, then they have the same height.



318 V. Berthé, A. Siegel, J. Thuswaldner

Exercise 5.5 Prove that [Ou] and [Ou(λ)] do not depend on the choice of

the fixed point u, but only on σ.

Hint: Use the repetitivity of Eu, or equivalently, the uniform recurrence of

the fixed point u.

Exercise 5.6 Prove that the set of irreducible balanced pairs occurring by

reducing (u, S|w|(u)) (here S denotes the shift) is a finite set.

Hint: Use the uniform recurrence of the fixed point u.

Exercise 5.7 List among the graphs introduced in the present chapter the

ones that contain the prefix-suffix graph (or the graph obtained by reversing

the direction of its edges) as a subgraph.

5.11 Notes

Section 5.1

As introduced for instance in (Thurston 1989) and in (Fabre 1995), one can

associate in a natural way with the β-shift (see Section 2.3.2.1) a substitu-

tion σβ called β-substitution, in the case where β is a Parry number. For

more details, see Exercise 5.1. Compare also with the ideas underlying Def-

inition 3.4.10. If β is a Pisot number, the associated substitution can be

Pisot reducible as well as Pisot irreducible. An example of a Pisot reducible

β-substitution is given by the smallest Pisot number β which is the positive

root of X3 −X − 1 (see Example 2.3.54).

Fractal geometry is deeply related to the study of numeration sys-

tems. One of the most famous examples of fractal tiles that come

from numeration systems is the twin dragon fractal related to expan-

sions of Gaussian integers in base −1 + i (see (Knuth 1998, p. 206)).

More generally, tilings can be introduced in the framework of canoni-

cal numeration systems (see Section 2.4 and the references in the survey

(Akiyama and Thuswaldner 2004)), of shift radix systems (see Section 2.4.4

and (Berthé, Siegel, Steiner, et al. 2009)), or of abstract numeration sys-

tems (see Chapter 3 and (Berthé and Rigo 2007a)). In particular, the

study of the boundary of central tiles has proved to be particularly ef-

ficient in order to derive properties of numeration systems. Under the

tiling condition and in the cubic case n = 3, points lying at the inter-

section of tiles in the self-replicating tiling have been described as com-

plex numbers with multiple expansions in some numeration system (see

e.g. (Messaoudi 1998, Messaoudi 2000, Sadahiro 2006)). For more on the

relations between central tiles and numeration systems, see the survey

(Barat, Berthé, Liardet, et al. 2006).
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The construction of central tiles also has consequences for the ef-

fective construction of Markov partitions for toral automorphisms,

the main eigenvalue of which is a Pisot number. See, for in-

stance, (Kenyon and Vershik 1998), (Praggastis 1999), (Schmidt 2000),

and (Lindenstrauss and Schmidt 2005). For more on connec-

tions between beta-numeration, Vershik’s adic transformation (see

(Vershik and Livshits 1992)) and codings of hyperbolic automor-

phisms, see the survey (Sidorov 2003), and in the same vein,

(Einsiedler and Schmidt 2002).

The study of central tiles has also led to particularly interest-

ing applications in number theory. This was one of the motiva-

tions of (Rauzy 1982). Central tiles and their associated tilings

are indeed efficient tools to compute best simultaneous Diophan-

tine approximations (see (Chekhova, Hubert, and Messaoudi 2001),

(Hubert and Messaoudi 2006) and (Ito, Fujii, Higashino, et al. 2003)),

or to characterise points with purely periodic beta-expansions (see

(Hama and Imahashi 1997), (Akiyama, Barat, Berthé, et al. 2008) or

(Adamczewski, Frougny, Siegel, et al. 2010)).

Section 5.2

In the case of a unit Pisot reducible substitution, besides Hc and He a third

space plays a role. This is the space Hs generated by the eigenspaces cor-

responding to the eigenvalues of Mσ that are not conjugate to β. The

projection of the broken line Lu on Hc along He ⊕ Hs still provides a

bounded set in Hc which allows the definition of a central tile also in

this case (for more details, see (Ei, Ito, and Rao 2006, Section 3.2) and

(Berthé and Siegel 2005)).

The study of the spectrum of Pisot substitutive dynamical systems was

one of the main motivations for the introduction of central tiles. Pisot

irreducible substitutions are indeed conjectured to have discrete spec-

trum. For a detailed account of the spectral theory of substitutive dy-

namical systems, see (Queffélec 1987), (Pytheas Fogg 2002, Chapter 7) and

(Barge and Kwapisz 2006). See also Section 6.9.

The notion of coincidence (in its various forms) has proved to be an ef-

ficient way for proving discrete spectrum. The coincidence condition was

first introduced by Dekking (Dekking 1978) for substitutions with constant

length. Using this notion, Dekking completely characterised the substi-

tutions with constant length whose associated symbolic dynamical system

has discrete spectrum. Later, Arnoux and Ito introduced the notion of

combinatorial strong coincidence (under the name strong coincidence) in
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(Arnoux and Ito 2001), which lead Ito and Rao to define the super coinci-

dence condition (under the name super coincidence) in (Ito and Rao 2006).

The super coincidence condition has been also introduced independently

in (Barge and Kwapisz 2006) (under the name geometric coincidence con-

dition). For a complete proof of the equivalence between discrete spec-

trum and the super coincidence condition for unit Pisot irreducible sub-

stitutions, see (Barge and Kwapisz 2006). The notion of coincidence has

also been exploited in the framework of substitution tiling spaces and

substitution Delone multisets. Lee (see (Lee 2007)) introduced the no-

tion of algebraic coincidence in order to characterise substitution Delone

multisets that have a pure point diffraction spectrum. Using the nota-

tion of Section 5.7 algebraic coincidence can be stated as follows. Let

Λi :=
⋃

n∈N, un=i Tn. We say that the substitution σ satisfies the alge-

braic coincidence condition if there exist a positive integer M and ξ ∈ Λi

for each i ∈ A such that ξ + βMΞ(Eu) ⊆ Λi. For a review of various no-

tions of coincidences that are related to substitutions and substitution De-

lone multisets, see (Sing 2006) and the discussion in (Lee 2007). See also

(Lee, Moody, and Solomyak 2003) and (Fretlöh and Sing 2007) for the re-

lated notion of modular coincidence.

The numeration system based on words alluded to in the proof of The-

orem 5.2.3 is known as the Dumont–Thomas numeration system (see e.g.

(Dumont and Thomas 1989, Rauzy 1990, Dumont and Thomas 1993) and

Section 9.4.2). More precisely one checks that every finite prefix of u

can be uniquely expanded as σn(pn)σ
n−1(pn−1) · · · p0, where pn 6= ε,

and (p0, a0, s0) · · · (pn, an, sn) is the sequence of labels of a path in the

prefix-suffix automaton Gσ (see (Dumont and Thomas 1989, Theorem 1.5)).

Hence, we can expand the non-negative integer N as N = |σn(pn)|+ · · ·+

|p0|, where u0 · · ·uN−1 = σn(pn)σ
n−1(pn−1) · · · p0. Let β be the Perron–

Frobenius eigenvalue of σ. This numeration system also provides gener-

alised radix expansions of positive real numbers, with digits belonging to

a finite subset of the number field Q(β). We first define the mapping

δσ : A∗ → Q(β), p 7→ 〈P(p),wβ〉, where wβ is a left eigenvector of Mσ

with positive entries associated with the Perron–Frobenius eigenvalue β.

One has δσ(σ
n(p)) = βnδσ(p), for every n and p ∈ A∗. We then associate

with the combinatorial expansion (pn, an, sn) . . . (p0, a0, a0) the real num-

ber δσ(pn)β
n + · · · + δσ(p0) ∈ Q(β). To recover the β-numeration in the

particular case where σ is a β-substitution, wβ has to be normalised so that

its first coordinate is equal to 1: the coordinates of wβ are then of the form

T i
β(1), for 0 ≤ i ≤ n−1, with Tβ : x 7→ {βx}. We have chosen to work in the

present chapter with an eigenvector vβ normalised so that its coordinates

belong to Z[β]. This choice of normalisation plays a role in particular in the
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proof of Lemma 5.7.2. One checks that if σ is a unit Pisot irreducible β-

substitution, the theory and the results of this chapter also hold by working

with wβ normalised in a way that its first coordinate is equal to 1, instead

of working with vβ . In particular, the proof of Lemma 5.7.2 can easily be

adapted, by noticing that there exists a positive integer D > 0 such that

the coordinates of wβ all belong to 1
D

Z[β].

Section 5.3

GIFS substitutions, introduced in (Arnoux and Ito 2001), were inspired by

the geometric formalism of (Ito and Ohtsuki 1993), whose aim was to pro-

vide explicit Markov partitions for hyperbolic automorphisms of the torus

associated with particular substitutions produced by Brun’s continued frac-

tion algorithm. GIFS substitutions have already proved their efficiency

for Diophantine approximation (Ito, Fujii, Higashino, et al. 2003), in word

combinatorics (Arnoux, Berthé, and Siegel 2004), and in discrete geometry

(Arnoux, Berthé, and Ito 2002), (Fernique 2006) and (Fernique 2009).

There is a second multiple tiling defined on Hc that plays an im-

portant role in the study of the substitutive symbolic dynamical sys-

tem (Xσ, S). It is obtained by projecting points in Zn that lie on the

hyperplane with equation 〈x, (1, . . . , 1)〉 = 0 by πc. The correspond-

ing translation set, called the lattice translation set, is thus defined as

{[γ, i]∗ ∈ πc(Z
n)×A | γ ∈

∑n
k=2 Z(πc(ek)− πc(e1))} . It is clearly periodic.

According to (Canterini and Siegel 2001b), if σ is a unit Pisot irreducible

substitution that satisfies the combinatorial strong coincidence condition,

the lattice translation set is a Delone set that also provides a multi-

ple tiling for the subtiles of the central tile. This multiple tiling is

called the lattice multiple tiling. Rauzy introduced in the seminal paper

(Rauzy 1982) the notion of central tile with respect to this tiling. Ac-

cording to (Ito and Rao 2006) (see also (Barge and Kwapisz 2006, Remark

18.5)), we know that the lattice multiple tiling is a tiling if, and only if, the

self-replicating multiple tiling is a tiling, if σ is assumed to be a unit Pisot

irreducible substitution.

There are two dynamical systems that can be associated in a natural way

with a unit Pisot substitution, namely the substitutive dynamical system

(Xσ, S) (with its natural Z-action by the shift), and the one-dimensional

tiling space associated with the self-similar tiling of the expanding line (de-

scribed in terms of an R-action by translations). The lattice multiple tiling

is intimately connected to the spectral properties of the substitutive dynam-

ical system (Xσ, S) (see (Queffélec 1987) and (Pytheas Fogg 2002, Chapter

7)), whereas the self-replicating multiple tiling is connected to the spectral
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properties of the one-dimensional tiling space associated with the tiling of

the expanding line (see (Barge and Kwapisz 2006)). Note that there exist

unit Pisot reducible substitutions for which (Xσ, S) does not have discrete

spectrum, as shown by (Baker, Barge, and Kwapisz 2006, Example 5.3).

See also (Clark and Sadun 2006) for the study of the spectral impact of

deformations of the lengths of tiles for the tiling spaces associated with a

substitution. More generally, see (Sadun 2008) for a topological study of

tiling spaces with aperiodic order.

Section 5.4

The geometric finiteness property is intimately related to the so-called

(F) property (introduced in Section 2.3.2.2 in the beta-numeration frame-

work). It is expressed in (Berthé and Siegel 2005) in terms of the Dumont–

Thomas numeration. It also appears in (Fuchs and Tijdeman 2006) in

a related context. Note that we can use the vast literature on the

(F) property in the beta-numeration framework to exhibit classes of

beta-substitutions that satisfy the geometric finiteness property (see e.g.

(Baker, Barge, and Kwapisz 2006) and (Barge and Kwapisz 2005)).

The so-called (W) or weak finiteness property was first introduced in

(Hollander 1996). He has proved that the (W) property implies the pure

discreteness of the spectrum of the irreducible beta-shift. The (W) property

can be stated for a Pisot number β as follows:

∀ z ∈ Z[β−1]∩ [0, 1), ∀ ε > 0, ∃x, y ∈ Fin(β) such that z = x−y and y < ε.

The (W) property has been proved in (Akiyama 2002) to be equiva-

lent with the tiling property. An algorithm which can tell whether

a given Pisot number β has (F) or (W) property is described in

(Akiyama, Rao, and Steiner 2004). The condition of Theorem 5.4.14 is re-

lated to the (W) property.

Section 5.5

Similar graphs have appeared in several restricted contexts with differ-

ent names (see e.g. the references in (Akiyama and Thuswaldner 2004)

for contact graphs for tiles related to matrix number systems). They

are used either to describe beta-expansions for 0 (Akiyama 2002),

to describe multiple expansions (Messaoudi 1998, Messaoudi 2000,

Durand and Messaoudi 2009), to compute the Hausdorff dimension of the

boundary of central tiles (Messaoudi 2000, Feng, Furukado, Ito, et al. 2006,
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Thuswaldner 2006), or to obtain pure discrete spectrum conditions for sub-

stitutive dynamical systems (by referring to the lattice translation set)

(Siegel 2004). The knowledge on intersections between tiles also yields

criteria for topological properties of central tiles (connectivity, disklike-

ness, non-trivial fundamental group) (see (Messaoudi 2000), (Siegel 2004),

(Siegel and Thuswaldner 2010)).

Contact graphs are inspired by the contact matrix defined in

(Gröchenig and Haas 1994) for self-similar lattice tilings. They have been

defined in (Thuswaldner 2006) in the framework of substitutions. The prop-

erties of the contact graph are based on the polyhedral tiling generated by

the geometric tips. This polyhedral tiling property is very specific to the

Pisot irreducible case. This is the main reason why the contact graph

can only be defined in the Pisot irreducible case, whereas the two-piece

ancestor and the boundary graphs can be defined in the Pisot reducible

case with slight modifications (see (Siegel and Thuswaldner 2010)). In the

Pisot reducible case, some examples of substitutions have been studied in

(Ei and Ito 2005) by using the mth polyhedral approximations of Defini-

tion 5.5.9. Unfortunately, no generic algorithm based on this approach

exists so far.

Section 5.6

The notion of strand, introduced in (Barge and Diamond 2002), has been

very fruitfully developed in the form of the strand space model for

one-dimensional substitution tiling spaces in (Barge and Kwapisz 2006),

see also (Barge and Kwapisz 2005), (Barge and Diamond 2007) and

(Barge, Diamond, and Swanson 2009).

Section 5.7

Lemma 5.7.10 is strongly related to the notion of algebraic coincidence (see

(Lee 2007)).

Much more than Lemma 5.7.11 can be said. In fact, the Z-module gen-

erated by the lengths πe ◦ P(i), for i ∈ A, is equal to Ξ(Eu). For a proof,

see (Sing 2006, Lemma 6.34) and (Barge and Kwapisz 2006, Section 12).

Furthermore, for examples of substitutions for which we have the strict

inclusion Ξ(Eu) ⊂ Z[β], see (Sing 2006, Remark 6.36).

In (Sirvent and Solomyak 2002) the spectrum of the two dynamical sys-

tems associated with a substitution of Pisot type (i.e., the substitutive

symbolic space (Xσ, S) and the one-dimensional tiling space), is studied by

comparing the balanced pair algorithm (for the Z-action) and the overlap
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algorithm (for the R-action). It is proved in (Clark and Sadun 2006) and in

(Barge and Kwapisz 2006) that for a unit Pisot irreducible substitution, the

tiling space has discrete spectrum if, and only if, the substitutive symbolic

dynamical system has discrete spectrum.

Section 5.8

In Section 5.8 we have dealt exclusively with Pisot irreducible substitutions.

Recently, (Martensen 2004) has generalised the balanced pair algorithm to

the Pisot reducible case. In this case one has to identify certain patterns in

order to get a proper behaviour of the algorithm, i.e., to show its termina-

tion to be equivalent to the fact that the dynamical system associated with

the substitution in question is purely discrete.
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