ON A THEOREM OF BANDT AND WANG AND ITS EXTENSION TO
p2-TILES

BENOIT LORIDANT AND JUN T.UO

ABSTRACT. We study tilings of the plane by a single prototile with respect to the lattice and
to the crystallographic group p2. We are interested in the connection between the neighbors
of a tile in the tiling and its topology. We show that lattice and p2-tiles always have at least
six neighbors. We characterize self-affine tiles that are homeomorphic to a disk in a rather easy
way by the set and number of neighbors of the central tile in the tiling. This extends the work
of Bandt and Wang devoted to lattice self-affine disk-like tiles of the plane.

1. INTRODUCTION

Let I be a group of isometries on R?. We consider plane compact tiles 7" that provide a tiling
{7(T),~v € T'} of the plane and have a replication property :

o) = o(1)

6eD

for some expanding map ¢ and finite digit set D C 1.

In recent works on the topology of crystallographic reptiles (or crystiles for short), Loridant
et al obtained criteria in order to decide whether a given tile 1" as above is homeomorphic to
a closed disk (see [14] and [15]). The disk-likeness of a tile T is strongly related to the number
of its neighbors (tiles other than T intersecting T') and their configuration in the tiling. We are
interested in easily checkable criteria of disk-likeness for two classes of crystiles, corresponding to
two particular choices of the group I'. Bandt and Wang gave in [4] a criterion for the class of
self-affine lattice tiles, that tile the plane by their translates (I' is thus isomorphic to Z?). In this
case, disk-likeness happens only if 1" has 6 or 8 neighbors and eventually depends on the shape of
the digit set D. Our aim is to extend this characterization to the class of p2-crystiles, that tile the
plane in the following way : the union of 1" with its image under a m-rotation tiles the plane by its
translates. The technique of our proof makes use of graphs associated to the tilings and also allows
us to give a new complete proof of Bandt and Wang’s criterion, which concerned the lattice case.
Moreover, on the way to the proof, we will see that lattice and p2-tiles (not necessarily with a
replication property) always have at least six neighbors, whose configuration is fixed if the number
of neighbors is exactly six. Let us recall some definitions and facts about tilings and crystiles.

A tiling of R™ is a cover of the space by non overlapping sets, i.e., such that the interior of two
distinct sets of the cover are disjoint. Some particular tilings use a single tile T" with 7T° =T and

Date: November 21, 2008.

Key words and phrases. Crystallographic reptiles, tiling, homeomorphy to a disk.

The first author was supported by the Austria-Ungary Project Nr 676ul Austrian Science Foundation (FWF),
projects S9604 and S9610, that is part of the Austrian National Research Network “Analytic combinatorics and
Probabilistic Number Theory” ; the second author was supported by the National Natural Science Foundation of
China, project 10601069.



2 BENOTT LORTDANT AND JUN L.UO

a family I' of isometries of R™ such that :

R™ = ] 4(D).
yel
T is a prototile of the tiling. If I' contains id, the identity map of R™, T is also called the central
tile of the tiling. Two distinct tiles are said to be neighbors if they intersect each other. Two
neighbors are adjacent neighbors if the interior of their union contains a point of their intersection.
The neighbor set of T' is then given by

S={yel - {id,~(T)NT +0}.

It is symmetric and it generates I' (I' =< & >). The adjacent neighbor set A C S is defined
similarly as the set of adjacent neighbors of the identity :

A={yesTNnyI)NTUT))+#0}.

The neighbor (resp. adjacent neighbor) set of a tile v(T') (v € T'), is equal to 48 (resp. v.A). The
tiles considered in this paper will be compact and the tilings locally finite, i.e., every compact set
intersects finitely many tiles of the tiling. Thus & is here always a finite set.

We will deal with families I' of isometries that are crystallographic groups in dimension 2, i.e.,
discrete cocompact subgroups I of the group Isom(R?) of all isometries on R? with respect to some
metric. By a theorem of Bieberbach (see [5]), a crystallographic group I" in dimension 2 contains
a group A of translations isomorphic to the lattice Z2, and the quotient group I'/A, called point
group, is finite. There are 17 non isomorphic such groups. However, in this paper, we will mainly
consider either lattice groups (7.e., for which the point group only contains the class of the identity
map of R?), or the following crystallographic p2-groups.

Definition 1.1. Let u(z,y) = (z+1,y), v(z,y) = (z,y+1), r(z,y) = (—z, —y). Then a p2-group
is a group of isometries of R? isomorphic to the subgroup of Isom(R?) generated by the translations
u, v and the w-rotation r.

Eventually, we will always consider that the groups I' involved in the tilings below are the exact
symmetry groups of the tilings (see [9]), and call the corresponding tilings I'-tilings, the central
tile a I'-tile. Thus if I' is a lattice group, the tiling is a lattice tiling, if it is a p2-group, a p2-tiling,
and similarly for the tiles.

Our main results will concern a class of self-affine tiles, constructed in the following way (we
refer the reader to [8] and [14] for further information about these tiles).

Definition 1.2. A crystallographic reptile (or simply crystile) with respect to a crystallographic
group I' is a compact non-empty set T' C R™ with the following properties :

e the family {v(T) : v € '} is a tiling of R™ ;
e there is an expanding affine map ¢ : R® — R” such that goI' 0o g™! C I, and there exists
a finite collection D C I' called digil set, such that

(L1) o(1) = | s(1).

6eD

We recall that an expanding affine map ¢ has the form g(z) = Az + b where b € R™ and A is a
n X n-matrix whose eigenvalues all have modulus greater than 1. Hence the compact non-empty
set T' in the above definition is uniquely defined by (1.1). This is easily seen by a fixed point
argument (cf. Hutchinson [11]).
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In the remark below, T' is a crystile with neighbor set & and we use the notations of Defini-
tion 1.2.

Remark 1.3.

1. (See [8]). Without loss of generality, one can assume that the digit set D contains id.
Moreover, for T to cover the space by its copies {~v(T),v € I'}, the set D must be a
complete set of right coset representatives of I'/gl'g™!.

2. By definition, the expanded shape g(7T') is the union of 6(7") with § running over D. Thus
for each v € T, there is a uniquely determined collection D, C T such that gvy(T') is the
union of all the tiles §(T") with & running over D, ; more precisely, we have D., = gyg 1D.

We mention that algorithms were given in [14] in order to compute the neighbor and adjacent
neighbor sets S and A of a cystallographic reptile from the only knowledge of I', D and g¢.

2. RESULTS

We present our main results and illustrate some of them.
Concerning the least number of neighbors of a tile in a tiling, we will prove the following.

Theorem 2.1. In a lattice tiling or a p2-tiling of the plane using a compact prototile, each tile
has at least six neighbors.

The lattice case was already obtained in [4, Theorem 4.2], where the connectivity of the tiles
was used. We remove this assumption of connectivity : our proof just relies on the existence of
triple points, i.e., points where at least three distinct tiles meet.

The aim of Bandt and Wang in [4] was the following criterion of disk-likeness for plane tiles
defined as in Definition 1.2 in the case that I' is a plane lattice. First we need a definition.

Definition 2.2. If D and F are two sets of isometries in R?, we say that D is F-connected
iff for every disjoint pair (d,d’) of elements in D, there exist an n > 1 and elements d =:
do,d1,...,dp_1,dy = d' of D such that d;ldprl € Ffori=0,...,n—1.

This notion of set-connectedness is related to the connectedness of tiles : it was shown in [12]
that a necessary and sufficient condition for a crystile as in Definition 1.2 to be connected is that
the digit set is S-connected.

Proposition 2.3. [4| Let T be a self-affine laitice plane tile with digit set D.

(1) Suppose that the neighbor set S of T has not more than siz elements. Then T is disk-like
iff D is S-connected.

(2) Suppose that the neighbor set S of T has eight elements {a®™ b=, (ab)=", (ab™1)E1}, where
a and b denote two independent translations. Then T is disk-like iff D is {a*' b*'}-
connected.

We will give a new proof of this result and extend it to the p2-groups as follows.

Theorem 2.4. Let T be a crystile that tiles the plane by a p2-group. Let D be the corresponding
digit set.
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(1) Suppose that the neighbor set & of T has siz elements. Then T is disk-like iff D is S-
connected.

(2) Suppose that the neighbor set S of T has seven elements
{6 e be,a e, a be, a b e},

where a, b are translations and c is a w-rotation.
Then T is disk-like iff D is {b*', ¢, be, a ' c}-connected.
(3) Suppose that the neighbor set S of T has eight elements

b= e,a e, be,b e a the,a b e}
(resp. {e,be,ac,ab e, b=, (a7 1D)F1} ),

where a, b are translations and c is a w-rotation.
Then T is disk-like iff D is {b™' ¢,a " ¢c}- (resp. {e, be,ac,ab™ c}-) connected.
(4) Suppose that the neighbor set S of T has twelve elements

{c,a e, be,abe,a be,a b e, att b (ab) Y,

where a, b are translations and c is a w-rotation.
Then T is disk-like iff D is {c,a ¢, bct-connected.

Remark 2.5 (To Proposition 2.3 and Theorem 2.4).

1. According to Grilnbaum and Shephard’s classification of isohedral tilings (see [9, 6.2, p.285
ff]), the mentionned cases are the only ones for disk-like lattice and p2-tiles in the plane.

2. In each item of these statements, the set with respect to which the digit set is connected
reveals to be exactly the set of adjacent neighbors of the central tile. Indeed, it corresponds
to the set of adjacent neighbors of the involved disk-like tile in Griinbaum and Shephard’s
classification (see [9]).

3. Propositions 4.1 and 4.4 will give the exact shape of the neighbor set that appears in
Proposition 2.3 (1) and Theorem 2.4 (1), i.e., in the 6-neighbor cases.

An easy way to visualize these results is by considering the following pictures, whose exact
definitions will be given in Section 5. Depict a vertex for each isometry of I' and draw an edge
between two vertices if the corresponding tiles intersect each other. We obtain the pictures of
Figures 1 to 4 (see Propositions 4.1 and 4.4 for the choice of the vertices in the six neighbor-
cases). Disk-likeness happens iff D is connected along the full edges ; the remaining edges are
dashed.
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Ficure 1. Proposition 2.3.
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FIGURE 2. Theorem 2.4 (1) 6 neighbor case ; see also Proposition 4.4.
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FigURE 3. Theorem 2.4 (3) 8 neighbor case.
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(2) 7 neighbor case. (4) 12 neighbor case.

FIGURE 4. Theorem 2.4 (2) and (4).

The assumptions of Proposition 2.3 were shown in [4] to be minimal. It is also the case for our
Theorem 2.4. As noticed in Remark 2.5.1., we listed all possible disk-like cases of p2-tiles. We
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1 Disk-like. Non disk-like.

FIGURE 5. 36-p2-reptiles with seven neighbors.

illustrate the seven neighbor case on Figure 5. Each tile T is the union of nine squares of side size
1/3 (gray on the figure). Using the expansion g(z,y) = (6z, 6y), one sees that g(7T) is the union
of 36 isometric copies of T'. The leftern example on Figure 5 is disk-like : T" has seven neighbors
with the shape of Theorem 2.4 (2) and the digit set, which has 36 elements, is connected along
the full edges of Figure 4. Modifying a bit the digit set, one gets Gelbrich’s 36-p2-reptile. The tile
still has the seven neighbors indicated in Theorem 2.4 (2), but the digit set is no more connected
along the full edges of the picture.

The paper is now organized as follows. In Section 3 we give a proof of Theorem 2.1 : six is
the least number of neighbors of a lattice or a p2-tile. In Section 4 we show that the shape of the
neighbor set & of a plane lattice tile is fixed by the least number of neighbors, and that this is
also the case for a p2-tile if it is supposed to be connected. In Section 5, we define graphs and
drawings associated to a crystile and the generated tiling. We use these graphs in Section 6, where
we give a new proof of Bandt and Wang’s result as well as the proof of its extension to p2-crystiles.
Section 7 presents some examples and ends up with comments and new questions.

Acknowledgement. We thank the anonymous referee for his valuable suggestions and com-
ments improving the quality of this paper.

3. LEAST NEIGHBOR NUMBER.

We are interested in the least number of neighbors a tile has in a lattice or a p2-tiling. We will
show that for tilings using a single compact tile this number is six. Let {~v(T) : v € I'} be a tiling
of R™ which uses a single compact prototile T'. For d > 1, the set V; of d + 1-folded points is the
set of points belonging to T and to d distinct other tiles v;(T') (1 <7 < d). Note that V7 is in fact
the boundary of the tile T". V5 is the set of double, V3 of triple poibnts. Sets of vertices have been
recently studied, for example in [6] where the Hausdor{f dimension of V; was computed.

It is clear that a tiling of R by compact pieces has double points. Lebesgue’s covering theorem
[7, p.78, Theorem 1.8.15] says that if C is a finite closed cover of the n-cube [0, 1]™ no member
of which meets two opposite faces of [0,1]™ then C contains n + 1 elements with a non-empty
intersection. See also [3] for a recent improvement of this result. As a corollary of this, we can
infer the following proposition.

Proposition 3.1. For each tiling {v(T) : v €T} of R™ which uses a single compact prototile T,
the set of (n+ 1)-folded points is nonempty.
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Proposition 3.2. Let T be a compact tile providing a tiling of the plane by a lattice I'. Then its
set of neighbors & has at least six elements.

Proof. Suppose S has less than six elements. Then & = {a,a ', b,b7 '} for two independent
translations a,b € I' because I' =< & >. By the existence of triple points, two intersection
sets TN a*(T) and T N/ (T) (or T N a*(T)) must intersect for some 7,7 € {—1,1} (or distinct
i,k € {—1,1}); but this leads to the existence of a new neighbor a‘b=3(T") (or a*~*(T)). O

‘We now consider the case of p2-tiles.

Proposition 3.3. Let T be a compact tile providing a tiling of the plane by a p2-group I'. Then
the set of neighbors & has at least six elements.

Proof. Assume that I' is generated by the two translations u, v and the rotation r of Definition 1.1.
Then, one can easily check the commutation rules u*v? = v/4' and uw*0/r = ru*v 7 for alli,j € Z.
Moreover, if both 4 and 4’ are m-rotations, v~ 14" is a translation, and if exactly one of them is a
translation, then v '+’ is a m-rotation. We will also often use the fact that from v(T) N~/ (T) # 0
follows that v~ 14/ € S.

Since the neighbor set S of T' generates I', it contains an element u*v7°r = nr, where n = u*op¥
is a translation. Let T = T Unr(T), then {u’v/(T") : 4,7 € Z} is a lattice tiling of the plane.

Obviously, if 7' has ten neighbors or more, then 7T has at least six neighbors.

If T’ has eight neighbors, say {u™v/ (T"),1 < k < 8} = {F1(T"),1 < k < 4}, then T U nr(T)
intersects v (T) U ypnr(T) for all k € {1,...,4}, thus for each k, either {yi'} C S, or v, 'nr € S
or yprr € 8. If v, € S for some k € {1,2,3,4}, then § has at least six elements. If v, ¢ S for
each k € {1,2,3,4}, we have v;*nr € S for i1,4s,43,44 € {1, —1}. Then & has a sixth element.
Otherwise, #8 = 5, and by the existence of triple points, Tﬁ'y;] 7r(T) must intersect Tﬁ'y,i’“ (T

for some j,k € {1,2,3,4} and i; € {—1,0,1}, i € {—1,1}. This indicates that & has a sixth
element 'yl;J Vi b

If 77 has exactly six neighbors, there exist o, 8 € I' =< u,v > such that o (T7), 3= (T"),
SEHT') = (aB)' (T") are the six neighbors of T” (see Proposition 4.1 of this paper). Let F; =
{a®!, 3= 6=}, Then, T has at least four neighbors:

nr(T), & (nr)F(T), 8% ()2 (T), 8% (nr)*(T)

for some k1, ko, k3 € {0,1} and i1,i9,93 € {—1,1}.

We claim that there is at least one translation v € §. Otherwise, existence of triple points

indicates that T' N ¢r(7T) intersects T N ¢'r(T) for some tc # t'c € S, where ¢, are translations.
Then, tr(T)Nt'r(T) # 0 and t 2 (TYNT #0, thus t 1t € S.

By this claim, if k; # 0 for each j € {1,2,3}, S has a translation v and thus has at least the
following six elements:

nr, el ()™ 57 (pr)ke, 6 () e
If two of k1, ko, k3 are 0, say k1 = ko = 0, then S has at least the six elements
proat B 5 e,

If now exactly one of k1, ko, k3 is 0, say k1 = 0, then & has at least the five elements:

nr, o, 8% (), 6% (r),



8 BENOTT LORTDANT AND JUN L.UO

where 6 = a3. If S has a sixth element, we are done. We suppose on the contrary that

S= {777‘7 O‘il ) BiQ (777')7 s (777')}
Consider T" = T U %nr(T), which tiles R? under the action of the lattice < «, 3 >. Then,
B%2nr(T) has exactly five neighbors

BE(T), o g2 (T), T, 526 (),
hence T has exactly six neighbors
ﬂil(T//)’ Ozil(T”), (6igﬂ—i2)i1 (T”).

We can infer from Proposition 4.1 of the next section that 6% 37% € {(a3)*, (aﬂfl)il}. This is
impossible, since i5,i3 € {—1,1}. O

4. NEIGHBOR SET

In this section, we show that the shape of the neighbor set of a compact lattice or compact
connected p2-tile is already fixed by the fact that it contains the least number of elements (.e.,
six elements).

Proposition 4.1. Let T' be a compact tile providing a tiling of the plane by a lattice. If the set S
of neighbors of T' has exactly siz elements, then

S={a,a”,b,b7" ab, (ab)™'}
for somea,bel’ withl =< a,b >.

Proof. By Proposition 3.2 of the preceding section, we already know that there exist two elements
a,b € S CT such that ' =< a,b > and S = {a™', b1} U {6+'} for some § € T', we just need to
certify that & has the form (ab)*" or (abil)il.

First note that T N a(7') does not intersect TN a~'(T). Otherwise, § = a?, and the union Q of
all those compact sets a®(T'Nb(T)) with k € Z is a closed set such that R?\ @ has two unbounded
components. Let

Qo = Ug<oa® (T NH(T)),  Q+ = Uk=0a®™(T NH(T)).

Then, one can see that both R?\ Qo and R? \ . have exactly one unbounded component. That
is to say, there are two points in the sphere separated by Q@ = Q U {co} = Qo U Q@ which can
not be separated by Qg = Qo U {0} or Q. = Q1 U {co} alone. As the sphere is a Janizewski
space (see [13, §61]), this implies that Qo = Ur<oa®(T'NH(T)) and Q. = Ugsoa®(T N b(T)) must
intersect each other.

Therefore, a’b(T) N af (T) # O for some i <0 and j > 0, and thus a/ b € S with 7 — > 1, which
would increase the number of neighbor. Similarly, T N b(T) does not intersect TN b~ (7).

If now T'Na*(T) and T N b7 (T) intersect for 7,5 € {—1,1}, then ab € S or ab~! € S, thus § or
51 is equal to ab or ab— 1.

Suppose [T'Na*(T)] N [T NH/(T)] =0 for every i,j € {—1,1}, then by the existence of triple
points, T'Na*(T) or T'NH (T) must intersect [1'NS(T)] U [T'N5(T)]. We may assume without
loss of generality that TN a(T) intersects T N 8(T). Then, a(T) N 6(T) # 0 and a6 € S, while
5 ¢ {a*', b}, Thus we have a1 € {b,b1}, that is to say, 6 = ab or 6 = ab~ ! again. O

In the case of p2-tiles, we require the tiles to be connected. Indeed, we will use the following
lemma.
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Lemma 4.2. Let T be a connected compact set and {v(T) : ~ € I'} be a tiling of R™ for some
countable group of isometries I'. Then the boundary 91 of T is connected.

Proof. This follows from the unicoherence of Euclidean spaces (see [16]). Recall that a connected
space is unicoherent if, representing it as any union of two closed connected sets, the intersection
of these sets is connected. Thus, writing R® = T U Uwﬁd ~(T), we obtain that 0T =
T N U,qv(T) is connected. O

Let us consider a tiling of the plane by a single tile T and a group of isometries I'. We denote
by FE. the compact intersection set T N~(T) for v € &, and by 9T the boundary of T.

Lemma 4.3. Suppose that the neighbor set of T' contains m > 2 elements v1, ..., Vm and that 0T
is connecled. Then each E~;, i=1,...,m inlersects al least one Ery,, j £ 1.

Proof. Writing for the boundary 0T = UZZ1 Ew;, this follows from the connectivity of d7'. ([l

Now I is supposed to be a p2-group.

Proposition 4.4. If T is a connected compact set which is the central tile of a p2-tiling and if
the neighbor set S of T contains exactly six elements, then & has the following shape (where a,b
are independent translations and c is a w-rotation):

S={b"' ¢c,a e, be,a bl

Proof. At least one translation b # 1 and a n-rotation ¢ must belong to the neighbor set. Indeed, if
S contains only translations, it can not generate a p2-group. If it contains only rotations, then by
the existence of triple points, two neighbors v(T),¥'(T) of T" must intersect, thus the translation
~~1~47 should also be a neighbor.

Since if v(7') intersects T, then v~ 1(T") also intersects T, and we obtain that {b,b~1,c} C S.

We now show that no other translation can be in §. To this matter, we suppose the contrary,
i.e., that
S - {b7 b717 a? a/717 c7 cl}?

with a # id,b, b~ " is a translation and ¢ a w-rotation. Two cases may occur.

If @ and b are dependent, then the neighbor set contains four translations that are linearly depen-
dent and two rotations. Using Lemma 4.3, one rotation can be written in terms of the translation
b and of the other rotation. This contradicts the fact that S is a generating set for I'.

If @ and b are independent, then the set Ep can not intersect the sets Ep-1, F,, F,—1. Thus it
intersects E, or Fo, thus ¢ =b"1cor ¢ = b~ '¢/. Doing the same with the set E,, we obtain that

1

also ¢/ = a tcor ¢ = a~'¢/. This is a contradiction, since a # b,b~".

Consequently, we can write for the neighbor set:
S= {bv b717 ¢, C1,C2, 03}7

where ¢, ¢o, c3 are the remaining w-rotations. If the set E. intersects E} or Ep-1, then one of the

bil

remaining rotations must be ¢; if it intersects one of the sets E., associated to the remaining

rotations, say v = ¢1, then ccq = b+, so ¢; = b*'e. Since by Lemma 4.3 one of these possibilities
occurs, we can suppose w.lo.g. (by exchanging b and ') that bec belongs to the neighbor set,

thus
S=1{bb"t ¢ be, e, e3}.
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To obtain a mw-rotation that can be written in terms of a translation a independent of b, let
us consider the tile 7" = T U ¢(T'). This tile provides a lattice tiling of the plane: there are
independent translations a’, b’ # id such that

R*= | o"9(1").
(i,5)ez?
By Remark 1.3.3. for a lattice tiling, there must be a neighbor of the central tile that is not a
translation by some powers of b, i.e, there is an a # id independent of b such that o(T") NT" £ .
This leads, as a ¢ S, to ac € Sora 'c € S. W.lo.g. (exchange a and a~ '), we suppose that
a lc € S, such that now

S=1{bb"t ¢ be,a te s}

The rotation c3 can be written with the help of a, b and ¢. Indeed, the set £/ -1, can not intersect
the sets F. and Ep. (this would introduce new translations in the set of neighbors), thus it must
have nonempty intersection with Ep, Fy—1 or F,,. In all these cases we obtain that c5 = o~ 'b*'¢,

thus S has one of the shape of our proposition (replace a by ab if c3 = a6 ¢). ([l

5. DEFINITION OF GRAPHS

We now define graphs associated to the tilings, and their corresponding drawings. As noticed
in Section 2, these allow us to visualize the configuration of the tiles in a given tiling. They will
consitute the key of our proof of Proposition 2.3 and Theorem 2.4 in the next section.

A graph is a pair (V| E) of sets such that F C V x V. The elements x of V are called vertices,
these of E are called edges and written xzy or yx. Two vertices are incident if they belong to a
same edge. If V/ C V and E’ is the set containing all the edges xy € F with z,y € V’, then the
graph G’ = (V' E') is called the induced subgraph of G by V'.

For a crystallographic tiling {~(T") : v € I'} which uses a single prototile T, the set § of neighbors
of the central tile and the set A of its adjacent neighbors are symmetric sets, i.e., S = S~ ' and
A= A~!. This leads to the definition of the following graphs.

Definition 5.1. For a finite symmetric set M C I", we define G(M) as the graph with vertex set
I' and for which a 2-element set {v1,v2} C T is an edge whenever 'yfl'yg € M. For the particular
choice M = §, Gy = G(S8) is the neighbor graph, and for M = A, G4 := G(A) is the adjacent
graph of the tiling. If A" C A, we will write G4(A") := G(A") the corresponding subgraph of G 4.
Note that G and G 4 are regular graphs by the group property of I': each vertex is incident with
the same number of edges, called the degree of the graph.

Remark 5.2. The neighbor graph G is always connected; otherwise, choose a component of
Gy with vertex set Vo, then Uyey,v(T) would be a subset of R”™ which is both closed and open,
contradicting the connectivity of n-dimensional Euclidean spaces.

Definition 5.3. Let G = (V, F) be a graph with set of vertices V and set of edges F. If there
is a mapping 7 : (V, E) — R? such that m(V) is a discrete set of the plane, m(zy) is a simple arc
joining m(z) and m(y), and

m(zy) Nw(uv) = {w(z), 7(y)} N {r(u),7(v)} (zy,uv € E disjoint),

then we say that G is planar and call (&) (or shortly 7) a drawing of G. For every planar graph
G with a drawing 7, the set R?\ 7(G) is an open set; its components are the faces of 7(G) (or G).
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Definition 5.4. Given a planar graph G = (V, F) and a drawing 7 of (G, we consider the derived
graph of G defined as the graph G1 = (V, E'1) emerging from G with the same set of vertices and
where two vertices z,y are incident if their images w(x), 7(y) belong to the closure of the same
face of GG. F4 contains F, and we extend 7w to a map m; on E4 by joining the images of vertices
corresponding to a new edge by a simple open arc inside one of their common faces. This extension
gives rise to a picture of the graph G1.

6. PROOF OF BANDT& WANG-TLIKE STATEMENTS

This section is devoted to the proof of Proposition 2.3 and Theorem 2.4 stated in Section 2.
We first recall a result of [4] and [14] where adjacent neighbors of lattice and p2-tiles having a
neighbor set of known shape could be identified. Then, we give a formulation of the new criterion
proved in [15] with weaker assumptions. The proof eventually follows.

If the shape of the neighbor set of the central tile is given, it is possible to identify all or some
of the adjacent neighbors of this tile, as stated in the following propositions.

Proposition 6.1. [4, Lemma 3.3] Let T be a connected tile providing a lattice tiling. Let a,b be
two independent translations.

(7) If T has siz neighbors
S— {ail, bil’ (abfl)il}’
then S consists of adjacent neighbors of id.
(i) If T has eight neighbors

§={a™ b7 (@) (@710,

then {a®', b=} are adjacent neighbors of id.

This proposition was proved in [4] by an e-argument. We mention that a shorter proof can be
given using directly the connectedness of the boundary of T as in [14, Proposition 5.4] . The
connectedness of 0T is indeed assured by Lemma 4.2 and the connectedness of T'.

Proposition 6.2. [14, Proposition 5.4| Let T' be a connected p2-tile. Let a,b be two independent
translations and ¢ a m-rotation.

(7) If T has siz neighbors
S={b" ¢c,a e, be,a bl

then S consists of adjacent neighbors of id.

(i) If T has seven neighbors S = {b=' ¢, bc,a e, a tbe,a b~ te}, then {b*!, ¢, be,a ¢} are
adjacent neighbors of id.

(i1) If T has eight neighbors S = {b*', ¢,a ‘e, be, b e,a the,a b e}
( resp. S = {¢, be,ac, ab e, b=, (a7 h)F1}),
then {b' ¢, a ¢} (resp. {c,be,ac,ab'c}) are adjacent neighbors of id.

(iv) If T has twelve neighbors {c,a ‘e, be, abe,a the,a b e, o' b+, (ab) '},
then {c,a " '¢, be} are adjacent neighbors of id.

The criterion of disk-likeness as it is stated in [15] involves the knowledge of all adjacent neigh-
bors of the central tile. Since Proposition 6.2 only identifies some of them, we can not apply
this criterion directly. Before giving a formulation of this criterion with modified assumptions, we
recall some definitions and notations that can be also found in [15].
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Definition 6.3. Let G/ = (T, E) be a subgraph of the adjacent graph G 4 of a crystallographic
tiling. Suppose that G’y has a drawing 7 for which the following holds: there is a p € R? with

v1(p) # ~v2(p) for all 1,72 € ', v1 # 72 such that:

e (y) =) (vel);
e there is a constant ¢ € R such that for all e € ' joining the vertices z and y, we have:

(6.1) 7w(e) C Bo(z) N B.(y).
where B,(z) := {y € R? : |y — x| < r} denotes a closed disk with radius 7 centered at z.

Then 7 is called an admissible drawing of G'y. Moreover, we also call an extension 7 of 7
admissible it satisfies (6.1) for all e € Fy, Fy being the set of edges of the derived graph of G/,
(see Definition 5.4).

The following criterion is derived from the criterion [15, Theorem 2.4].

Proposition 6.4. Assume that T is a plane crystallographic reptile with respect to a crystallo-
graphic group T, an expanding affine map g and a digit set D. We write D* for the set of isometries
such that
d(T) = |J o(1).
seDF
Let A denote the set of adjacent neighbors of the central tile. Then T is disk-like, if and only if
there is o subset A’ of A with A=t = A’ such that the following three conditions all hold:

(i) The subgraph G A(A") of the adjacent graph is a connected planar graph.
(ii) For every k € N, the set D* induces a connected subgraph in G 4(A').
(iii) Ga(A’) has an admissible draw m : G A(A’) — R? such that the derived graph of Ga(A")
is exactly the neighbor graph Gy.

Remark 6.5. Condition (iii) says that two tiles v1(T),y2(T) are neighbors if and only if the
vertices w(v1), 7(7v2) lie on the boundary of a single face of the drawing (G A(A’)). Note that the
necessity part is simply proved by taking A’ = A and applying [15, Theorem 2.4].

We apply this proposition in order to reprove Proposition 2.3 and to prove its extension to the
p2-crystiles, Theorem 2.4. As we noticed in Remark 2.5, if T is disk-like, the sets A are given in
Griinbaum and Shephard’s classification. The main difficulty lies in the proof of Item (%), 7.e.,
the A’-connectivity of the iterates D* when D is assumed to be A’-connected. This part is the
purpose of the following two lemmata.

We use the notations of Proposition 6.4.
Lemma 6.6. Suppose that the collections DU D, are A'-connected for every v € A'. Then so
also is D* for all k € N (see Remark 1.3 for the definition of D.,).
Proof. We prove that D? is A’-connected if D = D! is. The result then follows by induction on

k : writing DF = Uwepk D,, one shows similarly that Dkl is A'-connected if D* is.

First note that if a set M C IT" is A’-connected, then so is yM for all v € T'. Let dy,ds € T with
dy*dy € A'. Taking M = D U Dy-1y, and vy = gd1g~ 1, we see that Dy, UDy, is A’-connected.

Write now that,
D’ = | D,

~yeD1
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and choose v € D! with v # id. By A’-connectedness of D!, there is a chain of elements v1, ..., v,
in D! from v, = id to 4, = v such that v; 14,1 € A”. Thus DU...UD, C D? is A'-connected.
Doing this for each v € D!\ {id}, we obtain that D? is A’-connected.

O

Lemma 6.7. Suppose the crystile T' has the neighbor set S and that D is A’-connected, where the
pairs (S, A’) are read off from the items Proposition 2.3 (2) and Theorem 2.4 (2)(3)(4). Then the
collections DU D are A'-connected for every v € A'.

Proof. We first state some properties valid for all the considered pairs (S,.4), and then give
separate proofs.

1

First note that since D is a complete set of coset representatives of I'/gl'g~*, we have:

oD, ND., =0 for v #~'
eVy €T, Iy €T such that v € D

For each constellation (S,.A"), we consider a drawing n associated to Ga(A’). In the sense of
Definition 5.4, and by assumption on the neighbor set S, a picture of the neighbor graph Gy is
obtained by adding all the diagonal line segments in each of the non-gasket-like simple loops, as
depicted in Figures 1, 4 and 3. (in the figures, we write ~y for w()). This picture then corresponds
to an extension m; of m and was already represented in Figures 1 to 4. Clearly, the degree of Gy is
then s := #8. Moreover, for each connected subgraph of G with vertex set D', finite or infinite,
the collection of vertices Ugep/ Dy induces a connected subgraph in Gy. We will use this fact at
the end of the proof. Remember that “induces” means that we connect the vertices of D via all
the available edges in G (so even if D is A’-connected, crossing diagonals may appear in the
picture of the subgraph of Gy induced by D).

One can easily see that this picture has the following properties :

(i) two lines 71 (z1x2) and 71 (y1y2) intersect if and only if they have a common vertex or they
are the two diagonal line segments in the same face of 7(G 4) ;

(i1) Gy is s-connected, in the sense that for any &/ C I" which has less than s elements, the
subgraph induced by I' \ I/ is connected ;

(iii) suppose L = (V1, F1) is an arbitrary connected subgraph of G 4(A’) with finite vertex set
V1. If each edge xy € E satisfies z 'y € A’ and if R? \ #(L) has a bounded component
intersecting 7(G) containing a point 7(vy) for some v € G, then G\ V; induces a discon-
nected subgraph in Gy, which has a component of finite vertex set containing . We can
see that the image w(L) of L must contain a loop, so we will in the sequel refer to this as
Loop Property.

We now distinguish the constellations.

Lattice-8 neighbor-case. Let us consider first the pair (S, .A") of Proposition 2.3 (2) and sup-
pose that DU Dy is not {a™!, b= }-connected. Since g(T") = Ugepd(T) and ga(T) = Ugep, d'(T)
intersect each other, we can choose some § € D and §' € D, with 6(T)Né’(T) # . Then, we must
have 6714’ € {(ab)*™, (abil)il} =S\ A'. We may assume that 6 = id, 6’ = ab. See Figure 1 for
relative positions of id and ab.

Let «, B € T" be the uniquely determined elements with a € D,, b € Dz. Because DU D, is not
6
{a®', b} -connected, a and 3 are both distinct from id and a.
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b ab b ab b ab
i a i a i a
P P, P P, P P,
d d ds ds d ds d ds
P, ¢ > N\ > N\
N N
N N
Co > P, Cc1 > P, Co
Case 1. dy Case 2.d2 dy Case 342

FIGURE 6. Lemma 6.7. Lattice-8 neighbor-case.

Then, we can find a vertex ¢ € '\ {id, a, o, 3} such that ¢(T)NT # @ and ¢(T)Na(T) £ 0. We
can see on Figure 1 that ¢ must belong to {b,ab,b~ ', ab~'}.

Now, we can choose
deD, di,dy € D, d3s €D,
such that
d(T)Ndy(T) # 0, d=2(T) N ds(T) # 0.
Then, {d~'dy,d;  ds} C {a*', 6™, (ab)™!, (abil)il}. By {a™*, b1 }-connectivity of D, for every
~v € I, consider the three connected pieces H;q, H,, H. in the picture of Gy joining all the vertices
D, D, D. respectively and whose lines w(xzy) are defined for vertices xz,y € D (or Dy, or D.)

whenever zy ' € {a*!,b¥'}. We can find three disjoint simple paths P C Hyq, P, C Hg, and
P. C H,. such that

e the two end points of P are n(d) and 7 (id),
e the two end points of P, are w(d1) and 7(ds),
e the two end points of P, are w(ds) and w(ab).

Note that 7(a) and w(b) do not lie on these paths.

Therefore, the union J of PU P, U P, with the three line segments 71 (dd1), 71 (d2d3), 71 (id(ad))
is a simple closed curve. Since the diagonal line segments 71(ab) and 7 (id(ab)) intersect each
other at a single point, the two points 7w (a), w(b) are separated by J.

Since 7(a) and 7(b) (or equivalently, 7(D,) and 7(Dg) ) are separated by the loop J, we may
assume that 7(a) is in the interior of J, thus the picture of the subgraph induced by D, is enclosed
in the interior of J, according to the picture of Gn.

Note that m1(ddy), 71(d2ds) could be either diagonal or vertical or horizontal line segments (see
Figure 6).

We discuss the possible three cases separately as follows.



Case 1

Case 2

Case 3
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Suppose that 71(ddy), 71(d2ds) are both vertical or horizontal, i.e., DU D, and D, U D,
are A’-connected. Then the union .J; of P U P, U P, with the vertical or horizontal line
segments 71(ddy ), m1(dads), 71 (b(id)), 71 (b(ab)) satisfies the condition in “Loop Property”.
Then, we can claim that T'\ (DU D, UD.UDg) induces a disconnected subgraph in Gy.
Otherwise, there would be a simple path P disjoint from all the 7-1images of the vertices of
VY = DUD,UD.UDs which connects the vertex 71 (a) to a vertex m1(n) in the exterior of J.
We may assume without loss of generality that all the vertices w1 (u) on the path P other
than m1(n) belong to the interior of J. Then, v(T) N n(T) # @ for some 71 (y) # 71 ()
on the path P, where m1(v) lies in the interior of J. This is a contradiction to “Loop
Property”.

Suppose that one of m1(dd;), w1 (dads) is diagonal and the other is vertical or horizontal,
say

_ _1\E1
ddi* € {(ab)*, (av 1)}
This means D U D, is not .A’-connected but D, U D, is. We can choose m1(cg) on J or in
the exterior of J such that d~teg, cgldl € {a™',b*1}. Then, the union J> of PUP,UP,
with the vertical or horizontal line segments 71 (dcg ), w1 (cody ), 71 (d2d3), w1 (b(id)), 71 (b(ab))

satisfies the condition in “Loop Property”. By the same argument used in Case 1, we can
infer that

'\ (DUD,UD, UD.UDg)
induces a disconnected subgraph in G, where v € I is the unique element with ¢o € D,.

Suppose that m1(ddy), 71(d2ds) are both diagonal line segments, i.e., DU D, and D, U D,
are not A’-connected. Then we can find m1(c1), 7 (c2) in the exterior of J according to
the drawing of G such that

{d7 ey, ¢t} € {a™L, 0T}, {dy tes, ey tds) € {a™ bHL )
Then, the union J3 of PU P, U P, with the vertical or horizontal line segments

mi(der), mi(crds), mi(daca), mi(cads), m1(b(id)), 71 (b(ab))
satisfies the condition in “Loop Property”. Let ~1,7v2 be the two uniquely determined
elements of I" with
c1 €D, , 2 €Dy,
Put
V:=DUD,UD,UDgUD, UD,,.

Then I"\ V induces a disconnected subgraph in Gp. By the same argument used in Case
1, we can infer that T'\ (DU D, UD,.UDg) induces a disconnected subgraph in G .

In each of the above three cases, we always have some V), the union of D, with v running

through a collection of at most six elements of I', such that the infinite collection I' \ V induces

a disconnected subgraph in Gp. This contradicts the 8-connectivity of G, as mentioned at the

beginning of the proof.

Hence DU D, is {a™, b+ }-connected. The cases of DU D,—1,D U Dy, DU Dy—1 are treated

similarly.

p2-7 neighbor-case. Secondly we deal with the constellation (S,.4") of Theorem 2.4 (2).

We want to show that D U D, induces a connected subgraph in G 4(A’) for each v € A’ =
{6,671, ¢,be,a” e} (see Figure 4).
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FIGURE 7. Lemma 6.7. p2-12 neighbor-case. Relative positions of d; and as on FY.

If v = b*! or v = a '¢, this can be obtained in a similar way as for the preceding lattice
8-neighbor case ; this is due to the fact that id and v have “enough” common neighbors for these
values of v, namely three. Let v = ¢, which has only two common neighbors with id (the same kind
of argument holds for v = be), and suppose that D U D, is not A’-connected. Since T N c(T) £ 0,
we have g(T') N ge(T) # 0, thus there exist d € D and d’ € D, such that d(T)Nd'(T) # (. In our
assumption, d 1d’ € S\ A’. W.lo.g., either {d,di} = {id,a tbc} or {d,d} = {id,a " *bLc}.

We assume that d = id, d; = o~ 'bc (the treatment of d; = a~'b~'c runs likewise). Let n € T’
be the uniquely determined element with b € D,,. Then n € {id, ¢}, otherwise D U D, would
be A’-connected in G4. Since b € Dy, both intersections gn(T) N g(T) and gn(T) N ge(T') are
nonempty, thus taking their images by ¢—*, we see that 1 must be a common neighbor of id and

¢, i.e., n € {be,b=1}. Similarly, let n” with a=tc € D,, : then n’ € {bc,b"1}.

We claim that 7 = r’. Indeed, if 7 # ', by assumption on § the intersection n(T) N7’ (1) must
be empty, thus so has to be its blow-up by g. But this is not the case, because b € D,;, a ‘e € D,y,
and b(TYNa 1e(T) # B. Consequently, n =1n'.

D, being A’-connected, there is a simple path P in G 4(A’) from 7(b) to m(a c) such that all
vertices in P belong to 7(D,). Since id, a 'bc ¢ D,, either P, the union of P with the broken
line from 7(b) to m(a~'c) via 7(id), encloses 7w(a~'bc), or P, the union of P with the broken
line from w(bh) to w(a~'c) via w(a"'hc), encloses w(id). Thus, by the “Loop Property”, either
'\ (D,uD)orT'\ (D, UD,) is disconnected in Gx. This contradicts the 7-connectivity of G .
Hence DU D, is also A’-connected for every v € A’

p2-8 neighbor-case. The constellation of Theorem 2.4 (3) is treated as in the lattice case
(see Figure 3).

p2-12 neighbor-case. We eventually deal with the constellation (S, .A") of Theorem 2.4 (4).

Assume that DU D, is not A’-connected for some o € A’. As D is S-connected, D U D, must
be S-connected. Thus, there exist some dy € D and ay € D, with d; *as € (S\ A’). That is to
say, in the drawing = of G4(A"), 7(d1) and 7 (as) lie on the boundary of the same face Fy, but not
on a single side of F}. See Figure 7 for the three possible relative positions of di and as. Moreover,
If d € D and o’ € D, are neighbors, we must have d'~'a’ € (S\ A’), thus 7(d’) and 7(a’) lie on
boundary of the same face of 7 (G4(A")) and not on a single side.

Clearly, 9F1 \ {m(d1), 7(az2)} is the union of two open polygonal arcs, each of which contains at
least one element of 7(G).

Since # [0F; N7(G)] = 6, while @ and the identity id have exactly 8 common neighbors, we
can choose a common neighbor 3 of « and id with Dg N7~ (Fy) = 0.
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Now, we can choose do € D, b1,b2 € Dg, and a; € D, with {bfldg,aflbg} C 8. And let
Fy, F5 be the faces of w (G s(A")) containing {n(by), 7(ds)} and {n(bs), w(a1)}, respectively. As
D/@ ﬁwil (Fl) = (D, F1 §é {FQ,F3}.

By A’-connectedness of D, we can find three simple paths P, P,, P in drawings of the subgraphs
of Ga(A’) respectively generated by D, Dy, Dg such that

e 7(dy), n(dy) are the two ends of P,
e 7(a1),n(ay) are the two ends of P,, and
e 7(by),m(by) are the two ends of Pg.

Note that the above three paths could be degenerate ones, like the case d; = ds thus P = {n(d1)}.

Claim 1. Fy # F3. Otherwise, we would have a; 'dy € (S\ A’), and 8F, \ {a1,ds} consists
of two open polygonal arcs each of which contains at least one element of w(G) N AF;. (Similar
to the case of Fy.) Then, the union Jy of P U P, with the two line segments w1 (asd;) C Fy and
m1(doar) C Fy, is a polygonal simple closed curve in the plane, whose interior Int(.Jy) contains at
least two elements, 7(v1) € 7(G) N Fy and w(ysy) € 7(G) N Fs.

As (E \ Int(J0)> N7 (&) has at most three elements for i = 1,2, we may denote by e, e, ..., €k

(k < 6) the elements of G with 7(e;) € (F1 U Fy) \ Int(Jp), and choose €; (1 < i < k) of G with
e; €D.,.

For i = 1,2, let P; C OF; be the open subarc which is contained in Jy’s exterior Ext(Jy) =
R? \ Int(.Jy). Then,
PUP,UP,UP;

satisfies the conditions of “Loop Property”. This means that
G\ ({id,a} U{e1,e9,...,ek})

induces a disconnected subgraph in G, a contradiction to the 12-connectivity of G . This proves
Claim 1.

Now, let J be the union of PU P, U P with the line segments 71 (a2dy), m1(d2b1) and 71 (baay).
Then, J is a polygonal simple closed curve in the plane with w(v1) € Int(J).

Claim 2. {b;'dy,a; b2} C (S\ A’). Otherwise, say, b, 'dy € A’. Similar as for Claim 1, there
are k < 6 elements ey, es, ..., e € G with w(e;) lying in (F; U F3) \ Int(J). We can see that

G\ ({id, o, B} U{e1,89,...,6k})

induces a disconnected subgraph in G5, which has a component with finite vertex set containing
1. This again contradicts the 12-connectivity of Gy .

Claim 2 immediately indicates that Int(J)N ;N7 (G) contains at least one element for 1 <7 < 3.
Actually, we may further show that Int(J) N F; Nw(G) contains exactly one element for 1 < ¢ < 3.
Otherwise, there would be k < 8 elements €1, €s, . .., e, with 7 (e;) lying in (Fy U F5 U F3)\ Int(J).
If e; (1 <4< k) ar elements of G with ¢; € D,,, where €; = ¢; is possible, the subgraph of Gx
induced by

G\ ({ldv avﬁ} U {817827 v 7€k})
has a component with finite vertex set containing ~;. This is impossible by the 12-connectivity of
Gn.
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Recall that {n(v1)} = Int(J) N F1 N 7(G), we denote by ~; (i = 2,3) the unique element of G
with 7 (;) lying in Int(J) N F; N7 (G). Here, y; =, is possible.

Let e1,€es,...,€e9 be the nine elements of G with 7 (e;) belonging to (Fy U Fy U F3) \ Int(J),
and £1,€9,...,e9 the corresponding elements of G with e; € D.,. Also, g; = £; is possible here.
Without losing generality, we may assume that

{7T(61),7T(62),7T(63)}CF1, {7T(64),7T(65),7T(66)}CF2, {71-(67)77((68)77((69)}CF3~

See Figure 8 for a rough depiction of the relative positions of I, Fy, F3.

FIGURE 8. Lemma 6.7. p2-12 neighbor-case.

Claim 3. {v1,72,v3} C Ds for a single § € T". Otherwise, we may assume that v, € Ds: for
some &' # 4. Then,

G\ ({id,a, 8,0' U {e1,62,3,27,€5,290})

would induce a disconnected subgraph in GG, contradicting its 12-connectivity.

Claim 4. ¢; # ¢; for i # j. Otherwise, say, €1 = &3 ; then G\ {id, o, 3,€2,€3,...,£9} would
induce a disconnected subgraph Gy, again impossible by 12-connectivity of G .

Claim 5. {6,a 14,3718} = A’. Otherwise, say, a 16 ¢ A’ ; then, o and é would not belong
to a single edge of G4(A’), thus @ and § would have exactly four common neighbors, see the
preceding figure. This contradicts Claim 3 and Claim 4, which imply that o and § have eight
distinct common neighbors id, 3,1, €2, €3,£7, €5, £9.

Conclusion. Claim 5 is impossible. Indeed, @ € A’ by the beginning assumption, and § € A’
by Claim 5. But A’ = {c,a 'c,bc}, hence a and & are m-rotations. Thus o~ !4 is a translation
and can not belong to A’, a contradiction to Claim 5. This ends our proof. O

We are now ready to prove Proposition 2.3 and Theorem 2.4, using Proposition 6.4.

Proof of Proposition 2.3 and Theorem 2.4.
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We note that if T is disk-like or if D is F-connected (for some F C S, and hence for F = §),
then T is itself connected. Thus we can assume in this proof that the tile T' is connected.

(1) 6 neighbor-case. Assume that T has exactly six neighbors. In the lattice case, by Propo-
sitions 4.1 and 6.1, the neighbor set is S = {b,b~ ', a,a ', a " 'h,ab~ '} for independent translations
a,b and only consists of adjacent neighbors: & = A. The graph G 4 has a drawing like in Figure 1.
The equivalence now follows from Proposition 6.4 by taking A’ = A (in this case, condition (7i)
of Proposition 6.4 reduces to (ii'): D is S-connected). One can proceed similarly for the p2-case
(the drawing is given in Figure 2).

(2) Other cases. In the lattice 8 neighbor-case, assume that 7" has exactly the neighbor set
S = {a®™',b*, (ab)**, (b~ "a)*'}. By Proposition 6.1, S contains A’ := {a®™', b*'} as adjacent
neighbors. The corresponding graph G 4(A’) has the drawing depicted in Figure 1, where the
dashed lines should be omitted.
If T is disk-like, we have A’ = A and the result follows from condition (i¢) of Proposition 6.4
(D' = D). On the other side, suppose that D is A’-connected. Then the drawing of G 4(A")
satisfies conditions (7) and (7i7) of Proposition 6.4, as can be checked on Figure 1. Condition (i7)
is the purpose of Lemmata 6.6 and 6.7. By Proposition 6.4, T' is disk-like. The p2-cases of 7, 8
and 12 neighbors can be treated in the same way.

7. EXAMPLES AND COMMENTS

We provide examples of disk-like and non disk-like p2-crystiles, before stating some comments
and questions that arise from our study. In this section, the maps u, v, r are defined by u(z,y) =
(z+1,y), v(z,y) = (z,y + 1) and r(z,y) = (—x, —y), as in Definition 1.1.

7.1. Examples of disk-like p2-crystiles. We are first interested in examples of disk-like p2-
crystiles.

6 neighbor case. We consider the p2-crystile defined by the expansion map
g(z,y) = (x =2y +1/2,z+ 2y — 1/2),
and the digit set D = {id, r, ur,vr}. The crystile T is solution of the equation
g(T)=TUr(T)Uur(T)Uvr(T).
With the methods developped in [14], we compute that the set of neighbors is
S = {u™, r,ur, vr, uor}.

It has the shape given in Proposition 4.4 (take a = v~ !,b = u, ¢ = r). The tile T together with its
neighbors is depicted in Figure 9. The digit set is S-connected, as can be checked on the graph of
the same figure. By Theorem 2.4 (1), T is disk-like.

7 neighbor case. We consider an example that Gelbrich ([8]) listed as “not convincing”, since
he could not decide from the figure if it is disk-like or not. The expansion ¢ reads :

1

the digit set is D = {id,v,r}. The crystile T and its neighbors are depicted in Figure 10. By
Theorem 2.4 (identify u, v, r with a, b, c respectively), T is disk-like.
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or uvr

Ficure 9. Disk-like p2-crystile with six neighbors.

or

FiGurE 10. Disk-like p2-crystile (white) with its seven neighbors.

8 neighbor case. A disk-like p2-crystile with eight neighbors of the first shape is obtained
by considering the union of squares given on the left side of Figure 11. The expansion map reads
g(z,y) = (4x,4y) and the sixteen digits are easily read off from the picture.

Consider now the expansion g(z,y) = (2¢ + 1/2,—x — 2y — 1/2), and the digit set D =
{id,r,ur,vr}. The corresponding crystile T' together with its neighbors are depicted in Figure 12.
The neighbor set has the second shape given in Theorem 2.4 (3) (take a = uv,b=v,c=r) and T
is disk-like by Theorem 2.4 (3).

12 neighbor case. Like a right angled isoceles triangle, the “stair cage” crystile on the right
of Figure 11 gives rise to a p2-tiling where each tile has twelve neighbors. Here, the expansion map
is g(x,y) = (3z,2y) and the digit set D = {id, a1, a?,by, a1b1c1,a3b?}, with aq(z,y) = (z — 2,y),
bi(z,y) = (z,y + 1) and ¢;(x,y) = (=, —y). It is disk-like by Theorem 2.4 (4) (take a = b;*,
b= a?lbl, c=aicy).
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FigUrE 11. Disk-like p2-crystiles having eight neighbors (shape 1) and twelve neighbors.

N
\\ R ’U71

FIGURE 12. Disk-like p2-crystile with its eight neighbors (shape 2).

7.2. Examples of non disk-like p2-crystiles. We are now moving to the non disk-like exam-
ples, varying the number of neighbors. Since we are interested in connected tiles, the case of six
neighbors can be excluded (see our later comments). We already gave Gelbrich’s 36-p2-reptile as
example of crystile with seven neighbors. Thus we start with an 8 neighbor example.

8 neighbor case. This example is depicted on Figure 13. It is a p2-crystile with 16 digits. It
is obtained after an obvious modification of the digit set of the disk-like example of Figure 11 ; it

has the same neighbor set.

9 neighbor case. Again, this tile is constructed from squares (see Figure 13). It has nine

neighbors, among which seven are adjacent.
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Ficure 13. From left to right : non disk-like p2-crystiles having eight, nine and
eleven neighbors.

10 neighbor case. Let g(z,y) = (—2x — 1/2, —x + 2y) be the expansion and the digit set
D = {id,u,v,7}. As can be seen in Figure 14, the corresponding crystile T' has the neighbor set

S = {u™, o™, (wo) ™ or, 0 e w T o )

i

FIGURE 14. Non disk-like p2-crystiles having ten neighbors (left) and 12 neigh-
bors (right).

11 neighbor case. The crystile of Figure 13 is trivially non disk-like and is again a 36-reptile,
constructed from squares. It has eleven neighbors, seven of them are adjacent.

12 neighbor case. Our last example is a perturbation of the stair cage disk-like example. 1t
still has twelve neighbors in the induced tiling and is depicted on Figure 14. It is obtained by
taking the expansion g(z,y) = (3z,3y) and the digit set D = {id, a, a?,b,b?, ¢, ac, bc, abc}, where
a(z,y) = (x = 2,y), b(z,y) = (z,y + 1), e(z,y) = (-2, ~y).

Comments and questions.

We were interested in the neighbor relations in a tiling by crystallographic tiles and reptiles.
For I' lattice or p2 group, the minimal neighbor number of a I'-tile was shown to be 6. In both
cases, all neighbors are adjacent. Since a crystile with neighbor set & is connected if and only if
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the digit set is S-connected (see [12]), we conclude from Proposition 2.3 and Theorem 2.4 that a
lattice or p2-crystile with minimal number of neighbors is connected if and only if it is disk-like.
We conjecture that this remains true for the other crystallographic groups for which the least
neighbor number is 6. Note that not all crystallographic groups have this number as minimal
neighbor number, since it is 8 for the pm-group (generated by two perpendicular translations and
a reflection along one of the translation vectors).

After dealing with the minimal neighbor number, we may now wonder how many neighbors and
adjacent neighbors a crystile can have. Indeed, we found in the last section p2-crystiles with 6 to 12
neighbors, is then every number greater than 6 admissible 7 If not, which numbers are forbidden ?
How are they related to the crystallographic group ? Even the lattice case is still open : is every
even number greater than 6 admissible 7 Some partial results are known, for lower number of
neighbors and it is also known that lattice reptiles can be constructed with 6 + 4k neighbors for
every k € N : these are tiles associated to canonical number systems (see [1]). Concerning the
adjacent neighbors, Grinbaum and Shephard’s results on normal tilings (see [9]) indicate that
4,6 are the only possible numbers of adjacent neighbors for disk-like lattice tiles, and 3,4, 5,6 for
disk-like p2-tiles, hence these restrictions remain valid for disk-like lattice and p2-crystiles. What
about non disk-like crystiles 7 We already gave in this study two examples of p2-crystiles with
seven adjacent neighbors. Can there be more 7 Or is this number limited by some rigidity of the
crystallographic group 7
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