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W
hat do card shuffling, volume
growth, and Harnack inequalities
have to do with each other? They all
arise in the study of random walks
on groups. Probability on groups is

concerned with probability measures and random
processes whose properties are dictated in part by
an underlying group structure. It is a diverse area
where one finds both sophisticated theories and
the analysis of concrete problems. Although there
are many other fascinating examples, we will focus
on random walks and invariant diffusions, which
both are processes with independent stationary in-
crements. Random walks proceed by jumps,
whereas diffusions have continuous paths. The
two share important properties but differ in some
aspects, including the nature of the typical un-
derlying group: finitely generated for random
walks, connected for diffusions. We will focus on
very basic properties of these processes and leave
out many developments, some of which can be
found in [V+], [W].

Our aim is to present the theory of random
walks and invariant diffusions on general groups,
with an emphasis on the relations with algebra,
analysis, and geometry. By studying these
processes we hope to learn something about the
underlying group and related objects. For instance,
certain properties of the solutions of the Laplace
and heat diffusion equations on the universal cover

of a compact manifold relate to the behavior of
random walks on the fundamental group. From this
viewpoint, understanding the basic properties of
random walks on large classes of groups is more
important than the detailed study of specific ex-
amples. The accumulated knowledge concerning
the example of d-dimensional Brownian motion (in-
cluding the beautiful recent advances by Lawler,
Schramm, and Werner) serves as a remote, perhaps
unreachable, ideal. It provides natural questions,
ideas, and insights, but one may have to settle for
much less on general groups.

This article has two parts: one treating random
walks, the other diffusions. The two parts are re-
lated in many ways—at the level of ideas as well
as on firmer mathematical ground—and more so
than this article can possibly convey. Behind the
difference in settings, ranging from the symmet-
ric group Sn to the Lie group SLn(R) to the infinite
dimensional torus T∞, there is unity in the prob-
lems that are discussed, and any substantial
progress in one particular context sheds light on
the entire subject.

Random Walks
Let G be a group generated by a finite symmetric
set S .  That is, s ∈ S implies s−1 ∈ S ,  and
G = ∪∞n=0S

n . The Cayley graph (G,S) has vertex
setG and an edge from x to y if and only if y = xs
for some s ∈ S . To capture the basic idea of ran-
dom walk, imagine a walker whose position is a ver-
tex of this graph. At each stage the walker takes a
step along one of the adjacent edges, choosing
uniformly at random from the possibilities. Where
will the walker be after n steps?
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More generally, given a probability measure p
on G ,  the associated random walk (Xn)n≥0
proceeds at each step by picking s in G with 
probability p(s) and moving to Xn+1 = Xns . The
distribution after n steps is the convolution power
p(n) , where p ∗ q(x) =

∑
y p(y)q(y−1x) .

Shuffling Cards
Why would anyone want to study random walks
on groups? Maybe simply because everyone uses
random walks, just as Molière’s Monsieur Jour-
dain uses prose without realizing it. Indeed, most
card-shuffling methods can be modeled as random
walks on the symmetric group Sn (n = 52), where
the shuffling mechanism is interpreted as choos-
ing at random among a certain set of permutations.
A single question obviously takes center stage:
how many shuffles are needed to mix up the cards?
Bayer and Diaconis made the New York Times for
proving that seven riffle shuffles are necessary
and sufficient. Not only is the question broadly ap-
pealing, but the mathematics of riffle shuffles is
surprisingly rich and beautiful. That such a pre-
cise answer can be given is in itself an interesting
fact which has been studied and publicized by Di-
aconis under the name of cut-off phenomenon.

Card shuffling was discussed much earlier in
mathematics: for instance, by Poincaré, Borel, and
others (see [Ho]). However, the first quantitative the-
orem is the following result due to Diaconis and
Shahshahani concerning random transposition.
To describe this process, we imagine the cards
laid out neatly in a row on a table. Two cards are
picked independently and uniformly at random,
and the cards are switched. For random transpo-
sition, a sudden convergence to the uniform dis-
tribution occurs after about 12n logn repetitions,
an example of the cut-off phenomenon. For a stan-
dard deck of 52 cards this means that about 100
random transpositions are appropriate to mix up
the deck. To state a precise result, we consider the
total variation distance between two probability
measures p and q given by ‖p − q‖TV =
sup |p(A)− q(A)|, where the supremum is over all
subsets A of G .

Theorem 1. For random transposition on the sym-
metric group Sn, let p(k) be the law after k steps.
Let k(n, c) = 1

2n(c + logn) . Then there exists a 
constant A such that for all n and for all c > 0,

‖p(k(n,c)) − un‖TV ≤ Ae−c ,
where un denotes the uniform probability measure
on Sn. Moreover, there exist a constant B and a pos-
itive function f satisfying limc→0 f (c) = 0 such that
for all n and for all c < 0,

‖p(k(n,c)) − un‖TV ≥ 1− f (c)− Bn−1 logn.

Adjacent transposition (adjacent cards are trans-
posed) and random insertion (a card is picked at

random and inserted at an independent random
position) are two other simple examples of shuf-
fling mechanisms that have been studied. To mix
up the cards uniformly takes order n3 logn shuf-
fles for adjacent transposition and order n logn
shuffles for random insertion. In both cases the
exact multiplicative constant is not known, and the
existence of a precise cut-off time is an open ques-
tion. Educated guesses are that it takes about
30,000 adjacent transpositions and a few hundred
random insertions to mix 52 cards.

For large n, about three of every four pairs of
permutations generate the symmetric group, but
one has no clue how many shuffles are typically
needed to mix up the cards using such a pair of
permutations. Varied techniques have been used
in the last twenty years by Aldous, Diaconis, and
their many collaborators and followers to under-
stand random walks on the symmetric groups and
other finite groups. We will now describe two very
different approaches in some detail. For more,
see [D].

Fix a given shuffling mechanism. In the 
probabilistic method known as “coupling”, two
dependent copies (Xn,Yn) of the process—the first
stationary, the second started from a fixed 
arbitrary state—are constructed with the property
that they agree with higher and higher probabil-
ity as time evolves. Let T be the random time equal
to the smallest n at which Xn and Yn coincide. This
T is called the coupling time, and the total varia-
tion distance between the law p(n) of Yn and the
stationary measure u (i.e., the law of Xn) can be
bounded by

‖p(n) − u‖TV ≤ Prob(T > n).

Thus the problem becomes that of constructing a
good coupling for which Prob(T > n) can be esti-
mated. This method has the advantage of not being
restricted to random walks on finite groups and
is used widely in other contexts.

Representation theory (e.g., of the symmetric
group) offers great possibilities when the walk
possesses extra symmetries. Studying a random
walk on a large finite group can be viewed as the
manipulation of a large matrix, namely, the tran-
sition probability matrix of the walk. Representa-
tion theory helps reduce the size of the problem
by providing a partial diagonalization of the ma-
trix into blocks. But the blocks can still have large
dimension. For instance, for the symmetric
group Sn, the starting matrix has size n!× n!, and
after the breakup according to irreducible repre-
sentations, the largest blocks are still of order√
n!×√n! . However, if the walk is invariant under

inner automorphisms (i.e., x �→ axa−1, a typical
example of the extra symmetries alluded to above),
then each block is a scalar matrix, and refined re-
sults can be obtained, as in the case of random
transposition. Another very useful approach

fea-saloff.qxp  8/17/01  9:16 AM  Page 969



970 NOTICES OF THE AMS VOLUME 48, NUMBER 9

involves comparisons of different random walks
and elementary combinatoric considerations, in-
cluding the geometry of paths in the correspond-
ing finite Cayley graphs. For instance, Diaconis
and the author have used comparison with random
transposition to bound efficiently the number of
shuffles needed for adjacent transposition, random
insertion, and many other examples.

Nonetheless, results such as Theorem 1 exist
only for a small number of specific examples. Al-
though there are satisfactory weaker results for a
few larger classes of random walks on finite groups,
there is no real global understanding of the be-
havior of random walks on finite groups, espe-
cially for walks based on small sets of generators.

Thus, there are many challenging questions and
open problems. One is as follows. In any given
graph, the boundary ∂A of a set A is the set of all
edges connecting A to its complement Ac. A fam-
ily of (k, c) -expanders is an infinite collection of 
finite graphs for which any vertex has at most k
neighbors, and for any subset A ,

min{#A,#Ac} ≤ c#∂A.
These graphs have very good connectivity prop-
erties. They are of practical interest as models for
communication networks. Random walks on ex-
panders have few local moves but converge rapidly
to equilibrium. The first examples of expanders
were produced by Margulis using the representa-
tion theory of the infinite group SLn(Z) in the form
of Kazhdan’s property (T) (see [L]). Whether or not
the symmetric groups can yield a family of (k, c) -
expanders is an open question.

Before we leap to infinite groups, let us em-
phasize that random walks on finite and finitely
generated groups are related in many ways. Results
concerning specific infinite groups (e.g., Kazhdan’s
property (T)) can lead to interesting results con-
cerning finite quotients; conversely, many infinite
groups can be approximated by finite groups. After
all, a short-sighted random walker walking on a
large finite cyclic group Z/NZ will not immediately
realize that the group is not Z . A recent success
story which illustrates this point is the computa-
tion by Grigorchuk and Żuk of the spectral mea-
sure (i.e., the measure µ on [−1,1] such that
p(n)(e) =

∫ 1
−1 λndµ(λ) ) of a random walk on the

wreath product Z2 � Z (this group is described
below in the section on solvable groups). They
proceed by approximation by random walks on 
finite groups. With Linnel and Schick they show 
that this computation provides a negative answer
to a question of Atiyah concerning divisibility
properties of the L2-Betti numbers of coverings of
compact manifolds.
The Birth of Random Walks on Groups
For any random walk on a finitely generated group,
let φ(n) denote the probability of being back at the
starting point after 2n steps. Thus, if p denotes the

probability measure driving the walk, we have
φ(n) = p(2n)(e). We assume throughout that the
support of p generates the group and that p is 
finitely supported and symmetric, i.e., satisfies
p(x) = p(x−1). Because of the symmetry assump-
tion, φ(n) = p(2n)(e) is a decreasing function of n
(the behavior of p(2n+1)(e) is less interesting: for the
simple random walk on the integers, p(2n+1)(e) = 0
for all n).

A random walk is recurrent if, with probability 1,
it comes back to its starting point infinitely often.
Around 1920 Pólya proved that the simple random
walk on the square lattice is recurrent in dimen-
sions 1 and 2 and not in dimensions 3 and higher.
Indeed, elementary results from probability 
theory show that recurrence is equivalent to∑
n φ(n) = +∞ , and for the d-dimensional square

lattice, φ(n) ∼ c(d)n−d/2 . Understanding the 
behavior of φ(n) is the most basic question in 
random walk theory from our viewpoint.

In 1958, in his Ph.D. thesis, Kesten—guided 
by a question of Kac concerning the product of 
random 2× 2 matrices—created the subject 
of random walks on finitely generated groups. In
a sequel to his thesis he proved that φ(n) decays
exponentially fast with n if and only if the 
group is nonamenable. A topological group G is
amenable if there exists a continuous linear 
functional ν defined on the space of all Borel 
measurable bounded functions and such that
ν(f ) ≥ 0 when f ≥ 0 , ν(1) = 1 , and ν(fx) = ν(f )
where fx(y) = f (xy) . Such a linear functional is
called a left-invariant mean. Although amenability
relates to the algebraic structure of the group,
there is no satisfactory algebraic description of 
the dichotomy between amenable and nona-
menable groups. Just before Kesten’s work, Følner
characterized amenability in terms of isoperime-
try and proved that a group is nonamenable if and
only if there is a constant C such that #A ≤ C#∂A
for any finite set A ⊂ G . These early results well
illustrate how random walk theory relates to 
algebraic and geometric notions.

All Abelian groups and, more generally, all solv-
able groups are amenable. See Figure 3 below. The
free group Fk on k ≥ 2 generators and the funda-
mental group of a two-dimensional orientable 
surface of genus g ≥ 2 are nonamenable. Surpris-
ing examples of nonamenable groups include 
some groups all of whose elements have the 
same finite order (these deep examples are due to
Adyan, and the proof uses the co-growth criterion
of Grigorchuk). The natural simple random walk
on the free group Fk (k ≥ 2) has

φ(n) ∼ c(k)n−3/2(2
√
k/(k + 1))2n as n →∞,

but for most random walks on nonamenable
groups the exact rate of exponential decay of φ,
i.e., the spectral radius ρ = limn→∞φ(n)1/2n , is
hard to compute and is not known.
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For twenty years after Kesten’s thesis little
progress was made concerning the basic behavior
of random walks on finitely generated groups. The
conjecture that the only infinite groups that carry
recurrent random walks are the finite extensions
of Z and Z2 became known as Kesten’s conjecture.
As we shall see, it was solved positively by Varopou-
los in the mid 1980s [V+], [W]. An analogous 
conjecture for connected Lie groups was solved 
in 1977 by Baldi, Lohoué, and Peyrière using work
of Guivarc’h, Keane, and Roynette, but because of
the structure theory of Lie groups, this is a rather
different story.
Quasi-isometric Invariants
In the 1980s Gromov popularized the notion of
quasi-isometry between metric spaces and the idea
of looking at Cayley graphs of groups as basic
geometric objects in their own right. Quasi-isome-
tries are maps that do not distort large distances
too much while imposing no restriction on small
distances and local topology. For instance, the uni-
versal cover of a compact Riemannian manifold and
its fundamental group are quasi-isometric objects.
Two Cayley graphs corresponding to two different
finite generating sets of the same group G are
quasi-isometric. A finitely generated group is quasi-
isometric to any of its finite index subgroups.

Given a Cayley graph (G,S), the volume growth
function V (n) is the number of elements in the
ball of radius n around the identity element e,
that is, the number of elements of the group that
can be written as a product of at most n genera-
tors. The isoperimetric profile is the function

I(n) = inf{#∂A : A ⊂ G, #A ≥ n}.
The behavior at infinity of the volume growth 
function V and of the isoperimetric profile I are
quasi-isometric invariants. A much less obvious 
example of a quasi-isometric invariant is the 
behavior of the random walk functionφ (see [W]).
Looking at random walks from this viewpoint turns

out to be very fruitful. A natural question that
arises is whether or not these three invariants, V ,
I, and φ, all carry the same information about the
group G .

It is plain that the volume growth function does
not determine either I or φ: all nonamenable
groups have exponential volume growth, but there
are also many amenable groups with such volume
growth. We shall see that, even among amenable
groups, the function V does not determine the be-
havior of I orφ and that the relation between the
isoperimetric profile I and the probability of return
functionφ is not completely understood. The dif-
ficulty in attacking this kind of question comes
from the diversity and complexity of the algebraic
structures of arbitrary finitely generated groups.
This is why Gromov’s celebrated theorem assert-
ing that any group whose volume growth is
bounded above by a polynomial contains a nilpo-
tent subgroup of finite index is remarkable. For 
random walks the breakthrough came from the 
following theorem of Varopoulos. See [V+].

Theorem 2. Assume that there exists a positive
constant c such that V (n) ≥ cnd for all n. Then
there are positive constants C1 and c1 such that
φ(n) ≤ C1n−d/2 and I(n) ≥ c1n1−1/d for all n.

Observe that the hypothesis of this theorem
puts very little constraint on the group. On the one
hand, this means that one cannot use sophisti-
cated tools to prove such a result. On the other
hand, the group structure is essential since there
are regular graphs—not arising as Cayley graphs—
that have exponential growth from any base point
even though the simple random walk is recurrent.
The key to both Varopoulos’s original proof and
the argument outlined below is a simple calculus-
type inequality. On any Cayley graph (G,S), for
any y ∈ G and any finitely supported function f,∑

x∈G
|f (xy)− f (x)| ≤ |y|

∑
x∈G

|df (x)|,

where |y| is the word length of y (the smallest k
such that y = s1 · · · sk with si ∈ S ) ,  and
|df (x)| =

∑
s∈S |f (xs)− f (x)| is the discrete analog

of the gradient. This inequality can be used to
prove the following functional inequality involving
the inverse function w (t) = inf{n : V (n) > t} of V .
Setting Ψ (t) = Cw2(8t) , we have

(N) ‖f‖2
2 ≤ Ψ (‖f‖2

1/‖f‖2
2) ‖df‖2

2

for any finitely supported function f on G , where
*p-norms are with respect to the counting measure.
If V (n) ≥ cnd, we find that Ψ (t) ≤ Ct2/d , and in-
equality (N) is then analogous to an inequality 
on Rd introduced by Nash in his celebrated paper
concerning the Hölder continuity of solutions of
parabolic equations. Nash used his inequality to
control the behavior of certain heat diffusion 

Figure 1. The ball of radius 4 in the free group
F2 on two generators.
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semigroups. In the present context, (N) leads to the
conclusion of Theorem 2 concerning φ.

The Polynomial Realm
With a little work, Gromov’s polynomial growth 
theorem and Theorem 2 give a positive solution of
Kesten’s conjecture: the only finitely generated
groups that admit a recurrent random walk are the
finite extensions of {0}, Z , and Z2. The works of
Gromov and Varopoulos are also the main 
ingredients for the more precise results described
below, where for two positive functions, f (n) ≈ g(n)
means that there are constants c and C such that
0 < c ≤ f (n)/g(n) ≤ C < +∞.

Theorem 3. For a finitely generated group G , the
following are equivalent properties: (1) V (n) ≈ nd ;
(2) I(n) ≈ n1−1/d ; (3) φ(n) ≈ n−d/2; (4) G contains
a nilpotent subgroup N of finite index, and
d =

∑
i iri , where ri is the torsion-free rank of the

abelian group Ni/Ni+1 , and (Ni) is the lower 
central series of N defined by N1 = N ,
Ni+1 = [N,Ni].

Thus, in the polynomial/nilpotent realm, V , I,
and φ contain essentially the same information.
The simplest non-abelian group with polynomial
growth is the countable Heisenberg group

H =






1 y z
0 1 x
0 0 1


 : x, y, z ∈ Z


 .

It is generated by the four matrices obtained by 
setting x = ±1 with y = z = 0 and y = ±1 with
x = z = 0 . The corresponding Cayley graph is
shown in Figure 2. It has V (n) ≈ n4, I(n) ≈ n3/4,
φ(n) ≈ n−2.

Superpolynomial Growth
There are many groups whose volume grows faster
than any polynomial. In fact, most groups have this
property, even among amenable groups. Hence
the following result is a useful complement to
Theorem 2.

Theorem 4. Fix α ∈ [0,1]. Assume that there ex-
ists a positive constant c such that logV (n) ≥ cnα
for all n. Then there are positive constants c1 and
c2 such that logφ(n) ≤ −c1nα/(α+2) and I(n) ≥
c2n/[logn]1/α for all n.

The bound on φ is due to Varopoulos; the
isoperimetric bound, to Coulhon and the author.
This theorem says that any group with exponen-
tial growth has logφ(n) ≤ −c1n1/3 and I(n) ≥
c2n/ logn . We shall see below that these bounds
are sharp for some groups but not for all. Theo-
rem 4 is also useful for groups of intermediate
growth whose volume grows faster than any 
polynomial but slower than any exponential. The
existence of such groups was discovered by 
Grigorchuk in the mid 1980s. Little is known 
about random walks on these groups, but there is
a growing body of work on the structure of a large
class of examples (see [BGS]).

Solvable Groups
By a result of Milnor and Wolf, solvable groups have
either polynomial or exponential growth. See 
Figure 3. We start with a very satisfactory result
concerning polycyclic groups. By a deep structure
theorem, polycyclic groups are, up to finite 
extension, the amenable discrete subgroups of
connected Lie groups. Here discrete refers to the
topology inherited by the subgroup from the 
ambient group. Because of their specific algebraic
structure, polycyclic groups can be understood
quite well, and this yields the following satisfac-
tory result.

Theorem 5. Let G be an amenable discrete sub-
group of a connected Lie group. Then G is finitely
generated, and either there exists an integer d such
that V (n) ≈ nd or V (n) grows exponentially. In the
latter case, I(n) ≈ n/ logn and logφ(n) ≈ −n1/3 .

Figure 2. A piece of the Cayley graph of the Heisenberg group.

abelian nilpotent

polycyclic

metabelian solvable

intermediate growth amenable nonamenable

Figure 3. A schematic diagram of the inclusion relations
between various classes of finitely generated groups.
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The lower bound on logφ is due to Alexopou-
los and the upper bound on I to Pittet. The other
bounds follow from Theorem 4. One of the 
simplest examples of a polycyclic group with 
exponential growth is the semidirect product
Z � Z2 , whose group operation is defined for
(x,u), (y, v) ∈ Z× Z2 by

(x,u) · (y, v) = (x + y, u +Axv) with A =
(

2 1
1 1

)
.

It is a discrete version of the Lie group Sol, which
gives one of the eight geometries used to describe
3-manifolds in Thurston’s geometrization pro-
gram.

Things are different for general solvable groups
of exponential volume growth. Among solvable
groups the simplest are the metabelian groups, the
ones whose commutator group is abelian. Even in
this class of groups, the behavior of the functions
I and φ can vary widely. For λ > 1, let Aλ be the
subgroup of the affine group ax + b generated by
u±(x) = x± 1 and vλ±(x) = λ±1x . These groups are
metabelian and have exponential volume growth.
They are not discrete in ax + b , and most are not
polycyclic. When λ is an integer, Aλ can be pre-
sented as 〈a, b : aba−1 = bλ〉 with a = v+ and
b = u+ (these are also known as Baumslag-Solitar
groups).

Figures 4 and 5 describe the Cayley graph of A2.
When λ is algebraic, Aλ has I(n) ≈ n/ logn and
logφ(n) ≈ −n1/3 . When λ is transcendental, Aλ is
isomorphic to the wreath product Z � Z and has
logφ(n) ≈ −n1/3(logn)2/3.

In the study of metabelian groups the wreath
products Z2 � Z play an important role. These are
also known as “lamplighter groups”. Imagine Zd

as the map of a (multidimensional and infinite)
American city. At each street crossing there is a
lamp which can be on or off (only finitely many
lamps can be on). In addition, a lamplighter is
wandering around the city turning lamps on or 
off. An element of Z2 � Zd can be thought of as a
“scenery” formed by the lamps and the lamp-
lighter, standing somewhere. See Figure 6. Note 
that this picturesque description fails to capture
how two elements are multiplied. Nevertheless,
the basic moves of a natural random walk on
Z2 � Zd can be described as the 2d possible steps
of the lamplighter to adjacent nodes together 
with the action of turning on or off the lamp 
at the current node. A theorem of Donsker and
Varadhan asserts that Nn, the number of points 
visited by the simple random walk on Zd up to
time n, satisfies log E

(
e−λNn

)
∼ −c(λ,d)nd/(d+2)

as n →∞, where E denotes the expectation. 
It turns out that this is just what one needs to 
prove that logφ(n) ≈ −nd/(d+2) on the lamplighter
group Z2 � Zd [PSa].

The examples above show that for finitely 
generated (in fact, with additional arguments, for
finitely presented) metabelian groups of

Figure 4. A piece of the Cayley graph of A2 = 〈a, b : aba−1 = b2〉 .
This Cayley graph has logφ(n) ≈ −n1/3 , I(n) ≈ n/ logn .

Figure 5. Face and profile of A2 = 〈a, b : aba−1 = b2〉 .
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exponential growth, there are infinitely many dif-
ferent behaviors for φ. The same is true for the
isoperimetric profile I, and Erschler(Dyubina) is de-
veloping new precise isoperimetric bounds for
wreath products in a promising work in progress.
Two related challenging open problems concern-
ing finitely generated metabelian groups are: (a)
classify all the possible behaviors of φ and I; (b)
does the behavior of φ determine the behavior of I
and vice versa? Thus, despite some remarkable
achievements, a complete understanding of the
behavior of random walks and isoperimetry on fi-
nitely generated groups is still very much out of
reach, even for solvable groups. This contrasts
with the results we are about to describe con-
cerning invariant diffusions on connected Lie
groups, where thanks to the existence of a simpler
and more satisfactory structure theory, a com-
plete picture has emerged.

Invariant Diffusion Processes
Let us now change the setting and consider left-
invariant diffusion processes on locally compact
connected groups. Brownian motion on Rd is the
classical and most studied example. These
processes can be characterized in different ways,
but they have the crucial properties of having in-
dependent stationary increments and continuous
paths. Equivalently, by a theorem of Hunt their in-
finitesimal generators are second-order differen-
tial operators that can be written in the form

L =
∑
i
X2
i +X0,

where the Xi ’s are left-invariant vector fields and
can thus be viewed as elements of the Lie algebra.

This makes sense even if G is not a Lie group, 
because locally compact connected groups are
projective limits of Lie groups (see, e.g., [H]). The
parallel with random walks is striking, the role of
the generators being played now by the Xi ’s.

A family of probability measures (µt )t>0 forms
a convolution semigroup if µt ∗ µs = µt+s and
µt → δe as t → 0. Such a semigroup is Gaussian if
t−1µt (G \U ) → 0 as t → 0 for each neighborhood
U of e. This last property is equivalent to the 
continuity of the sample paths of the associated
stochastic process. For a left-invariant diffusion
process Z = (Zt ) on a group G , the laws µt of Zt,
t > 0, form a Gaussian convolution semigroup
such that the function u(t, x) =

∫
G f (x, y)dµt (y)

solves the heat diffusion equation (∂t − L)u = 0,
u(0, x) = f (x).

To complete this picture with a geometric 
perspective, one introduces a natural “distance
function” d(x, y) (allowing the value∞) called the
intrinsic distance or Carnot-Carathéodory distance
and defined by

d(x, y) = sup {f (x)− f (y) :

f ∈ C∞(G), Γ (f , f ) ≤ 1} ,

where Γ (f , f ) = 1
2 (Lf2 − 2fLf ) =

∑
i |Xif |2 is the

“carré du champs”. This definition is more general
but essentially equivalent to others based on suit-
able notions of length of paths. In particular, if G
is a Lie group and L is the Laplace-Beltrami oper-
ator of a left-invariant Riemannian structure, then
d equals the Riemannian distance. The corre-
sponding volume growth function V (t) is defined
as the volume of any metric ball of radius t with
respect to the left-invariant Haar measure on G .

The main questions concerning these diffusions
are: Does µt have a smooth density with respect
to Haar measure? And if it does, what is the 
behavior of this density? How does this behavior
relate to properties of the distance function d, to
the volume growth function, to the family of vec-
tor fields (Xi)? How does this relate to the algebraic
structure of the group G? Assuming that (µt )t>0
admits a continuous density x �→ µt (x) , the value
µt (e) at the origin is the exact analog of the prob-
ability of return φ(n) in the first part of the 
article, and the most basic question concerns 
the behavior of µt (e) as t tends either to zero or
to infinity.

For brevity we will concentrate on the case
where L =

∑
X2
i , i.e., X0 = 0. The case where X0 �= 0

is interesting and requires both additional argu-
ments and some different ideas, but this is more
of a technical matter.
Local Theory
Let G be a connected Lie group of dimension n. The
natural hypothesis in this context is that the fam-
ily (Xi) generates the Lie algebra of G . This means
that the Xi ’s, together with their commutators of

Figure 6. An element of the 2-dimensional lamplighter
group Z2 � Z2 .
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all orders, linearly span the Lie algebra. We always
make this hypothesis. For the second-order 
differential operator L, it corresponds to the 
celebrated subellipticity condition of Hörmander.
The local theory that we are about to describe can
(and should) be viewed as a model for the deeper
and more difficult study of general subelliptic 
second-order differential operators. The geometry
of the distance d is an area of research in its own
right under the name of sub-Riemannian geome-
try and is closely related to control theory. In some
sense, the group structure is irrelevant here, 
although it leads to significant simplifications (see
[V+]).

Under Hörmander’s condition, µt has a 
smooth positive density for all t > 0, the distance d
is Hölder continuous with respect to any fixed 
locally Euclidean distance, and the operator L
is hypoelliptic. There exists an integer

m ∈ [n,1 +
(
n
2

)
] ,depending on the family (Xi) ,

such that µt (e) ∼ ct−m/2 as t → 0. This m is also
characterized by the fact that V (t) ∼ btm as 
t → 0. Much like for harmonic functions in 
Euclidean space, there exists a constant C = CL
such that, for any r ∈ (0,1) and for any positive 
solution of Lu = 0 in the d-ball B(x, r ), we have

(GH) sup
B(x,r/2)

u ≤ C inf
B(x,r/2)

u.

The geometric nature of this Harnack inequality
makes it a powerful tool and illustrates the role
played by the distance d.

Thus, under Hörmander’s condition, symmetric
Gaussian semigroups on Lie groups are very well
behaved. Before discussing their large-scale and
long-time behavior, we briefly consider what hap-
pens locally when G is not a Lie group. This case 
illustrates in a highly nontrivial way the general 
theory of analysis and geometry on Dirichlet 
spaces. Simple-minded but already interesting 
examples are the product of countably many circle
groups and the product of countably many orthog-
onal groups in different dimensions. In such cases,
can (µt )t>0 have a nice continuous density for all
t > 0? Although the theory of such Gaussian semi-
groups is developed in [H], this question is not 
answered there. It is natural to focus (at least at 
first) on bi-invariant, i.e., central, Gaussian semi-
groups on compact groups. In fact, there are 
many interesting and challenging open questions
already in the case of the infinite-dimensional 
torus T∞, where the infinitesimal generator can 
simply be written L =

∑
i,j ai,j∂i∂j , and this 

infinite sum is easily interpreted as acting on 
functions depending only on finitely many coordi-
nates.

A recent result of Bendikov and the author is
that any compact, connected, locally connected,
metrizable groupG carries a host of central Gauss-
ian semigroups having a smooth continuous 

positive density with respect to Haar measure. The
quantity µt (e) can explode in many different ways
as t tends to zero, including behaviors such as 

e[log 1/t]1+λ
, et−λ , eet

−λ
, etc., with λ > 0.

A sufficient but far-from-necessary condition for
(µt )t>0 to have a continuous density is that the 
associated intrinsic distance be continuous. 
This condition also implies an elliptic Harnack 
inequality. Namely, if d is continuous, then for
any domain Ω and any compact set K in Ω, there
exists a constant C(Ω, K) such that any positive
continuous solution of Lu = 0 in Ω satisfies

(H) sup
K
u ≤ C(Ω, K) inf

K
u.

Observe that the geometric nature of the in-
equality has been lost here in the sense that one
does not know how to make the constant C(Ω, K)
scale invariant by choosing the pair (Ω, K) to be
suitable concentric balls as in (GH). The surpris-
ing fact that such a Harnack inequality can hold
in infinite dimensions was discovered in the mid-
1970s by Bendikov and Berg independently in their
Ph.D. theses. Remarkably, inequality (H) can be
characterized in terms of the behavior of µt (e) .

Theorem 6. Let L be the infinitesimal generator of
a central symmetric Gaussian semigroup (µt )t>0 on
a compact connected groupG . Then L satisfies the
elliptic Harnack inequality (H) if and only if
logµt (e) = o(1/t) as t → 0 [BS].

One of the crucial ingredients in the proof of
Theorem 6 is a study of bi-invariant diffusions on
compact simple Lie groups that brings out the 
role played by the dimension and that involves
small-, medium-, and large-time behaviors.
Long-Time Behavior on Lie Groups
We now turn to noncompact connected Lie groups
and discuss the long-time behavior of µt (e) as t
tends to infinity, under the standing condition
that the family (Xi) generates the Lie algebra. This
long-time behavior is really the heart of the mat-
ter, since it is where the group structure plays the
most significant part.

To start, the behavior of the volume growth
function V at infinity is independent of the choice
of the family (Xi). Guivarc’h proved in the early
1970s that the volume growth at infinity is either
exponential or comparable to a power function
whose exponent D is an integer depending only 
on the underlying group. The groups for which V
has a polynomial behavior are called groups of
type (R), for rigid. The adjoint representation of
G is obtained by lifting the action of the inner 
automorphisms x �→ axa−1 to the Lie algebra.
Groups of type (R) can be characterized alge-
braically in terms of the adjoint representation,
whose eigenvalues must be purely imaginary. 
The group U (m) of all m×m unipotent upper-
triangular real matrices is of type (R) and has
V (t) ≈ tD with D = 1

6 (m− 1)m(m + 1).
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Groups of type (R) are amenable and unimod-
ular, that is, have bi-invariant Haar measures, but
there are many amenable unimodular Lie groups
of exponential growth (hence, not of type (R)). The
simplest such group is the group Sol mentioned
above in the section on random walks on solvable
groups. Sol can be described as the semidirect
product of R2 by R with the action given by 
multiplication by 

(
et 0
0 e−t

)
.

The behavior of µt (e) on amenable unimodular
Lie groups is described by the following theorem.

Theorem 7. For any amenable unimodular 
connected Lie group, if V (t) ≈ tD as t →∞ ,  
then µt (e) ≈ t−D/2 as t →∞. If V is exponential,
then logµt (e) ≈ −t1/3 as t →∞.

The two-sided bound under polynomial growth
is due to Varopoulos. In the exponential growth
case the lower bound is due to Alexopoulos and
the upper bound to Varopoulos, with independent
distinct proofs of the latter by Hebisch and Robin-
son. See [V+]. Theorem 7 is analogous to Theorem 5
and can be complemented by a statement con-
cerning the isoperimetric profile, as in Theorem 5
(see [P], [V+]). The two results, for random walks
and for diffusions, emerged simultaneously and
can be proved by similar methods. A recent work
of Alexopoulos [A] complements Theorem 7 with
long-time asymptotics on groups with polynomial
volume growth, i.e., groups of type (R). Alexopou-
los’s approach, which is tightly connected to the
algebraic structure of type (R) groups, is adapted
from techniques and ideas of the area of PDE
known as homogenization theory, which deals
with the large-scale behavior of differential 
operators having periodic coefficients in Rn.

Of course, for nonamenable groups, µt (e)
decays exponentially fast at a rate described by 
the spectral gap λ of L =

∑
X2
i , which is defined as

the infimum of the Raleigh quotient∫
G
∑ |Xif |2dν∫
G |f |2dν

, f �= 0, f ∈ L2(G,ν),

where ν is a right-invariant Haar measure onG . The
spectral gap λ vanishes if and only if G is amenable.
It should be noted that, in sharp contrast with the
case of finitely generated groups, there exists a 
satisfactory structure theory that distinguishes
between amenable and nonamenable groups in
the class of connected locally compact groups [Pa].
Typical nonamenable connected Lie groups are all
the semisimple noncompact Lie groups such as
SLn(R) , and the connected component of the iden-
tity in SO(p, q). One of the early results concern-
ing diffusions on Lie groups is the local central 
limit theorem of Bougerol, which gives, for semi-
simple Lie groups, a precise asymptotic result 
of the form µt (e) ∼ ct−a/2e−λt as t → +∞ for some
integer a ≥ 3 and λ > 0 as above. In general, such

a precise result is hard to obtain. In either the
commutative or the semisimple case, representa-
tion theory is the tool of choice for this purpose,
but for other groups, including nilpotent and 
solvable groups, representation theory fails to a
large extent to provide useful information about
the behavior of µt (e) .

For many years precisely understanding the
long-time behavior of µt (e) in full generality
seemed hopeless, despite the structure theory of
Lie groups. However, in the last ten years Varopou-
los has developed a theory that describes what 
happens for any symmetric Gaussian semigroup
on any connected real Lie group, amenable or not,
unimodular or not. The form of the main result is
similar to Theorem 7, but the proofs are quite dif-
ferent. The proof of Theorem 7 is mostly analytic
in nature, whereas the proof of Theorem 8 below
also involves probability, algebra, and geometry.

Varopoulos [Vb] separates real connected Lie
groups into two classes, (B) and (NB). This algebraic
classification is too involved to describe here pre-
cisely. All (noncompact) semisimple groups, e.g.,
SLn(R), are in (NB). In the case of amenable groups,
this classification reduces to a simpler one, (C)
versus (NC), which can be understood in terms of
the adjoint representation and the geometry of
(generalized) roots [Va]. The class (R) of rigid
groups coincides exactly with the class of those
(NC) groups that are unimodular. Further examples
of (NC) groups are the groups AN coming from the
KAN Iwasawa decomposition of semisimple
groups, for instance the group ax + b . To describe
the simplest family of examples where both (C) and
(NC) groups arise, let S* = R �* R2 , where
* = (*1, *2) ∈ R2 and the product is given by

(x,u) · (y, v) = (x + y, u +Ax*v)

where A* =

(
e*1 0
0 e*2

)
.

Then S* is of type (C) if *1*2 < 0 and of type (NC)
if *1*2 > 0.

Varopoulos’s main result describes the classes
(B) and (NB) (hence also the classes (C) and (NC))
in terms of the long-time behavior of µt (e) and 
classifies all the possible behaviors.

Theorem 8. (1) For groups of type (NB), for each
L =

∑
X2
i there exists a nonnegative real number a

(which may depend on L) such that µt (e) ≈ t−ae−tλ
as t →∞ .  (2) For groups of type (B),
log(etλµt (e)) ≈ −t1/3 as t →∞. Here λ denotes the
spectral gap of the corresponding operator L.

The factors t−a and e−t1/3 appearing respec-
tively in the (NB) and (B) cases can be interpreted
in terms of the probability that a certain Euclidean
Brownian motion stays in a certain convex region
up to time t . The exact nature of the Brownian 
motion (i.e., its covariance matrix) is determined

fea-saloff.qxp  8/17/01  9:17 AM  Page 976



OCTOBER 2001 NOTICES OF THE AMS 977

by the algebraic structure of the group and by L.
The convex region is determined by the geometry
of the roots. It is compact or not depending on
whether the group is (B) or (NB), and this accounts
for the e−t1/3 versus polynomial behavior. A 
precise knowledge of the covariance matrix of the
Brownian motion and of the convex region above
are necessary to determine the constant a in the
(NB) case. In fact, typically, the exact value of a is
very hard to compute and can vary continuously
with L.

These results extend to give a description of 
the behavior of the convolution powers of any
continuous compactly supported symmetric 
nonnegative function f. This behavior precisely
mimics the behavior of symmetric Gaussian 
convolution semigroups depending on whether
the group is (B) or (NB). When expressed in terms
of convolution powers, the result can be formulated
in a straightforward way in the setting of locally
compact connected groups. The restriction that 
G be connected is essential, as shown by the 
finitely generated groups Z2 � Zd discussed in 
the section on solvable groups.

To conclude, there is a geometric description of
the classes (B) and (NB) which adds a final touch
to this remarkable classification [Vc]. It involves 
filling invariants. These have been considered in
various contexts, in particular by Gromov. The 
2-dimensional filling invariant ψ2(t) of a simply
connected Riemannian manifold is defined as 
follows. For any given loop of length at most t , 
consider all immersed disks having this loop as
their boundary, and find the infimum of the areas
of all such disks. Then ψ2(t) is the supremum of
these infimal areas over all such loops. For each
dimension k = 2, . . . , n− 1, where n is the topo-
logical dimension of the manifold, there is a 
k-filling invariant. In particular, ψn−1(t) gives the
largest possible volume of a compact set with
smooth boundary of (n− 1)-volume at most t and
is closely related to the isoperimetric profile. 
Essentially, a group is (NB) if and only if all its fill-
ing invariants are bounded above polynomially,
whereas a group is a (B) group if and only if at least
one of its filling invariants is growing faster than
any polynomial. Thus, for connected real Lie
groups, one has three equivalent classifications: 
the analytic/probabilistic classification according
to the long-time behavior of symmetric Gaussian
semigroups, the geometric classification in terms
of filling invariants, and the (B) versus (NB) alge-
braic classification. There is no doubt that these
fundamental results will lead to further progress
concerning invariant diffusions, harmonic analy-
sis, and geometry on Lie groups.
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