Fourier series on fractals

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga, Q. Sun

July, 2009

A (1) > A (1) > A

∃ >

Spectral sets

Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i\lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$.

A⊒ ▶ ∢ ∃

Spectral sets

Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i\lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called *the spectrum* of Ω .

A⊒ ▶ ∢ ∃

Spectral sets

Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i\lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called *the spectrum* of Ω .

Conjecture (Fuglede)

A set Ω is spectral if and only if it tiles \mathbb{R}^d by translations.

Spectral sets

Definition

A set Ω of positive finite Lebesgue measure is called spectral if there exists a set $\Lambda \subset \mathbb{R}^d$, such that $\{\exp(2\pi i\lambda \cdot x) \mid \lambda \in \Lambda\}$ forms an orthogonal basis for $L^2(\Omega)$. Then Λ is called *the spectrum* of Ω .

Conjecture (Fuglede)

A set Ω is spectral if and only if it tiles \mathbb{R}^d by translations.

Tao, Matolcsi et.al.: The Fuglede Conjecture fails in dimension $d \ge 3$.

Spectral measures

Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions?

Spectral measures

Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions?

Answer: No, there are some fractal measures that admit orthogonal Fourier series.

Spectral measures

Question (Jorgensen-Pedersen): are Fourier series typical for the Lebesgue measure, or are there other measures having orthogonal bases of exponential functions? Answer: No, there are some fractal measures that admit orthogonal Fourier series.

Definition

Let $e_{\lambda}(x) := e^{2\pi i \lambda \cdot x}$. A Borel probability measure μ on \mathbb{R}^d is called *spectral* if there exists a set $\Lambda \subset \mathbb{R}^d$ such that $\{e_{\lambda} \mid \lambda \in \Lambda\}$ is an orthonormal basis for $L^2(\mu)$. Then Λ is called a *spectrum* for the measure μ .

イロト イポト イヨト イヨト

The Jorgensen-Pedersen example

Example: Cantor set, using division by 4, keep the first and the third quarter. The Hausdorff measure μ_4 on this Cantor set, with dimension $\ln 2 / \ln 4$, is a spectral measure with spectrum

$$\Lambda := \left\{ \sum_{k=0}^n 4^k a_k \mid , a_k \in \{0,1\} \right\}.$$

The Jorgensen-Pedersen example

Example: Cantor set, using division by 4, keep the first and the third quarter. The Hausdorff measure μ_4 on this Cantor set, with dimension $\ln 2/\ln 4$, is a spectral measure with spectrum

$$\Lambda:=\left\{\sum_{k=0}^n 4^k a_k \mid, a_k\in\{0,1\}
ight\}.$$

The Middle Third Cantor measure is far from spectral: there are no three mutually orthogonal exponential functions.

Affine iterated function systems

Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d , $0 \in B$, and let N := #B. Define the affine maps

$$au_b(x) = R^{-1}(x+b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b\in B}$ is called an affine iterated function system (IFS).

Affine iterated function systems

Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d , $0 \in B$, and let N := #B. Define the affine maps

$$au_b(x) = R^{-1}(x+b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b\in B}$ is called an affine iterated function system (IFS).

Theorem (Hutchinson)

There exists a unique compact set such that

$$X_B = \cup_{b \in B} \tau_b(X_B)$$

Affine iterated function systems

Let R be a $d \times d$ expansive integer matrix, let B be a finite subset of \mathbb{Z}^d , $0 \in B$, and let N := #B. Define the affine maps

$$au_b(x) = R^{-1}(x+b), \quad (x \in \mathbb{R}^d, b \in B)$$

Then $(\tau_b)_{b\in B}$ is called an affine iterated function system (IFS).

Theorem (Hutchinson)

There exists a unique compact set such that

$$X_B = \cup_{b \in B} \tau_b(X_B)$$

There is a unique Borel probability measure $\mu = \mu_B$ on \mathbb{R}^d such that

$$\int f \, d\mu = \frac{1}{N} \sum_{b \in B} \int f \circ \tau_b \, d\mu, \quad (f \in C_c(\mathbb{R}^d))$$

Convergence of mock Fourier series

Theorem (Strichartz)

For the Jorgensen-Pedersen Cantor set, the Fourier series of continuous functions converge uniformly, Fourier series of L^p -functions converge in L^p .

Connections to wavelet theory

The Fourier transform of μ :

$$\hat{\mu}(x) = \prod_{n=1}^{\infty} \hat{\delta}_B\left((R^*)^{-n} x \right), \quad \hat{\delta}_B(x) = \frac{1}{N} \sum_{b \in B} e^{2\pi i b \cdot x}$$

-∢ ≣⇒

æ

Connections to wavelet theory

The Fourier transform of μ :

$$\hat{\mu}(x) = \prod_{n=1}^{\infty} \hat{\delta}_B\left((R^*)^{-n} x \right), \quad \hat{\delta}_B(x) = \frac{1}{N} \sum_{b \in B} e^{2\pi i b \cdot x}$$

Orthogonality:

$$\sum_{\lambda \in \Lambda} |\hat{\mu}(x+\lambda)|^2 = 1$$

-∢ ≣⇒

Hadamard pairs

Let *L* be a subset of \mathbb{Z}^d of the same cardinality as *B*, $0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied

The matrix

$$\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot I} \right)_{b \in B, I \in L}$$

is unitary.

Hadamard pairs

Let *L* be a subset of \mathbb{Z}^d of the same cardinality as *B*, $0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied

The matrix

$$\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot l} \right)_{b \in B, l \in I}$$

is unitary.

2 The following QMF condition is satisfied:

$$rac{1}{N}\sum_{l\in L} \hat{\delta}_B\left((R^*)^{-1}(x+l)
ight) = 1, \quad (x\in\mathbb{R}).$$

Hadamard pairs

Let *L* be a subset of \mathbb{Z}^d of the same cardinality as *B*, $0 \in L$. We say that (B, L) form a Hadamard pair if one of the following equivalent conditions is satisfied

The matrix

$$\frac{1}{\sqrt{N}} \left(e^{2\pi i R^{-1} b \cdot I} \right)_{b \in B, I \in I}$$

is unitary.

2 The following QMF condition is satisfied:

$$rac{1}{N}\sum_{l\in L}\hat{\delta}_B\left((R^*)^{-1}(x+l)
ight)=1,\quad (x\in\mathbb{R}).$$

• The measure
$$\delta_B = \frac{1}{N} \sum_{b \in B} \delta_b$$
 is spectral with spectrum $(R^*)^{-1}L$.

δ -cycles

Suppose (B, L) form a Hadamard pair. Want to get the following spectrum for μ .

$$\Lambda := \left\{ \sum_{n=0}^{\infty} R^k I_k \, | \, I_k \in L \right\}$$

A (1) > (1)

3

δ -cycles

Suppose (B, L) form a Hadamard pair. Want to get the following spectrum for μ .

$$\Lambda := \left\{ \sum_{n=0}^{\infty} R^k I_k \, | \, I_k \in L \right\}$$

Definition

A set $\{x_0, \ldots, x_{p-1}\}$ is called a δ -cycle, if there exist $l_0, \ldots, l_{p-1} \in L$ such that $(R^*)^{-1}(x_i + l_i) = x_{i+1}$, where $x_p := x_0$, and $|\hat{\delta}_B(x_i)| = 1$, for all $i \in \{0, \ldots, p-1\}$

・ロト ・日本 ・モート ・モート

The Łaba-Wang theorem

Theorem (Łaba-Wang)

In dimension d = 1, suppose $R \in \mathbb{Z}$ and $0 \in B, L \subset \mathbb{Z}$ form a Hadamard pair. Let μ_B be the invariant measure for the IFS $(\tau_b)_{b\in B}$. Then the set

$$\Lambda := \left\{ \sum_{n=0}^{\infty} R^k I_k \, | \, I_k \in L \right\}$$

is a spectrum for the measure μ_B if and only if the only δ -cycle is $\{0\}$.

イロト イポト イヨト イヨト

An improvement on the Ł-W theorem

Theorem (D, Jorgensen)

In dimension d = 1, suppose $0 \in B, L \subset \mathbb{Z}$, (B, L) form a Hadamard pair, and let μ_B be the invariant measure of the IFS $(\tau_b)_{b\in B}$. Then μ_B is a spectral measure.

An improvement on the Ł-W theorem

Theorem (D, Jorgensen)

In dimension d = 1, suppose $0 \in B, L \subset \mathbb{Z}$, (B, L) form a Hadamard pair, and let μ_B be the invariant measure of the IFS $(\tau_b)_{b\in B}$. Then μ_B is a spectral measure. A spectrum for μ_B is the smallest set that contains -C for all δ -cycles C, and such that

$$R^*\Lambda + L \subset \Lambda.$$

Examples

For the Jorgensen-Pedersen example R = 4, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$.

イロト イポト イヨト イヨト

Examples

For the Jorgensen-Pedersen example R = 4, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$. Other than the trivial δ -cycle $\{0\}$, there is an additional one $\{1\}$.

Examples

For the Jorgensen-Pedersen example R = 4, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$. Other than the trivial δ -cycle $\{0\}$, there is an additional one $\{1\}$. $1 = \frac{1}{4}(1+3)$, and $|\hat{\delta}_B(1)| = 1$.

・ロト ・同ト ・ヨト ・ヨト

Examples

For the Jorgensen-Pedersen example R = 4, $B = \{0, 2\}$. We can take $L = \{0, 3\}$. Then $\hat{\delta}_B(x) = \frac{1}{2}(1 + e^{2\pi i \cdot 2x})$. Other than the trivial δ -cycle $\{0\}$, there is an additional one $\{1\}$. $1 = \frac{1}{4}(1+3)$, and $|\hat{\delta}_B(1)| = 1$.

$$\Lambda(0) = \left\{ \sum_{k=0}^{n} 4^{k} I_{k} \mid I_{k} \in \{0,3\} \right\}$$

$$\Lambda(1) = \left\{ -1 - \sum_{k=0}^{n} 4^{k} I_{k} \mid I_{k} \in \{0,3\} \right\}$$

・ロト ・回ト ・ヨト ・ヨト

Then $\Lambda(0) \cup \Lambda(1)$ is a spectrum for μ_B .

Higher dimensions

Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $(\tau_b)_{b \in B}$ is a spectral measure.

Higher dimensions

Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $(\tau_b)_{b \in B}$ is a spectral measure.

① True for dimension d = 1.

Higher dimensions

Conjecture (D-Jorgensen)

Let $0 \in B, L \subset \mathbb{Z}^d$, and suppose (B, L) form a Hadamard pair. The invariant measure μ_B for the IFS $(\tau_b)_{b \in B}$ is a spectral measure.

- True for dimension d = 1.
- True for higher dimensions under the assumption that (B, L) is "reducible".

Examples

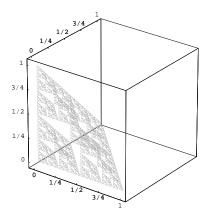


Figure: The Eiffel Tower. $R = 2I_3$, $B = \{0, e_1, e_2, e_3\}$

・ロト ・回ト ・ヨト

The Fourier transform

Let μ be a spectral measure with spectrum Λ . The Fourier transform $\mathcal{F}: L^2(\mu) \to l^2(\Lambda)$ is defined by

$$(\mathcal{F}f)(\lambda) = \langle f, e_{\lambda} \rangle, \quad (f \in L^{2}(\mu), \lambda \in \Lambda).$$

The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_\lambda = (e^{2\pi i t \cdot \lambda} a_\lambda)_\lambda.$$

- ∢ ≣ >

The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_\lambda = (e^{2\pi i t \cdot \lambda} a_\lambda)_\lambda.$$

The group of local translations U_{λ} is defined by

$$U_{\Lambda}(t) = \mathcal{F}^{-1}M_{e_t}\mathcal{F}, \quad (t \in \mathbb{R}^d).$$

The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_\lambda = (e^{2\pi i t \cdot \lambda} a_\lambda)_\lambda.$$

The group of local translations U_{λ} is defined by

$$U_{\Lambda}(t) = \mathcal{F}^{-1}M_{e_t}\mathcal{F}, \quad (t \in \mathbb{R}^d).$$

Theorem

Suppose O, O + t is contained in supp (μ) . Then

$$(U_{\Lambda}(t)f(x) = f(x+t), \quad (x \in O))$$

The group of local translations

Define the multiplication operator M_{e_t} on $l^2(\Lambda)$

$$M_{e_t}(a_\lambda)_\lambda = (e^{2\pi i t \cdot \lambda}a_\lambda)_\lambda.$$

The group of local translations U_{λ} is defined by

$$U_{\Lambda}(t) = \mathcal{F}^{-1}M_{e_t}\mathcal{F}, \quad (t \in \mathbb{R}^d).$$

Theorem

Suppose O, O + t is contained in supp(μ). Then

$$(U_{\Lambda}(t)f(x) = f(x+t), \quad (x \in O))$$

Corollary

If μ is a spectral measure and $O, O + t \subset \text{supp}(\mu)$ then $\mu(O) = \mu(O + t)$.

Finite spectral sets

Theorem

Let A be a finite subset of \mathbb{R}^n . The following affirmations are equivalent:

- **1** The set A is spectral.
- ② There exists a continuous group of unitary operators $(U(t))_{t \in \mathbb{R}^n}$ on $L^2(A)$, i.e., U(t + s) = U(t)U(s), $t, s \in \mathbb{R}^n$ such that

$$U(a-a')\chi_a = \chi_{a'} \quad (a,a' \in A), \tag{3.1}$$

where

$$\chi_{a}(x) = \begin{cases} 1, & x = a \\ 0, & x \in A \setminus \{a\}. \end{cases}$$

Frames

Definition

A family of vectors $(v_i)_{i \in I}$ in a Hilbert space \mathcal{H} is called a *frame* if there exist A, B > 0 such that

$$A\|f\|^2 \leq \sum_{i\in I} |\langle f, v_i \rangle|^2 \leq B\|f\|^2, \quad (f\in \mathcal{H}).$$

• • • • • • • • • • •

Fourier frames for the Cantor set

Consider the Middle Third Cantor set with its invariant measure μ_3 , i.e., R = 3, $B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.

Fourier frames for the Cantor set

Consider the Middle Third Cantor set with its invariant measure μ_3 , i.e., R = 3, $B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.

Definition

Let μ be a finite Borel measure on \mathbb{R}^d . A set Λ in \mathbb{R}^d is called a *frame spectrum* if $\{e_{\lambda} \mid \lambda \in \Lambda\}$ is a frame for $L^2(\mu)$.

Fourier frames for the Cantor set

Consider the Middle Third Cantor set with its invariant measure μ_3 , i.e., R = 3, $B = \{0, 2\}$. Jorgensen and Pedersen proved that there are not more than two orthogonal exponentials in $L^2(\mu_3)$.

Definition

Let μ be a finite Borel measure on \mathbb{R}^d . A set Λ in \mathbb{R}^d is called a *frame spectrum* if $\{e_{\lambda} \mid \lambda \in \Lambda\}$ is a frame for $L^2(\mu)$.

Question

Construct a frame spectrum for the Middle Third Cantor set.

イロト イポト イヨト イヨト

Frame spectrum and geometry

Question (Mark Kac)

Can one hear the shape of a drum?

D. Dutkay, joint work with D. Han, P. Jorgensen, G. Picioroaga Fourier series on fractals

Frame spectrum and geometry

Question (Mark Kac)

Can one hear the shape of a drum?

Question

What geometric properties of the measure μ can be deduced if we know a spectrum/ frame spectrum of μ ?

A (1) > A (1) > A

Beurling dimension

Definition

Let $Q = [0, 1]^d$ be the unit cube. Let Λ be a discrete subset of \mathbb{R}^d , and let $\alpha > 0$. Then the α -upper Beurling density is

$$\mathcal{D}_lpha(\Lambda):=\limsup_{h o\infty}\sup_{x\in\mathbb{R}^d}rac{\#(\Lambda\cap(x+hQ))}{h^lpha}$$

Then $\mathcal{D}_{\alpha}(\Lambda)$ is constant ∞ then 0, with discontinuity at exactly one point. This point is called the upper Beurling dimension of Λ .

Hausdorff meets Beurling

Theorem

Let μ_B be the invariant measure for an affine IFS, with no overlap. Suppose Λ is a frame spectrum for μ_B , and Λ is "not too sparse". Then the Beurling dimension of Λ is equal to the Hausdorff dimension of the attractor $X_B(= \text{supp}(\mu))$.