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Notations I.
Lattice Λ in Rn

M : Λ→ Λ such that det(M) 6= 0

0 ∈ D ⊆ Λ a finite subset

Definition The triple (Λ,M,D) is called a number
system (GNS) if every element x of Λ has a
unique, finite representation of the form

x =
∑l

i=0
M idi, where di ∈ D and l ∈ N.
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Notations II.
Similarity preserves the number system
property, i.e, if M1 and M2 are similar via the
matrix Q and (Λ,M1, D) is a number system
then (QΛ,M2, QD) is a number system as
well.

No loss of generality in assuming that M is
integral acting on the lattice Zn.

If two elements of Λ are in the same coset of
the factor group Λ/MΛ then they are said to
be congruent modulo M .
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Notations III.
Theorem 1 [1] If (Λ,M,D) is a number system
then

1. D must be a full residue system modulo M ,

2. M must be expansive,

3. det(I −M) 6= ±1.

If a system fulfills these conditions it is called a

radix system.
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Notations IV.

Let φ : Λ→ Λ, x
φ7→M−1(x− d) for the unique

d ∈ D satisfying x ≡ d (mod M).

Since M−1 is contractive and D is finite, there
exists a norm on Λ and a constant C such
that the orbit of every x ∈ Λ eventually enters
the finite set S = {p ∈ Λ | ‖x‖ < C} for the
repeated application of φ.

This means that the sequence
x, φ(x), φ2(x), . . . is eventually periodic for all
x ∈ Λ.
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Notations V.
(Λ,M,D) is a GNS iff for every x ∈ Λ the orbit
of x eventually reaches 0.

A point x is called periodic if φk(x) = x for
some k > 0.

The orbit of a periodic point is called a cycle.

The decision problem for (Λ,M,D) asks if
they form a GNS or not.

The classification problem means finding all
cycles.
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Content
How to decide expansivity?

How to generate expansive operators?

How to decide the number system property?

Case study: generalized binary number
systems.

How to classify the expansions?

How to construct number systems?
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Expansivity I.

Λ = Zn. Given operator M examine
P =charpoly(M ).

A polynomial is said to be stable if
1. all its roots lie in the open left half-plane, or
2. all its roots lie in the open unit disk.
The first condition defines Hurwitz stability
and the second one Schur stability.

There is a bilinear mapping between these
criterions (Möbius map).
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Expansivity II.

Schur stability: Algorithm of Lehmer-Schur.

Hurwitz stability: An n-terminating continued
fraction algorithm of Hurwitz.

Results:

For arbitrary polinomials Lehmer-Schur is
faster.

For stable polynomials Hurwitz-method is
faster.

Caution: Intermediate expression swell may
occur.
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Expansivity III.

Comparision of the methods for stable
polynomials.
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Expansivity III.

Comparision of the methods for stable
polynomials.
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Expansivity IV.

Hurwitz-method works also for symbolic coeffs.
Let a(x) = a0 + a1x + a2x

2 + x3 ∈ Z[x].
Hurwitz-method gives that a(x) is expansive if

3a0 − a1 − a2 + 3

a0 − a1 + a2 − 1
,

a0 + a1 + a2 + 1

3a0 − a1 − a2 + 3

8(a2

0
− a0a2 + a1 − 1)

(a0 − a1 + a2 − 1)(3a0 − a1 − a2 + 3)
,

are all positive.

For the details (with Maple code) see [2].
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Expansivity V.

How to generate expansive integer polynomials
with given degree and constant term?

Using Las Vegas type randomized algorithm,
which produces an expansive polynomial in
R[x], then makes round.

Using the algorithm of Dufresnoy and Pisot
[3], which works well for small constant term.

Algorithmic problems in the research of number expansions, Graz, 16th April, 2007. – p.12/29



Expansivity VI.

Generating random expansive matrices
seems difficult.

One can apply an integer basis
transformation to the companion matrix of a
polynomial.

This method generates all expansive matrices
only if the class number of the order
corresponding to the polynomial is 1.

Algorithmic problems in the research of number expansions, Graz, 16th April, 2007. – p.13/29



GNS Decision I.
The original method uses a covering of the
set of fractions H (all periodic points lie in the
set −H). Since H is compact, it gives lower
and upper bounds on the coordinates of
periodic points [4].

It can be combined with a basis
transformation using a simulated annealing
type randomized algorithm in order to
improve the bounds [5].
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GNS Decision II.
The average improvement in the volume of the
covering set expressed in orders of magnitude.

Improvement in orders of magnitude
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GNS Decision III.
Brunotte’s canonical number system decision
algorithm [6] can be extended (M is the
companion of the monic, integer polynomial,
D = {(i, 0, 0, . . . 0)T | 0 ≤ i < |det M |}).

Function CONSTRUCT-SET-E(M,D)
E ← D , E′ ← ∅ ;1

while E 6= E′ do2
E′ ← E;3

forall e ∈ E and d ∈ D do4
put φ(e + d) into E;5

end6

end7

return E;8
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GNS Decision IV.
The previous algorithm terminates. Denote
B = {(0, 0, . . . , 0,±1, 0, . . . , 0} the n basis vectors
and their opposites.

Function SIMPLE-DECIDE(M,D)

E ← CONSTRUCT-SET-E(M,D);1

forall p ∈ B ∪ E do2

if p has no finite expansion then3

return false ;4

end5

return true;6
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GNS Decision V.
M =

(

1 −2
1 3

)

, D = {(0, 0), (1, 0), (0, 1), (4, 1), (−7, 6)}.
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Changing the basis to {(1, 0), (−1, 1)} decreases

the volume from 42 to 24. |E| = 65.
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GNS Decision VI.
M =

(

0 −7

1 6

)

, D is canonical.
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Replacing the basis vector (0, 1) with (−5, 1) gives

volume 4 instead of 64. |E| = 12.
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Binary Case I.
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Binary Case II.

Degree 2 3 4 5 6 7 8 9 10 11

Expansive 5 7 29 29 105 95 309 192 623 339

CNS 4 4 12 7 25 12 20 12 42 11

Problems: in higher dimensions the volume of the

covering set or the set E are sometimes too big.

The largest E encountered is of size 21 223 091,

for 2+3x+3x2 +3x3 +3x4 +3x5 +3x6 +3x7 +3x8 +

2x9 + x10. The number of points in the covering

set of this sapmle is 226 508 480 352 000.
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GNS Classification I.
Two methods: covering and simple classify.

Function SIMPLE-CLASSIFY(M,D)
D ← D;1

finished ← false;2

while not finished do3
E ← CONSTRUCT-SET-E(M,D) ;4

finished ← true;5

forall p ∈ E ∪B do6
if p does not run eventually intoD then7

put newly found periodic points into D;8

finished ← false;9

end10

end11

return D \D (the set of non-zero periodic points);12
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SIMPLE-CLASSIFY
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GNS Classification II.
Comparing covering and simple classify:

Covering is parallelizable.

Both give negative answers fast.

Either can beat the other in some cases.

Experiments show that the algorithmic
complexity of the worst case is exponential.
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GNS Construction I.
Given lattice Λ and operator M satisfying
criteria 2) and 3) in Theorem 1 is there any
suitable digit set D for which (Λ,M,D) is a
number system?

If yes, how many and how to construct them?
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GNS Construction II.
Theorem (Kátai) Let Λ be the set of algebraic
integers in an imaginary quadratic field and let
α ∈ Λ. Then there exists a suitable digit set D by
which (Λ, α,D) is a number system if and only if
|α| > 1, |1− α| > 1 hold.

Theorem [8] Let Λ be the set of algebraic integers

in the real quadratic field Q(
√

2) and let 0 6= α ∈ Λ.

If α, 1±α are not units and |α| , |α| >
√

2 then there

exists a suitable digit set D by which (Λ, α,D) is a

number system.
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GNS Construction III.
Theorem [9] For a given matrix M if ρ(M−1) < 1/2
then there exists a digit set D for which (Λ,M,D)
is a number system.
Theorem [9] Let the polynomial
c0 + c1x + · · ·+ xn ∈ Z[x] be given and let us
denote its companion matrix by M . If the
condition |c0| > 2

∑n
i=1
|ci| holds then there exists

a suitable digit set D for which (Zn,M,D) is a
number system.
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Thank you!
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