
Chapter 1
Change point detection with stable AR(1) errors

Alina Bazarova, István Berkes, Lajos Horváth

Abstract In this paper we develop two types of tests to detect changes in the loca-
tion parameters of dependent observations with infinite variances. We consider the
case of autoregressive processes of order one with independent innovations in the
domain of attraction of a stable law. If the d largest (in magnitude) observations are
removed from the sample, then the standard CUSUM process developed for weakly
dependent observations with finite variance can be used assuming that d = d(n)→∞

as n, the sample size tends to ∞. We study two types of statistics. The maximally se-
lected CUSUM process we estimate the long run variance by kernel estimators. We
also propose ratio statistics which do not depend on the long run variances. Monte
Carlo simulations illustrate the the limit results can be used even in case of small
and moderate sample sizes.

1.1 Introduction and results

In this paper we are interested to detect possible changes in the location model

X j = c j + e j, 1≤ j ≤ n. (1.1)

We wish to test the null hypothesis of stability of the location parameter, i.e.,
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H0 : c1 = c2 = . . .= cn

against the one change alternative

HA : there is k∗ such that c1 = . . .= ck∗ 6= ck∗+1 = . . .= cn.

We say that k∗ is the time of change under the alternative. The time of change as
well as the location parameters before and after the change are unknown. The most
popular methods to test H0 against HA are based on the CUSUM process

Un(x) =
bnxc

∑
i=1

Xi−
bnxc

n

n

∑
i=1

Xi.

Clearly, if H0 is true, then Un(t) does not depend on the common but unknown
location parameter. It is well known if X1, . . . ,Xn are independent and identically
distributed random variables with a finite second moment, then

1
(nvar(X1))1/2 Un(x)

D [0,1]−→ B(x),

where B(x) is a Brownian bridge. Throughout this paper D [0,1] denotes the space of

right continuous functions on [0,1] with left limits;
D [0,1]−→ means weak convergence

in D [0,1] with respect to the Skorohod J1 topology (cf. Billingsley (1968)). Of
course, var(X1) can be consistently estimated by the sample variance in this case,
resulting in

1
σ∗n n1/2 Un(x)

D [0,1]−→ B(x) (1.2)

with

σ
∗
n =

{
1
n

n

∑
i=1

(Xi− X̄n)
2

}1/2

with X̄n =
1
n

n

∑
i=1

Xi.

Assuming that X1,X2, . . . ,Xn are independent and identically distributed random
variables in the domain of attraction of a stable law of index α ∈ (0,2), Aue et
al. (2008) showed that

1
n1/α L̂(n)

Un(x)
D [0,1]−→ Bα(x),

where L̂ is a slowly varying function at ∞ and Bα(x) is an α–stable bridge. (The α–
stable bridge is defined as Bα(x) =Wα(x)− xWα(1), where Wα is a Lévy α–stable
motion.) Since nothing is known on the distributions of the functionals of α–stable
bridges, Berkes et al. (2011) suggested the trimmed CUSUM process

Tn(x) =
bnxc

∑
i=1

XiI{|Xi| ≤ ηn,d}−
bnxc

n

n

∑
i=1

XiI{|Xi| ≤ ηn,d},
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where ηn,d is the dth largest among |X1|, |X2|, . . . , |Xn|. Assuming that the Xi’s are
independent and identically distributed and are in the domain of attraction of a stable
law, they proved

1
σ̂nn1/2 Tn(x)

D [0,1]−→ B(x),

where

σ̂
2
n =

1
n

n

∑
i=1

(
XiI{|Xi| ≤ ηn,d}−

1
n

n

∑
j=1

X jI{|X j| ≤ ηn,d}

)2

,

and B(t) is a Brownian bridge. Roughly speaking, the classical CUSUM procedure
in (1.2) can be used on the trimmed variables X jI{|X j| ≤ ηn,d},1 ≤ j ≤ n. The
CUSUM process has also been widely used in case of dependent variables, but it is
nearly always assumed that the observations have high moments and the dependence
in the sequence is weak, i.e. the limit distributions of the proposed statistics are
derived from normal approximations. For a review we refer to Aue and Horváth
(2013). However, very few papers consider the instability of time series models
with heavy tails.

Fama (1965) and Mandelbrot (1963, 1967) pointed out that the distributions of
commodity and stock returns are often heavy tailed with possible infinite variance
and their research started the investigation of time series models where the marginal
distributions have regularly varying tails. Davis and Resnick (1985, 1986) investi-
gated the properties of moving averages with regularly varying tails and obtained
non–Gaussian limits for the sample covariances and correlations. Their results were
extended to heavy tailed ARCH by Davis and Mikosch (1998). The empirical peri-
odogram was studied by Mikosch et al. (2000). Andrews et al. (2009) estimated the
parameters of autoregressive processes with stable innovations.

In this paper we study testing H0 against HA when the error terms form an au-
toregressive process of order 1, i.e., ei is a σ(ε j, j ≤ i) measurable solution of

ei = ρei−1 + εi −∞ < i < ∞. (1.3)

We assume throughout this paper that

ε j,−∞ < j < ∞ are independent and identically distributed, (1.4)

ε0 belongs to the domain of attraction of a stable (1.5)

random variable ξ
(α) with parameter 0 < α < 2,

and
ε0 is symmetric when α = 1. (1.6)

Assumption (1.5) means that
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n

∑
j=1

ε j−an

)/
bn

D−→ ξ
(α) (1.7)

for some numerical sequences an and bn. The necessary and sufficient condition for
this is

lim
t→∞

P{ε0 > t}
L∗(t)t−α

= p and lim
t→∞

P{ε0 ≤−t}
L∗(t)t−α

= q (1.8)

for some numbers p ≥ 0, q ≥ 0, p+ q = 1, where L∗ is a slowly varying function
at ∞. It is known that (1.3) has a unique stationary non–anticipative solution if and
only if

−1 < ρ < 1. (1.9)

Under assumptions (1.4)–(1.9), {e j} is a stationary sequence and E|e0|κ < ∞ for all
0 < κ < α but E|e0|κ = ∞ for all κ > α. The AR(1) process with stable innovations
was considered by Chan and Tran (1989), Chan (1990), Aue and Horváth (2007)
and Zhang and Chan (2012) who investigated the case when ρ is close to 1 and pro-
vided estimates for ρ and the other parameters when the observations do not have
finite variances.

The convergence of the finite dimensional distributions of Un(x) is an immediate

consequence of Phillips and Solo (1992) . Let
fdd
−→ denote the convergence of the

finite dimensional distributions.

Theorem 1. If H0, (1.3)–(1.6) and (1.9) hold, then we have that

1−ρ

n1/α L∗(n)
Un(x)

fdd
−→ Bα(x),

where Bα(x),0≤ t ≤ 1 is an α–stable bridge.

It has been pointed out by Avram and Taqqu (1986, 1992) that the convergence of
the finite dimensional distributions in Theorem 1 cannot be replaced with weak con-
vergence in D [0,1]. Avram and Taqqu (1986, 1992) also proved that under further
regularity conditions, the convergence of the finite dimensional distributions can be
replaced with convergence in D [0,1] with respect to the M1 topology. However, the
distributions of sup0≤x≤1 |Bα(x)|dx and

∫ 1
0 B2

α(x)dx depend on the unknown α and
they are unknown for any 0 < α < 2.

The statistics used in this paper are based on Tn(x) with a truncation parameter
d = d(n) satisfying

lim
n→∞

d(n)/n = 0 (1.10)

and
d(n)≥ nδ with some 0 < δ < 1. (1.11)

Let F(x) = P{X0 ≤ x}, H(x) = P{|X0| > x} and let H−1(t) be the (generalized)
inverse of H. We also assume that ε0 has a density function p(t) which satisfies
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∞

−∞

|p(t + s)− p(t)|dt ≤C|s| with some C. (1.12)

Let
An = d1/2H−1(d/n). (1.13)

The following result was obtained by Bazarova et al. (2012):

Theorem 2. If H0, (1.3)–(1.6) and (1.9)–(1.12) hold, then we have that(
2−α

α

)1/2(1−ρ

1+ρ

)1/2 Tn(x)
An

D [0,1]−→ B(x),

where B(x) is a Brownian bridge.

The weak convergence in Theorem 2 can be used to construct tests to detect pos-
sible changes in the location parameter in model (1.1). However, the normalizing
sequence depends heavily on unknown parameters and they should be replaced with
consistent estimators. We discuss this approach in Section 1.2. We show in Section
1.3 that ratio statistics can also be used so we can avoid the estimation of the long
run variances.

1.2 Estimation of the long run variance

The limit result in Theorem 2 is the same as one gets for the CUSUM process in
case of weakly dependent stationary variables (cf. Aue and Horváth (2013)). Hence
we interpret the normalizing sequence as the long run variance of the sum of the
trimmed variables. Based on this interpretation we suggest Bartlett type estimators
as the normalization.

The Bartlett estimator computed from the trimmed variables X∗i = XiI{|Xi| ≤
ηn,d} is given by

ŝ2
n = γ̂0 +2

n−1

∑
j=1

ω

(
j

h(n)

)
γ̂ j,

where

γ̂ j =
1
n

n− j

∑
i=1

(X∗i − X̄∗n )(X
∗
i+ j− X̄∗n ), X̄∗n =

1
n

n

∑
i=1

X∗i ,

ω(·) is the kernel and h(·) is the length of the window. We assume that ω(·) and
h(·) satisfy the following standard assumptions:

ω(0) = 1, (1.14)
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ω(t) = 0 if t > a with some a > 0, (1.15)

ω(·) is a Lipschitz function, (1.16)

ω̂(·), the Fourier transform of ω(·), is also Lipschitz and integrable (1.17)

and
h(n)→ ∞ and h(n)/n→ ∞ as n→ ∞. (1.18)

For functions satisfying (1.14)–(1.17) we refer to Taniguchi and Kakizawa (2000).
Following the methods in Liu and Wu (2010) and Horváth and Reeder (2012), the
following weak law of large numbers can be established under H0:

nŝ2
n

A2
n(1+ρ)α/((1−ρ)(2−α))

P→ 1, as n→ ∞. (1.19)

The next result is an immediate consequence of Theorem 2 and (1.19).

Corollary 1. If H0, (1.3)–(1.6), (1.9)–(1.12) and (1.19) hold, then we have that

Tn(x)
n1/2ŝn

D [0,1]−→ B(x),

where B(x) is a Brownian bridge.

It follows immediately that under the no change null hypothesis

Q̂n = sup
0≤x≤1

|Tn(x)|
n1/2ŝn

D−→ sup
0≤x≤1

|B(x)|.

Simulations show that ŝn performs well under H0 but it overestimates the norming
sequence under the alternative. Hence Q̂n has little power. The estimation of the
long–run variance when a change occurs has been addressed in the literature. We
follow the approach of Antoch et al. (1997), who provided estimators for the long
run variance which are asymptotically consistent under the H0 as well as under
the one change alternative. Let x0 denote the smallest value in [0,1] where |Tn(x)|
reaches its maximum and let k̃ = bx0nc. The modified Bartlett estimator is defined
as

s̃2
n = γ̂

′
0 +2

n−1

∑
j=1

ω

(
j

h(n)

)
γ̃ j,

where

γ̃ j =
1

n− j

n− j

∑
`=1

ι`ι`+ j, ι` = X∗` −
1
k̂

k̂

∑
`=1

X∗` , `= 1, ..., k̂,

ι` = X∗` −
1

n− k̂

n

∑
`=k̂+1

X∗` , `= k̂+1, ...,n.

Combining the proofs in Antoch et al. (1997) with Liu and Wu (2010) and Horváth
and Reeder (2012) one can verify that
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ns̃2
n

A2
n(1+ρ)α/((1−ρ)(2−α))

P→ 1, as n→ ∞ (1.20)

under H0 as well as under the one change alternative HA. Due to (1.20) we immedi-
ately have the following result:

Corollary 2. If H0, (1.3)–(1.6), (1.9)–(1.12) and (1.20) hold, then we have that

Tn(x)
n1/2s̃n

D [0,1]−→ B(x),

where B(x) is a Brownian bridge.

We suggest testing procedures based on

Q̃n =
1

n1/2s̃n
sup

0≤x≤1
|Tn(x)|.

It follows immediately from Corollary 2 that under H0

Q̃n
D−→ sup

0≤x≤1
|B(x)|. (1.21)

First we study experimentally the rate of convergence in Theorem 2. In this sec-
tion we assume that the innovations εi in (1.3)–(1.7) have the common distribution
function

F(t) =

q(1− t)−3/2, if −∞ < t ≤ 0,

1− p(1− t)−3/2, if 0 < t < ∞,

where p ≥ 0, q ≥ 0 and p+ q = 1. We present the results for the case of ρ = p =
q = 1/2 based on 105 repetitions. We simulated the elements of an autoregressive
sample (e1, . . . ,en) from the recursion (1.3) starting with some initial value and with
a burn in period of 500, i.e. the first 500 generated variables were discarded and the
next n give the sample (e1, . . . ,en). Thus (e1, . . . ,en) are from the stationary solution
of (1.3). We trimmed the sample using d(n) = bn0.45c and computed

Qn =

(
2−α

α

)1/2(1−ρ

1+ρ

)1/2 1
An

sup
0≤x≤1

|Tn(x)|.

Under H0 we have
Qn

D−→ sup
0≤x≤1

|B(x)|.

The critical values in Table 1.1 provide information on the rate of convergence in
Theorem 2.

Figures 1.1 and 1.2 show the empirical power of the test for H0 against HA based
on the statistic Qn for a change at time k∗ = n/4 and n/2 and when the location
changes from 0 to c∈ {−3,−2.9, ...,2.9,3} and the level of significance is 0.05. We
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n 400 600 800 1000 ∞

1.29 1.32 1.33 1.34 1.36

Table 1.1 Simulated 95% percentiles of the distribution of Qn under H0

used the asymptotic critical value 1.36. Comparing Figures 1.1 and 1.2 we see that
we have higher power when the change occurs in the middle of the data at k∗ = n/2.
We provided these results to illustrate the behaviour of functionals of Tn without
introducing further noise due to the estimation of the norming sequence.

Fig. 1.1 Empirical power for Qn with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k1 = n/2

Next we study the applicability of (1.21) in case of small and moderate sample
sizes. We used h(n) = n1/2 as the window and the flat top kernel

ω(t) =

1 0≤ t ≤ .1
1.1−|t| .1≤ t ≤ 1.1
0 t ≥ 1.1

Figures 1.3 and 1.4 show the empirical power of the test for H0 against HA based
on the statistic Q̃n for a change at time k∗ = n/4 and n/2 and when the location
changes from 0 to c∈ {−3,−2.9, ...,2.9,3} and the level of significance is 0.05. We
used the asymptotic critical value 1.36. Comparing Figures 1.3 and 1.4 we see that
we have again higher power when the change occurs in the middle of the data at
k1 = n/2.
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Fig. 1.2 Empirical power for Qn with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k1 = n/4

n 400 600 800 1000 ∞

1.57 1.52 1.50 1.49 1.36

Table 1.2 Simulated 95% percentiles of the distribution of Q̃n under H0

Fig. 1.3 Empirical power for Q̃n with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k1 = n/2

Figure 1.5 shows how the power of the test behaves depending on the value of
d = nε , ε ∈ {0.3,0.35,0.42,0.45,0.5} for n = 400. The bigger the d is, the better is
the power curve.
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Fig. 1.4 Empirical power for Q̃n with significance level 0.05, n = 400 (dashed), n = 600 (solid)
and n = 800 (dotted) with k1 = n/4

Fig. 1.5 Empirical power curves for Q̃n with significance level 0.05 for d = nε , ε = 0.35 (dash-
dotted), ε = 0.42 (dashed), ε = 0.45 (solid), ε = 0.5 (dotted) with n = 400, k1 = n/2

1.3 Ratio statistics

The statistics Q̂n as well as Q̃n are very sensitive to the behaviour of ŝn and s̃n. As we
pointed out, ŝn is the right norming only under H0. The sequence Q̃n works under H0
and under the one change alternative, but it could break down if multiple changes
occur under the alternative. Even if the Bartlett type estimator is the asymptotically
correct norming factor, the rate of convergence can be slow. Also, these estimators
are very sensitive to the choice of the window h = h(n). Following the work of Kim
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(2000) (cf. also Kim et al. (2002)) and Leybourne and Taylor (2006), Horváth et al.
(2008) proposed ratio type statistics of functionals of CUSUM processes. We adapt
their approach to the trimmed CUSUM process. Let 0 < δ < 1 and define

Zn = max
nδ≤k≤n−nδ

Zn,1(k)
Zn,2(k)

,

where

Zn,1(k) = max
1≤i≤k

∣∣∣∣∣ i

∑
j=1

(X jI{|X j| ≤ ηn,d}− (1/k)
k

∑
j=1

(X jI{|X j| ≤ ηn,d)})

∣∣∣∣∣
and

Zn,2(k) = max
k<i≤n

∣∣∣∣∣ n

∑
j=i

(X jI{|X j| ≤ ηn,d}− (1/(n− k))
n

∑
j=k+1

(X jI{|X j| ≤ ηn,d)})

∣∣∣∣∣ .
Roughly speaking, we split the data into two subsets at k, compute the maximum
of the CUSUM in both subsamples and compare these maxima. To state the limit
distribution of Zn under the null hypothesis, we need to introduce

z1(t) = sup
0≤s≤t

|W (s)− (s/t)W (t)|

and
z2(t) = sup

t≤s≤1
|W ∗(s)− ((1− s)/(1− t))W ∗(t)|,

where W ∗(t) =W (1)−W (t). The following result is an immediate consequence of
Theorem 2.

Theorem 3. If H0, (1.3)–(1.6) and (1.9)–(1.12) hold, then we have that

Zn
D−→ sup

δ≤t≤1−δ

z1(t)
z2(t)

. (1.22)

We reject the no change null hypothesis if Zn is large. Using Monte Carlo simu-
lations, it is easy to obtain the distribution function of the limit in (1.22). Selected
critical values can be found in Horváth et al. (2008), where some probabilistic prop-
erties of the limit are also discussed.

n 400 600 800 1000 5000
5.90 5.67 5.49 5.43 5.03

Table 1.3 Simulated 95% percentiles of the distribution of Zn under H0
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Below we study the finite sample behaviour of Zn. Table 1.3 contains simulated
significance levels when δ = .2, n = 400,600,800,1,000 and n = 5,000. (Since the
distribution function of the limit in (1.22) is unknown, we used n = 5,000 for the
limit distribution.)

Fig. 1.6 Empirical power curves for Zn with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) with k1 = n/2

Fig. 1.7 Empirical power curves for Zn with significance level 0.05, n = 400 (dashed), n = 600
(solid) and n = 800 (dotted) with k1 = n/4
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Figures 1.6 and 1.7 contain the empirical power curves of the test for H0 against
HA based on the statistic Zn for a change at time k∗ = n/4 and n/2 and when the
location changes from 0 to c ∈ {−5,−4.9, ...,4.9,5} and the level of significance is
0.05. We used critical values from Table 1.3. Figure 1.8 shows how the power of the
test behaves depending on the value of d = nε , ε ∈ {0.3,0.35,0.42,0.45,0.5} for
n = 400. The bigger the d is, the better is the power curve.

Fig. 1.8 Empirical power curves for Zn with significance level 0.05 for d = nε , ε = 0.35 (dash-
dotted), ε = 0.42 (dashed), ε = 0.45 (solid), ε = 0.5 (dotted) with n = 400, k1 = n/2
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19. Horváth, L. and Reeder, R.: Detecting changes in functional linear models. Journal of Multi-

variate Analysis 111(2012), 310–334.
20. Kim, J.-Y.: Detection of change in persistence of a linear time series. Journal of Econometrics

95(2000), 97–116.
21. Kim, J.-Y., Belaire–Franch, J, and Amador, R.: Corrigendum to ”Detection of change in per-

sistence of a linear time series”. Journal of Econometrics 109(2002), 389–392..
22. Leybourne, S. and Taylor, A.: Persistence change tests and shifting stable autoregressions.

Economics Letters 91(2006), 44–49.
23. Liu, W. and Wu, W.B.: Asymptotics of spectral density estimates. Econometric Theory

26(2010), 1218–1245.
24. Mandelbrot, B.B.: The variation of certain speculative price. Journal of Business 36(1963),

394–419.
25. Mandelbrot, B.B.: The variation of other speculative prices. Journal of Business 40(1967),

393–413.
26. Mikosch, T., Resnick, S. and Samorodnitsky, G.: The maximum of the periodogram for a

heavy–tailed sequence. Annals of Probability 28(2000), 885–908.
27. Taniguchi, M. and Kakizawa, Y.: Asymptotic Theory of Statistical Inference for Time Series.

Springer, 2000.
28. Zhang, R–M. and Chan, N.H.: Maximum likelihood estimation for nearly non–stationary

stable autoregressive processes. Journal of Time Series Analysis 33 (2012), 542–553.


