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Abstract

By well known results of probability theory, any sequence of random variables
with bounded second moments has a subsequence satisfying the central limit theorem
and the law of the iterated logarithm in a randomized form. In this paper we give
criteria for a sequence (Xn) of random variables to have a subsequence (Xnk

) whose
weighted partial sums, suitably normalized, converge weakly to a stable distribution
with parameter 0 < α < 2.

1 Introduction

It is known that sufficiently thin subsequences of general r.v. sequences behave like
i.i.d. sequences. For example, Chatterji [7], [8] and Gaposhkin [11], [12] proved that
if a sequence (Xn) of r.v.’s satisfies supnEX

2
n <∞, then one can find a subsequence

(Xnk
) and r.v.’s X and Y ≥ 0 such that

1√
N

∑
k≤N

(Xnk
−X)

d−→ N(0, Y ) (1.1)

and

lim sup
N→∞

1√
2N log logN

∑
k≤N

(Xnk
−X) = Y 1/2 a.s., (1.2)

where N(0, Y ) denotes the distribution of the r.v. Y 1/2ζ where ζ is an N(0, 1) r.v.
independent of Y . Komlós [15] proved that under supnE|Xn| < ∞ there exists a
subsequence (Xnk

) and an integrable r.v. X such that

lim
N→∞

1

N

N∑
k=1

Xnk
= X a.s.
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and Chatterji [6] showed that under supnE|Xn|p < ∞, 0 < p < 2 the conclusion of
the previous theorem can be changed to

lim
N→∞

1

N1/p

N∑
k=1

(Xnk
−X) = 0 a.s.

for some X with E|X|p <∞. Note the randomization in all these examples: the role
of the mean and variance of the subsequence (Xnk

) is played by random variables
X, Y . On the basis of these and several other examples, Chatterji [9] formulated the
following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all se-
quences of i.i.d. random variables belonging to an integrability class L defined by
the finiteness of a norm ∥ · ∥L. Then if (Xn) is an arbitrary (dependent) sequence
of random variables satisfying supn ∥Xn∥L < +∞ then there exists a subsequence
(Xnk

) satisfying T in a mixed form.

In a profound paper, Aldous [1] proved the validity of this principle for all limit
theorems concerning the almost sure or distributional behavior of a sequence of func-
tionals fk(X1, X2, . . .) of a sequence (Xn) of r.v.’s. Most ”usual” limit theorems
belong to this class; for precise formulations, discussion and examples we refer to [1].
On the other hand, the theory does not cover functionals fk containing parameters
(as in weighted limit theorems) or allows limit theorems to involve other type of
uniformities. Such uniformities play an important role in analysis. For example, if
from a sequence (Xn) of r.v.’s with finite p-th moments (p ≥ 1) one can select a
subsequence (Xnk

) such that

K−1

(
N∑
i=1

a2i

)1/2

≤
∥∥ N∑

i=1

aiXni

∥∥
p
≤ K

(
N∑
i=1

a2i

)1/2

for some constant 0 < K <∞, for everyN ≥ 1 and every (a1, . . . , aN ) ∈ RN , then the
subspace of Lp spanned by (Xn) contains an subspace isomorphic to Hilbert space.
Such embedding arguments go back to the classical paper of Kadec and Pelczynski
[14] and play an important role in Banach space theory, see e.g. Dacunha-Castelle
and Krivine [10], Aldous [2]. In the theory of orthogonal series and in Banach space
theory we frequently need subsequences (fnk

) of a sequence (fn) such that
∑∞

k=1 ckfnk

converges a.e. or in norm, after any permutation of its terms, for a class of coefficient
sequences (ak). Here we need uniformity both over a class of coefficient sequences
(ak) and over all permutations of the terms of the series. A number of uniform
limit theorems for subsequences have been proved by ad hoc arguments. Révész [18]
showed that for any sequence (Xn) of r.v.’s satisfying supnEX

2
n <∞ one can find a

subsequence (Xnk
) and a r.v. X such that

∑∞
k=1 ak(Xnk

−X) converges a.s. provided∑∞
k=1 a

2
k < ∞. Under supn ∥Xn∥∞ < +∞, Gaposhkin [11] showed that there exists

a subsequence (Xnk
) and r.v.’s X and Y ≥ 0 such that for any real sequence (ak)
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satisfying the uniform asymptotic negligibility condition

max
1≤k≤N

|ak| = o(AN ), AN =

(
N∑
k=1

a2k

)1/2

(1.3)

we have
1

AN

∑
k≤N

ak(Xnk
−X)

d−→ N(0, Y ) (1.4)

and for any real sequence (ak) satisfying the Kolmogorov condition

max
1≤k≤N

|ak| = o(AN/(log logAN )1/2) (1.5)

we have
1

(2AN log logAN )1/2

∑
k≤N

ak(Xnk
−X) = Y 1/2 a.s. (1.6)

For a fixed coefficient sequence (ak) the above results follow from Aldous’ general
theorems, but the subsequence (Xnk

) provided by the proofs depends on (ak) and to
find a subsequence working for all (ak) simultaneously requires a uniformity which
is, in general, not easy to establish and it can fail in important situations. (See
Guerre and Raynaud [13] for a natural problem where uniformity is not valid.) In
[1], Aldous used an equicontinuity argument to prove a permutation-invariant ver-
sion of the theorem of Révész above, implying that every orthonormal system (fn)
contains a subsequence (fnk

) which, using the standard terminology, is an uncondi-
tional convergence system. This has been a long standing open problem in the theory
of orthogonal series (see Uljanov [19], p. 48) and was first proved by Komlós [16].
In [3] we used the method of Aldous to prove extensions of the Kadec-Pelczynski
theorem, as well as selection theorems for almost symmetric sequences. The purpose
of the present paper is to use a similar technique to prove an uniform limit theo-
rem of probabilistic importance, namely the analogue of Gaposhkin’s uniform CLT
(1.3)–(1.4) in the case when the limit distribution of the normed sum is a stable law
with parameter 0 < α < 2. To formulate our result, we need some definitions. Using
the terminology of [5], call the sequence (Xn) of r.v.’s determining if it has a limit
distribution relative to any set A in the probability space with P (A) > 0, i.e. for any
A ⊂ Ω with P (A) > 0 there exists a distribution function FA such that

lim
n→∞

P (Xn < t | A) = FA(t)

for all continuity points t of FA. By an extension of the Helly-Bray theorem (see
[5]), every tight sequence of r.v.’s contains a determining subsequence. Hence in
studying the asymptotic behavior of thin subsequences of general tight sequences we
can assume without loss of generality that our original sequence (Xn) is determining.
As is shown in [1], [5], for any determining sequence (Xn) there exists a random
measure µ (i.e. a measurable map from the underlying probability space (Ω,F ,P) to
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the space M of probability measures on R equipped with the Prohorov metric) such
that for any A with P (A) > 0 and any continuity point t of FA we have

FA(t) = EA(µ(−∞, t)), (1.7)

where EA denotes conditional expectation given A. We call µ the limit random mea-
sure of (Xn). The situation concerning the unweighted CLT for lacunary sequences
can be summarized by the following theorem.

Theorem 1.1 Let (Xn) be a determining sequence of r.v.’s with limit random mea-
sure µ. Then there exists a subsequence (Xnk

) satisfying, together with all of its
subsequences, the CLT (1.1) with suitable r.v.’s X and Y ≥ 0 if and only if∫ ∞

−∞
x2dµ(x) <∞ a.s. (1.8)

The sufficiency part of the theorem is contained in Aldous’general subsequence
theorems in [1]; the necessity was proved in our recent paper [4]. Note that the
condition for the CLT for lacunary subsequences of (Xn) is given in terms of the limit
random measure of (Xn) and this condition is the exact analogue of the condition in
the i.i.d. case, only the common distribution of the i.i.d. variables is replaced by the
limit random measure. Note also that the existence of second moments of (Xn) (or
the existence of any moments) is not necessary for the conclusion of Theorem 1.1.

In this paper we investigate the analogous question in case of a nonnormal stable
limit distribution, i.e. the question under what conditions a sequence (Xn) of r.v.’s
has a subsequence (Xnk

) whose weighted partial sums, suitably normalized, converge
weakly to an α-stable distribution, 0 < α < 2. Let, for c > 0 and 0 < α < 2,
Gα,c denote the distribution function with characteristic function exp(−c|t|α) and
let S = S(α, c) denote the class of distributions on R with characteristic function φ
satisfying

φ(t) = 1− c|t|α + o(|t|α) as t→ 0. (1.9)

Our main result is

Theorem 1.2 Let 0 < α < 2, c > 0 and let (Xn) be a determining sequence of r.v.’s
with limit random measure µ. Assume that µ ∈ S(α, c) with probability 1. Then there
exists a subsequence (Xnk

) such that for any real sequence (ak) satisfying

max
1≤k≤N

|ak| = o(AN ), AN =

(
N∑
k=1

|ak|α
)1/α

(1.10)

we have

A−1
N

N∑
k=1

akXnk

d−→ Gα,c.
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A simple calculation with characteristic functions, similar to the proof of Lemma
2.1 below, shows that if (Yn) is sequence of i.i.d. random variables with a characteristic
function φ satisfying (1.9) and (an) is a real sequence satisfying (1.10), then

A−1
N

N∑
k=1

akYk
d−→ Gα,c. (1.11)

Thus, just like in the case of Theorem 1.1, the basic assumption in Theorem 1.2
is a condition close to the classical i.i.d. condition, only it is required for almost
all realizations of the limit random measure µ. It is natural to conjecture that the
assumption µ ∈ S(α, c) a.s. in Theorem 1.2 can be weakened to the assumption
that with probability 1, µ is in the domain of normal attraction of the stable law
with characteristic function exp(−c|t|α) and this condition is also necessary, but this
remains open.

2 Proof of Theorem 1.2

Given µ1, µ2 ∈ S(α, c) with characteristic functions φ1, φ2, we can write

φ1(t) = 1− c|t|α + β1(t)|t|α, φ2(t) = 1− c|t|α + β2(t)|t|α, t ∈ R (2.1)

where limt→0 β1(t) = limt→0 β2(t) = 0. Define a metric ρ on S(α, c) by

ρ(µ1, µ2) = sup
|t|≤1

|β1(t)− β2(t)|. (2.2)

Lemma 2.1 Let µ1, µ2 ∈ S(α, c) satisfying (1.9), let Z1, . . . , Zn and Z∗
1 , . . . , Z

∗
n be

i.i.d. sequences with respective distributions µ1, µ2. Let (a1, . . . , an) ∈ Rn, An =

(
∑n

k=1 |ak|α)
1/α. Then for |t| ≤ 1∣∣∣∣∣E exp

(
itA−1

n

n∑
k=1

akZk

)
−E exp

(
itA−1

n

n∑
k=1

akZ
∗
k

)∣∣∣∣∣ ≤ Cρ(µ1, µ2) (2.3)

where ρ is defined by (2.2) and C is a constant.

Proof. Letting φ1, φ2 denote the characteristic function of the Zk’s resp. Z
∗
k ’s and

using (2.1), (1.10) and log(1 + x) = x + O(x2) for |x| ≤ 1, the first expectation in
(2.3) equals for |t| ≤ 1

n∏
k=1

φ1(tak/An) = exp

(
n∑

k=1

logφ1(tak/An)

)

= exp

(
n∑

k=1

[
(φ1(tak/An)− 1) +O(1)(φ1(tak/An)− 1)2

])
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= exp

(
−

n∑
k=1

[
|tak/An|α(c− β1(tak/An)) +O(|tak/An|2α)(c− β1(tak/An))

2
])

.

Writing a similar formula for the second expectation in (2.3) and subtracting, we get
Lemma 1 by simple calculations, using |tak/An| ≤ 1 and

∑n
k=1 |tak/An|α = 1.

Let (Ω,F , P ) be the probability space of the Xn’s and X = (X1, X2, . . .); let
further µ be the limit random measure of (Xn). Let (Yn) be a sequence of r.v.’s on
(Ω,F , P ) such that, given X and µ, the r.v.’s Y1, Y2, . . . are conditionally i.i.d. with
distribution µ, i.e.,

P (Y1 ∈ B1, . . . , Yk ∈ Bk|X, µ) =
k∏

i=1

P (Yi ∈ Bi|X, µ) a.s. (2.4)

P (Yj ∈ B|X, µ) = µ(B) a.s. (2.5)

for any j, k and Borel sets B,B1, . . . , Bk on the real line. Such a sequence (Yn) always
exists after a suitable enlargement of the probability space.

Lemma 2.2 For every σ(X)-measurable r.v. Z and any j ≥ 1 we have

(Xn, Z)
d−→ (Yj , Z).

Given probability measures νn, ν on the Borel sets of a separable metric space

(S, d) we say, as usual, that νn
d−→ ν if∫

S
f(x)dνn(x) −→

∫
S
f(x)dν(x) as n→ ∞ (2.6)

for every bounded, real valued continuous function f on S. (2.6) is clearly equivalent
to

Ef(Zn) −→ Ef(Z) (2.7)

where Zn, Z are r.v.’s valued in (S, d) (i.e. measurable maps from some probability
space to (S, d)) with distribution νn, ν.

Lemma 2.3 (see [17]). Let (S, d) be a separable metric space and let ν, ν1, ν2, . . . be

probability measures on the Borel sets of (S, d) such that νn
d−→ ν. Let G be a class

of real valued functions on (S, d) such that

(a) G is locally equicontinuous, i.e. for for every ε > 0 and x ∈ S there is a δ =
δ(ε, x) > 0 such that y ∈ S, d(x, y) ≤ δ imply |f(x)− f(y)| ≤ ε for every f ∈ G.
(b) There exists a continuous function g ≥ 0 on S such that |f(x)| ≤ g(x) for all
f ∈ G and x ∈ S and
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∫
S
g(x)dνn(x) −→

∫
S
g(x)dν(x) (<∞) as n→ ∞. (2.8)

Then ∫
S
f(x)dνn(x) −→

∫
S
f(x)dν(x) as n→ ∞ (2.9)

uniformly in f ∈ G.

Assume now that (Xn) satisfies the assumptions of Theorem 1.2, fix t ∈ R and
for any n ≥ 1, (a1, . . . , an) ∈ Rn let

ψ(a1, . . . , an) = E exp

(
itA−1

n

n∑
k=1

akYk

)
, (2.10)

where An = (
∑n

k=1 |ak|α)1/α and (Yk) is the sequence of r.v.’s defined before Lemma
2.2. We show that for any ε > 0 there exists a sequence n1 < n2 < · · · of integers
such that

(1− ε)ψ(a1, . . . , ak) ≤ E exp

(
itA−1

k

k∑
i=1

aiXni

)
≤ (1 + ε)ψ(a1, . . . , ak) (2.11)

for all k ≥ 1 and all (ak) satisfying (1.10). To begin with, let us recall that by the
crucial assumption of Theorem 1.2, the limit random measure µ belongs to S(α, c)
with probability 1, i.e. for almost all ω the characteristic function of µ satisfies (1.9).
The o(|t|α) in (1.9) depends on ω, but by a standard measure theoretic argument, for
any δ > 0 there exists a set Ω′ ⊂ Ω with probability ≥ 1− δ such that the o(|t|α) in
(1.9) is uniform for ω ∈ Ω′. Thus using a diagonal argument we can assume, without
loss of generality, that the characteristic function of the limit random measure µ
satisfies (1.9) uniformly. To construct n1 we set

Q(a, n, ℓ) = exp
(
itA−1

ℓ (a1Xn + a2Y2 + · · ·+ aℓYℓ)
)

R(a, ℓ) = exp
(
itA−1

ℓ (a1Y1 + a2Y2 + · · ·+ aℓYℓ)
)

for every n ≥ 1, ℓ ≥ 2 and a = (a1, . . . , aℓ) ∈ Rℓ. We show that

E

{
Q(a, n, ℓ)

ψ(a)

}
−→ E

{
R(a, ℓ)

ψ(a)

}
as n→ ∞ uniformly in a, ℓ. (2.12)

(The right side of (2.12) equals 1.) To this end we recall that, given X and µ, the
r.v.’s Y1, Y2, . . . are conditionally i.i.d. with common conditional distribution µ and
thus, given X, µ and Y1, the r.v.’s Y2, Y3, . . . are conditionally i.i.d. with distribution
µ. Thus

E
(
Q(a, n, ℓ)|X, µ

)
= ga,ℓ(Xn, µ) (2.13)

and
E
(
R(a, ℓ)|X, µ, Y1

)
= ga,ℓ(Y1, µ), (2.14)
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where

ga,ℓ(u, ν) = E exp

(
itA−1

ℓ

(
a1u+

ℓ∑
i=2

aiξ
(ν)
i

))
(u ∈ R1 , ν ∈ S)

and (ξ
(ν)
n ) is an i.i.d. sequence with distribution ν. Integrating (2.13) and (2.14), we

get
E
(
Q(a, n, ℓ)

)
= Ega,ℓ(Xn, µ) (2.15)

E
(
R(a, ℓ)

)
= Ega,ℓ(Y1, µ) (2.16)

and thus (2.12) is equivalent to

E
ga,ℓ(Xn, µ)

ψ(a)
−→ E

ga,ℓ(Y1, µ)

ψ(a)
as n→ ∞, uniformly in a, ℓ. (2.17)

We shall derive (2.17) from Lemma 2.1 and Lemma 2.3. Recall that ρ is a metric
on S = S(α, c); clearly convergence in this metric implies ordinary weak convergence
of probability measures, i.e. convergence in the Prohorov metric π. Thus the limit
random measure µ, which is a random variable taking values in (S, π), can be also
regarded as a random variable taking values in (S, ρ). Also, µ is clearly σ(X) mea-

surable and thus (Xn, µ)
d−→ (Y1, µ) by Lemma 2.2. Hence, (2.17) will follow from

Lemma 2.3 (note the equivalence of (2.6) and (2.7)) if we show that the class of
functions {

ga,ℓ(t, ν)

ψ(a)

}
(2.18)

defined on the product metric space (R×S , λ×ρ) (λ denotes the ordinary distance
on R) satisfies conditions (a),(b) of Lemma 2.3. To see the validity of (a), note that
since the characteristic function of µ satisfies (1.9) uniformly, the proof of Lemma 2.1
shows that there exists an integer n0 and a positive constant c0 such that ψ(a) ≥ c0
for n ≥ n0 and all (ak). Thus the validity of (a) follows from Lemma 2.1; the validity
of (b) is immediate from |ga,ℓ(u, ν)| ≤ 1. We thus proved relation (2.17) and thus
also (2.12), whence it follows (note again that the right side of (2.12) equals 1) that

ψ(a)−1E exp
(
itA−1

ℓ (a1Xn + a2Y2 + · · ·+ aℓYℓ)
)
−→ 1 (2.19)

as n→ ∞, uniformly in ℓ,a. Hence given ε > 0, we can choose n1 so large that

|E exp
(
itA−1

ℓ (a1Xn1 + a2Y2 + · · ·+ aℓYℓ)
)
− E exp(itA−1

ℓ (a1Y1 + a2Y2 + · · ·+ aℓYℓ))|

≤ ε

2
ψ(a1, . . . , aℓ)

for every ℓ,a. This completes the first induction step.
Assume now that n1, . . . , nk−1 have already been chosen. Exactly in the same

way as we proved (2.19), it follows that for ℓ > k

ψ(a)−1E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ ak−1Xnk−1
+ akXn + ak+1Yk+1 + · · ·+ aℓYℓ)

)
8



−→ ψ(a)−1E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ ak−1Xnk−1
+ akYk + · · ·+ aℓYℓ)

)
as n→ ∞

uniformly in a and ℓ. Hence we can choose nk > nk−1 so large that

E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ ak−1Xnk−1
+ akXnk

+ ak+1Yk+1 + · · ·+ aℓYℓ)
)

− E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ ak−1Xnk−1
+ akYk + · · ·+ aℓYℓ)

)
≤ ε

2k
ψ(a1, . . . , aℓ)

for every (a1, . . . , aℓ) ∈ Rℓ and ℓ > k. This completes the k-th induction step; the so
constructed sequence (nk) obviously satisfies

E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ aℓXnℓ
)
)
− E exp

(
itA−1

ℓ (a1Y1 + · · ·+ aℓYℓ)
)

≤ εψ(a1, . . . , aℓ)

for every ℓ ≥ 1 and (a1, . . . , aℓ) ∈ Rℓ, i.e. (2.11) is valid.
To complete the proof of our theorem, it suffices to show that for any t ∈ R and

any real sequence (ak) satisfying (1.10) we have

E exp

itA−1
k

k∑
j=1

ajYj

 −→ exp(−c|t|α) as k → ∞. (2.20)

Together with (2.11) this implies that for any ε > 0 and t ∈ R there exists a sequence
n1 < n2 < . . . of positive integers (depending on ε and t) such that∣∣∣∣∣∣E exp

itA−1
k

k∑
j=1

ajXnj

− exp(−c|t|α)

∣∣∣∣∣∣ < ε

for any k ≥ 1 and any (ak) satisfying (1.10). By a diagonal argument this shows that
there exists a sequence m1 < m2 < . . . such that

E exp

itA−1
k

k∑
j=1

ajXmj

 −→ exp(−c|t|α)

for any rational t ∈ R and any (ak) satisfying (1.10), which implies that

A−1
k

k∑
j=1

ajXmj

d−→ Gα,c

which is the conclusion of Theorem 1.2. To verify (2.20), let us note that conditionally
on (X, µ), Yj are i.i.d. with conditional characteristic function φ satisfying (1.9),

which implies (see e.g. the proof of Lemma 2.1) that setting Sk =
∑k

j=1 ajYj ,

E exp
(
itA−1

k Sk|X, µ
)
−→ exp(−c|t|α). (2.21)

Integrating the last relation and using the dominated convergence theorem we get
(2.20), completing the proof of Theorem 1.2.
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