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Abstract

A set S of vertices in a graphGwith nontrivial automorphism group is distinguishing if
the identity mapping is the only automorphism that preserves S as a set. If such sets exist,
then their minimum cardinality is the distinguishing cost ρ(G) of G. A closely related
concept is the distinguishing density δ(G). For finite G it is the quotient of ρ(G) by the
order of G.

We consider connected, vertex-transitive, cubic graphs G and show that either ρ(G) ≤
5 or ρ(G) = ∞ and δ(G) = 0 if G has one or three arc-orbits, or two arc-orbits and
vertex-stabilisers of order at most 2.

For the case of two arc-orbits and vertex stabilizers of order > 2 we show the existence
of finite graphs with ρ(G) > 5 and infinite graphs with δ(G) > 0.
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We also prove that two well known results about finite, vertex-transitive, cubic graphs
hold without the finiteness condition and construct infinitely many cubic GRRs.

Keywords: Distinguishing number, distinguishing cost, vertex-transitive cubic graphs, automorphisms,
infinite graphs, asymmetrizing set.
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1 Introduction
This paper is concerned with automorphism breaking of graphs by vertex colorings. Fol-
lowing Albertson and Collins [1], we call a vertex coloring of a graph G distinguishing if
the identity is the only automorphism of G that preserves it. The smallest number of colors
needed is the distinguishing number D(G) of G. One says such a coloring breaks the au-
tomorphisms of G. When D(G) = 2 each of the two colors induces a set of vertices which
is preserved only by the identity automorphism. We call such sets distinguishing, but also
use the term asymmetrizing, which was introduced in 1977 by Babai [2], when referring to
results predating Albertson and Collins’ paper [1].

The cardinality of a smallest distinguishing set of a graphG is the 2-distinguishing cost.
It was introduced by Boutin [4] in 2008 and denoted ρ(G). Clearly 0 < ρ(G) ≤ |V (G)|/2.
Although we cannot talk of the cost unless we already know that D(G) = 2, when it is
clear from the context, we refer to ρ(G) as the distinguishing cost, or simply as the cost,
without adding that D(G) = 2.

For 2-distinguishable graphs G the distinguishing density δ(G), or simply the density,
is defined in Section 3. For finite G it is the quotient ρ(G)/|V (G)|.

Note that D(G) is 1 for asymmetric graphs and 2 for almost all other finite graphs,
because almost all finite graphs that are not asymmetric have just one automorphism, a
transposition of two vertices. Such graphs can be distinguished by coloring one of the two
vertices black, and all other vertices white. This means that ρ(G) = 1 for almost all finite
graphs that are not asymmetric.

Here we investigate the distinguishing cost and density of graphs of maximum valence
3, which we call subcubic. This is a rich class of graphs that is fully classified with respect
to the distinguishing number, see [16], but little is known about its cost and density.

In Section 2 we construct finite, connected, subcubic graphs, whose costs take on nu-
merous values between 1 and |V (G)|/2, and in Section 3 infinite, connected graphs of
maximum valence 3 with various densities between 0 and 1/2. With the exception of the
obvious bounds 1 ≤ ρ ≤ |V (G)|/2 for the cost, and 0 ≤ δ ≤ 1/2 for the density, there
seem to be few restrictions on the values.

Beginning with Section 4 we focus on connected, vertex-transitive, cubic graphs. For
them the situation is completely different and the main topic of interest. Hence, after Sec-
tion 3 all graphs will be connected, vertex-transitive and cubic, unless it is otherwise stated
or clear from the context.

For their investigation we classify them by the number of arc-orbits and treat the classes
separately. Arcs are ordered pairs (u, v) of adjacent vertices u, v in G, and the orbit of an
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arc (u, v) under the action of Aut(G) is the set

O((u, v)) = {(α(u), α(v)) |α ∈ Aut(G)}.

Recall that to any two vertices u,w of a vertex-transitive graphs there is an α ∈ Aut(G)
such that w = α(u). Therefore any arc of the form (w, z) is in the orbit of (u, α−1(z)).
If G is cubic, then there are only three possibilities for α−1(z), and thus the number of
arc-orbits in a vertex-transitive, cubic graph is 1, 2 or 3.

A closely related, but weaker concept, is that of edge-orbits. One says two edges uv and
xy are in the same edge-orbit if there exists an automorphism α that maps the unordered
pair {u, v} into the unordered pair {x, y}. The relationship between arc- and edge-orbits is
described in Section 4.

Graphs with only one arc-orbit are called arc-transitive. Four of them are not 2-
distinguishable. All other arc-transitive graphsG are 2-distinguishable with cost ≤ 5 unless
G is the infinite 3-valent tree, which has infinite cost and zero density; see Theorem 6.1. If
G has three arc-orbits, then each automorphism of G that fixes a vertex is the identity, so
ρ(G) = 1.

For graphs with two arc-orbits we will show in Corollary 4.2 that one of the orbits
consists of pairs (u, v) and (v, u), where the edges uv are independent and meet each vertex
of G. Because complete matchings of a graph G are defined as sets of independent edges
that meet each vertex of G, we call this orbit the matching orbit and its edges matching
edges.

If one removes the matching edges, but not their endpoints from G, then the vertices in
the remaining graph have valence 2. This implies that its connected components are cycles
or 2-sided infinite paths. Because G is vertex-transitive, all components must be either
2-sided infinite paths or cycles of the same lengths. We call this orbit the cycle-orbit.

Let uv be a matching edge in a graph with two arc-orbits. Then u, v have no common
neighbors unless G is the K4, which is not 2-distinguishable. If x, y are the neighbors of
u different from v, and w, z the neighbors of v different from u, then Figure 1 depicts the
subgraph of G consisting of the edges ux, yx,uv,vw and vz. It need not be induced unless
G has neither 3- nor 4-cycles. If there are 3-cycles, then they must be in the cycle-orbit
and then both uxy and vwz are 3-cycles. If there are 4-cycles, then there may be a pair of
independent edges between the sets {x, y} and {w, z}. It is also possible that u and v are
in the same cycle of the cycle-orbit.

x

y

u v

w

z

Figure 1: Edges incident with a matching edge uv in a graph with two arc-orbits.

The pairs of arcs (u, x), (u, y) and (v, w), (v, z) are in the cycle-orbit. Hence there
exists an α ∈ Aut(G) that fixes u and interchanges x, y, and a β ∈ Aut(G) that fixes
v and interchanges w, z. If each automorphism that fixes u and interchanges x, y also
interchanges w, z, then we callG rigid, and otherwise flexible. Note thatG is rigid exactly
when the order of the group induced by Aut(G) on the subgraph formed by a matching
edge and its four incident edges is 2.
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Other important concepts are the girth and the motion of a graph G. The girth g(G) is
the size of a smallest cycle of G, and the motion m(G) is the smallest number of vertices
moved by any non-trivial automorphism of G.

Our results pertaining to cost and density and some of the ensuing questions can be
summarized as follows:

Let G be a connected, vertex-transitive, cubic graph different from K4, K3,3, the cube
and the Petersen graph.

1. If G has three arc-orbits, then G has trivial vertex stabilizers and ρ(G) = 1.

2. If G is arc-transitive, then ρ(G) ≤ 5, except for the infinite cubic tree, which has
infinite distinguishing cost and density 0. See Theorem 6.1.

For the existence of certain infinite, arc-transitive cubic graphs of girth 6 see Ques-
tion 6.9.

3. If G is rigid with two arc-orbits, then ρ(G) ≤ 3, see Theorem 7.1.

4. If G is finite, flexible with two arc-orbits and of girth 3, then ρ(G) ≤ 3. See Theo-
rem 8.1.

For the existence of such graphs compare Proposition 8.2.

5. For two arc-orbit, flexible graphs G of girth 4 we construct families of connected
finite graphs with cost > 5 and infinite graphs of density δ(G) = 1/m(G) > 0.

For both families we have δ(G) ≤ 1/4. See Theorems 9.10 and 9.11.

We do not know whether other connected, two arc-orbit, flexible graphs G of girth
≥ 4 with positive density or finite cost > 5 exist. See Question 9.12 and Lemma 9.3.

If they do not exist, then all finite or infinite, vertex-transitive, cubic graphs on at
least 20 vertices have density ≤ 1/4. See Questions 2.1 and 3.5.

6. We also construct infinite, two arc-orbit, flexible, cubic graphs G of all girths with
ρ(G) = ∞ and δ(G) = 0. See Theorem 7.6 and Lemma 9.3.

We do not know whether two arc-orbit, flexible, cubic graphs G, whose cycle-orbits
consist of 2-sided infinite paths, exist. See Question 7.5.

Furthermore, we prove a number of other results. In Section 2 we provide examples
of infinite graphs with finite and infinite distinguishing cost. In Section 3 we define and
give examples of the distinguishing density of infinite graphs. In these sections the graphs
are not necessarily cubic or vertex-transitive. In Section 4 we show that edge-transitivity
implies arc-transitivity not only for finite, but also for infinite, vertex-transitive, cubic
graphs. Section 5 treats vertex-transitive, cubic graphs with three arc-orbits, that is, vertex-
transitive graphs with trivial vertex stabilizers. Such graphs are called Graphical Regular
Representations, GRRs for short. In Section 6 Theorem 6.2 extends a result about the ex-
istence of connected, vertex-transitive, cubic graphs of girth at most 5 to infinite graphs.
Section 9 is concerned with flexible cubic graphs of girth 4. As a byproduct we construct
a class of infinitely many cubic GRRs with two edge-orbits. The paper ends with a new
characterization of Split Praeger–Xu graphs.
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We conclude the introduction with the remark that Babai’s paper [2] was not the only
one on automorphism breaking that predates Albertson and Collins [1]. After Babai, it was
notably Polat and Sabidussi [24, 25] and Polat [22, 23], who published deep and interesting
results on the asymmetrization of graphs of any cardinality.

Moreover, the concept of asymmetrization, or distinguishing, extends to groups of per-
mutations on a set. As most results on asymmetrizing sets of groups are also relevant for
graphs, let us mention that Gluck [13] showed in 1983 that permutation groups of odd or-
der can be asymmetrized by two colors, and that Cameron, Neumann, and Saxl [6] proved
in 1984 that all but finitely many primitive permutation groups other than An, Sn can be
asymmetrized by two colors. In 1997 Seress [28] classified the remaining ones, taking
recourse to the classification of finite simple groups.

2 Cost
We continue with examples on bounds on the distinguishing cost for finite graphs and show
that infinite graphs can have finite or infinite cost.

It is important to keep in mind that the distinguishing cost is only defined for graphs
that are 2-distinguishable. In other words, the results on cost and density only hold for such
graphs. For cubic graphs this is not a strong restriction, because the only vertex-transitive
cubic graphs that are not 2-distinguishable are the K4, the K3,3, the cube and the Petersen
graph, where the K4 has distinguishing number 4, and the others 3.

If the distinguishing number of a graph G is 2, then V (G) can be partitioned into
two sets V1, V2, where the stabilizer of either one is the trivial subgroup. This means, if
α ∈ Aut(G) and α(Vi) = Vi for i = 1 or i = 2, then α = id. Recall from the introduction
that either of the sets V1 or V2 is called distinguishing, and that the smallest possible size
of such a set is the distinguishing cost ρ(G) of G.

To fix ideas we shall always choose a minimum distinguishing set of G, color its ver-
tices black and all others white. Thus ρ(G) is the minimal number of black vertices needed
to break all automorphisms.

Clearly 0 < ρ(G) ≤ |V (G)|/2. The upper bound can easily be attained. The simplest
example is a single edge. To construct larger graphs with ρ(G) =

⌊
|V (G)|

2

⌋
we consider

binary trees:
Let Bk be the binary tree of height k. Bk is defined as a rooted tree, whose root has

valence 2, whose vertices of distance k from the root are leaves, and where all other vertices
have valence 3. Bk has 2k+1 − 1 vertices, ρ(Bk) = 2k − 1 and δ(Bk) = 1/2− 1/(2k+1 −
1) = ⌊|V (G)|/2⌋. By attaching a path to the root one obtains a graph with smaller density.
It can be made arbitrarily small.

For cost |V (G)|/2 we consider the graph Gk consisting of two binary trees Bk, whose
roots are connected by an edge. Clearly ρ(Gk) = 2k+1 − 1 = |V (Gk)|/2.

If the graphs are vertex-transitive, then we have stricter bounds. In Theorem 6.1 we
show that ρ(G) ≤ 5 for finite, connected, arc-transitive, cubic graphs that are different
from K4, K3,3, the cube and the Petersen graph. Hence, for finite arc-transitive graphs G
on at least 20 vertices δ(G) ≤ 1/4.

There are 24 connected, vertex-transitive graphs of order < 20, see [27]. As a brief
application of results of the paper we show that exactly five of these 24 graphs have den-
sity > 1/4: two are Möbius ladders, two circular ladders, and the fifth is the Heawood
graph. A k-Möbius ladder consists of a cycle of length 2k, together with k diagonals
that connect opposite vertices of the cycle. The k diagonals are the rungs of the ladder.
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A circular ladder or k-ladder is a prism over a k-cycle, that is, the Cartesian product of Ck

by K2. For k ≤ 9 they have < 20 vertices. If they are 2-distinguishable, their cost is 3 by
Theorem 7.1, and thus the density is 3/(2k). Since we are interested in density > 1/4 we
can restrict attention to k ≤ 5.

The 2-Möbius ladder is the K4, the 3-Möbius ladder the K3,3, the 4-Möbius ladder
has density 3/8 and the 5-Möbius ladder density 3/10. The 2-ladder does not exist, the
3-ladder is the prism over a triangle and has density 1/2, the 4-ladder is the cube and the
5-ladder has density 3/10.

For the Heawood graph, which has girth 6 and 14 vertices we show in Section 6 that its
cost is at most five. However, it is relatively easy to see that its cost is at least 4, and hence
its density > 1/4.

The Petersen graph, the Heawood graph, the eight Möbius ladders, and the seven prisms
of order < 20 account for 17 vertex-transitive cubic graphs of order < 20.

Two of the remaining seven graphs have girth 3. If one contracts their triangles to single
vertices one obtains the K4 and the K3,3. By Theorem 8.1 the costs of the uncontracted
graphs are 3 and the densities 1/4 and 1/6. Two other graphs are the crossed 3- and 4-
ladders of densities 1/4, see Theorem 9.11. The remaining three graphs have girth 6. One
is the Pappus graph. It has 18 vertices, and its cost is 3 by the remark after Lemma 6.8.
Another graph on 18 vertices has cost 1. It is the smallest GRR, i.e. graph with three
arc-orbits, see Section 5. The last graph has 16 vertices, and thus cannot have three arc-
orbits. By Corollary 4.2 it also cannot have two arc-orbits. Therefore it is arc-transitive.
By Lemma 6.8 and the following remarks it has cost ≤ 3, because it is not the Heawood
graph.

Question 2.1. Are there finite, connected, vertex-transitive, cubic graphs on at least 20
vertices with distinguishing densities > 1/4?

If such graphs exist, then they must be flexible by Lemma 5.1, Theorem 6.1 and Theo-
rem 7.1.

The cost can be finite for infinite graphs. This was studied in [3], where it was shown
that the cost ρ(G) of connected, locally finite, infinite graphs G is finite if and only if
Aut(G) is countable. (In this statement it is not needed to explicitly assume 2-distinguishability,
because all locally finite graphs with countable automorphism group are 2-distinguishable,
see [18].)

An example for an infinite graph with countable automorphism group and finite cost is
the infinite ladder of Figure 2. It has distinguishing cost 3, as is easily verified.

Figure 2: The infinite ladder with a distinguishing coloring.

Contrariwise, the closely related chain of quadranglesQ of Figure 3, also called infinite
crossed ladder, is an example for an infinite, connected graph with uncountable automor-
phism group, and hence infinite distinguishing cost. Q can be formally defined as a graph
consisting of the 2-sided infinite paths . . . u−2u−1u0u1u2 . . . and . . . v−2v−1v0v1v2 . . .,
with the edges u2nv2n+1, v2nu2n+1, where n ∈ Z.
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To see that Aut(Q) is uncountable, observe that we obtain an automorphism of Q for
any integer n by simultaneously interchanging u2n−1 with v2n−1, and u2n−1 with u2n,
while fixing all other vertices. This automorphism interchanges the pair of matching edges
u2n−1u2n and v2n−1v2n. Because Q has infinitely many such pairs of matching edges,
and because the edges in each pair can be interchanged independently of the other pairs,
Aut(Q) has at least 2ℵ0 elements, and is thus uncountable.

Figure 3: The chain of quadrangles Q with a distinguishing coloring.

A distinguishing 2-coloring is displayed in the figure. The black vertices are u0 and
u2n+1, where n is an integer different from −1. Because u0, u1 are the only adjacent black
vertices each automorphism must map the set {u0, u1} into itself. As there is a black vertex
of distance 2 from u1, namely u3, but no black vertex of distance 2 from u0, the vertices
u0, u1, u3 are fixed individually. It is easy to see that this implies that all four-cycles are
fixed setwise, and thus also all pairs of matching edges u2n−1u2n and v2n−1v2n. Each
such pair has exactly one black vertex, hence all of its vertices must be fixed. Because
V (Q) is partitioned by the sets of endpoints of these pairs of matching edges the coloring
is distinguishing.

3 Density
To define the distinguishing density we follow [17] and begin with the density of sets of
vertices. Let S be a set of vertices of a graph G, v ∈ G, and BG(v, n) = {w ∈ G :
d(v, w) ≤ n} be the ball of radius n with center v. If no ambiguity arises, we also write
B(v, n) for BG(v, n). Then

δv(S) = lim sup
n→∞

| B(v, n) ∩ S |
| B(v, n) |

is the density of S at v. If δv(S) exists for all vertices, which is the case for locally finite
graphs, then

δ(S) = sup{δv(S) : v ∈ V (G)}

is the density of S in G. Finally,

δ(G) = inf{δ(S) |S is a distinguishing set of G}

is the distinguishing density of G.
Note that δ(G) = ρ(G)/|V (G)| for finite graphs and zero for infinite graphs with finite

distinguishing cost.
Under certain conditions all values of δv(G), v ∈ V (G), are equal. Then δ(G) is equal

to δv(G) for arbitrarily chosen v ∈ V (G). We have two such conditions, one for density
zero, and a stricter one for positive density. First the condition for density zero see [17,
Lemma 1].
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Lemma 3.1. Let G be a connected graph and v, w ∈ V (G). Suppose there is a constant
c such that for all n ∈ N we have |B(w, n + 1)| < c|B(w, n)|. If G has distinguishing
density zero at v, then G has distinguishing density zero.

For an example of a 2-distinguishable graph that does not have distinguishing density
zero, but nevertheless distinguishing density zero at some vertex v, see [17]. That graph
does not satisfy the conditions of the lemma.

The infinite tree Tk, where each vertex has degree k, is an example of a graph with
distinguishing density zero. For the proof and for many other examples of graphs with
distinguishing density zero we refer to [17].

For positive distinguishing density we have the following lemma.

Lemma 3.2. Let G be a connected graph, S ⊆ V (G), v ∈ V (G), and

lim sup
n→∞

|B(v, n)|
|B(v, n+ 1)|

= 1. (3.1)

If there is a vertex u in G with δu(S) = a ≥ 0, then δw(S) = a for all w ∈ V (G).

Proof. We first observe that (3.1) implies that

lim sup
n→∞

|B(v, n)|
|B(v, n+ d)|

= 1, (3.2)

for all natural numbers d.
Let δv(S) = a, w ∈ G, and d = d(v, w). Clearly

|B(v, n)| ≤ |B(w, n+ d)| ≤ |B(v, n+ 2d)|,

and hence

lim sup
n→∞

|B(v, n)|
|B(v, n+ 2d)|

≤ lim sup
n→∞

|B(w, n+ d)|
|B(v, n+ 2d)|

≤ lim sup
n→∞

|B(v, n+ 2d)|
|B(v, n+ 2d)|

= 1.

By (3.2)

lim sup
n→∞

|B(w, n+ d)|
|B(v, n+ 2d)|

= 1. (3.3)

Clearly

|B(v, n) ∩ S| ≤ |B(w, d+ n) ∩ S| ≤ |B(v, n+ 2d) ∩ S|,

and hence

|B(v, n) ∩ S|
|B(v, n)|

|B(v, n)|
|B(v, n+ 2d)|

≤ |B(w, n+ d) ∩ S|
|B(w, n+ d)|

|B(w, n+ d)|
|B(v, n+ 2d)|

≤ |B(v, n+ 2d) ∩ S|
|B(v, n+ 2d)|

.

By (3.2) the lim sup of the term on the left is equal to the lim sup of the term on the right,
and by (3.3)

δw(S) = lim sup
n→∞

|B(w, n+ d) ∩ S|
|B(w, n+ d)|

= lim sup
n→∞

|B(v, n) ∩ S|
|B(v, n)|

= δv(S)

for all w ∈ V (G). As we assume the existence of a vertex u ∈ V (G) with δu(S) = a, we
infer that δw(S) = a for all w ∈ V (G), i.e. δ(G) = a.



W. Imrich et al.: Finite and infinite vertex-transitive cubic graphs and their distinguishing cost . . . 9

Lemma 3.2 will be useful in Subsection 3.1. Interestingly we do not need it for the
chain of quadrangles.

Lemma 3.3. The distinguishing density of the chain of quadrangles Q is 1/4.

Proof. In Section 2 we already observed that any distinguishing set S of Q must contain
at least one vertex in each pair of matching edges connecting two quadrangles. It is easy
to see that this implies that δv(S) ≥ 1/4 for arbitrary S and v. Hence δ(G) ≥ 1/4. If we
choose for S the set of black vertices in Figure 3, then δv(S) = 1/4 for all v, and therefore
the distinguishing density of Q is indeed 1/4.

Let us note nonetheless that Q satisfies the conditions of Lemma 3.2, because

|BQ(v, n+ 1)| = |BQ)(v, n)|+ 4

for n ≥ 4.
We wish to add that it is relatively easy to construct graphs with non-zero distinguishing

density that are not vertex-transitive, see [17].

3.1 Upper bounds for the density

For infinite graphs the situation is similar. If we take a one-sided infinite path P and connect
each of its vertices by an edge to the root of a copy of the binary tree Bk, then we obtain
a graph, say Hk, of distinguishing cost ρ(Hk) = 1/2− 1/2k+1. In this way we can reach
densities that are arbitrarily close to 1/2, but not 1/2.

To reach density 1/2 we have to be more careful. Let P1/2 be the graph obtained from
the one-sided infinite path P = v1v1v2 . . . as follows: Connect v1 to the root of B1 by
an edge, then each of v2, v3 by an edge to the root of distinct copies of B2. Continue by
connecting v4, v5, v6 to the roots of distinct copies of B3, and so on.

Lemma 3.4. δ(P1/2) = 1/2.

Proof. Each minimal 2-distinguishing coloring of P1/2 leaves P and its neighbors white.
The remaining vertices come in pairs {u, v} of vertices of equal distance from v1, where
one vertex has to be colored black, and the other white. Let S be the set of black vertices
of such a distinguishing coloring. Then |B(v1, n) ∩ S| = (|B(v1, n)| − 2n − 1)/2, and
|B(v, n) ∩ S|/|B(v1, n)| = 1/2 − (2n − 1)/(2 · |B(v, n)|). The supremum of the latter
expression is 1/2 if the growth of B(v1, n) is more than linear. This is achieved by our
construction. It is not hard to see that P1/2 satisfies the conditions of Lemma 3.2. We
conclude that ρ(P1/2) = 1/2.

It seems that one can construct connected, subcubic infinite graphs with arbitrary den-
sity between 0 and 1/2 in similar ways.

But we know of no infinite, connected, vertex-transitive, cubic graph with density larger
than 1/4.

Question 3.5. Are there infinite, connected, vertex-transitive, cubic graphs with distin-
guishing densities larger than 1/4?

As we already observed after Question 2.1, any examples of such graphs must be flexi-
ble.
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4 Arc- versus edge-orbits
This section describes the relationship between arc- and edge-orbits, respectively between
arc- and edge-transitivity.

Edge-transitive graphs need not be vertex-transitive, as the K2,3 shows. But even a
vertex-transitive graph G that is also edge-transitive need not be arc-transitive. The exis-
tence of such graphs was shown in 1966 by Tutte [33]. He also proved that any finite graph
of this type must be regular of even degree. The first examples were given by Bouwer [5],
and the smallest graph of this type is the Doyle graph. It is quartic and has 27 vertices, see
[15] and [26] .

By Tutte’s result each finite, vertex-transitive, cubic graph that is edge-transitive is arc-
transitive. In 1989 Thomassen and Watkins [30] extended Tutte’s result to infinite graphs
of subexponential growth. They proved that each vertex- and edge-transitive graph of odd
valence with subexponential growth is 1-transitive. For infinite cubic graphs we do not
need the growth condition:

Theorem 4.1. Let G be a finite or infinite, connected, vertex-transitive, cubic graph. If it
is edge-transitive, then it is also arc-transitive.

Proof. Let G satisfy the assumptions of the Theorem. If it is not arc-transitive, then it has
two or three arc-orbits.

Let u be an arbitrary vertex of G with the incident edges uv, uw, ux. Suppose first
that G has three arc-orbits. By edge-transitivity there is an α ∈ Aut(G) that maps uv into
uw and a β ∈ Aut(G) that maps uw into ux. Because G has three arc-orbits α(u) = w,
α(v) = u, and β(w) = u, β(u) = x. Hence βα maps the arc (u, v) into the arc (u, x), a
contradiction.

Suppose now that G has two arc-orbits, where (u,w) and (u, x) are in the same arc-
orbit. Let O1 be the arc-orbit of (u, v), O2 the orbit of (u,w), and D be the digraph on
V (G) whose arcs are the arcs of O2. Because G is edge-transitive at least one of the arcs
(u, v) or (v, u) must be in O2. By assumption (u, v) ̸∈ O2, hence (v, u) ∈ O2. Therefore,
in D, the vertex u has one incoming arc and two outgoing arcs. By vertex-transitivity
this holds for all vertices of G. But then G cannot be finite, because the total number of
incoming arcs in D has to be the same as the total number of outgoing arcs.

Hence G is infinite. It cannot be a tree, otherwise it would be the infinite cubic tree
T3, which has only one arc-orbit. Therefore G has a cycle, say C. By vertex-transitivity
we can assume that u is in C. Because, u has two outgoing arcs in D, one of them, say
(u,w), must be in C. Continuing this argument one sees that C is a directed cycle in D.
By edge-transitivity each arc is in directed cycle in D.

Let C ′ be a cycle containing (u, x). Clearly both C and C ′ contain the arc (v, u). Let
P be the longest path in C ∩ C ′ that contains (v, u). One of its endpoints is u, let the
other one be z. Clearly z has one outgoing arcs in D, and two incoming arcs, which is not
possible.

Corollary 4.2. Let G be a finite or infinite, connected, vertex-transitive, cubic graph. If
it has two arc-orbits, then one of the arc-orbits consists of pairs (u, v), (v, u), where the
edges uv are independent and meet each vertex of G.

Proof. Let G be a finite or infinite, connected, vertex-transitive, cubic graph with two arc-
orbits and u be an arbitrary vertex of G with the incident edges uv, uw, ux. As in the proof
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of Theorem 4.1 we assume that (u, v) is inO1 and that (u,w), (u, x) are inO2. In the proof
of the theorem the assumption that (v, u) was in O2 led to a contradiction to the number of
arc-orbits of G. Hence, (v, u) ∈ O1. By vertex-transitivity each vertex y ∈ V (G) meets
exactly two arcs of the form (y, z), (z, y) ∈ O1. Clearly the corresponding edges yz are
independent and meet each vertex of G.

Corollary 4.3. Let G be a finite or infinite, connected, vertex-transitive, cubic graph. If it
has two arc-orbits, then it has two edge-orbits, but if it has three arc-orbits, it may have
two or three edge-orbits.

Proof. By definition each edge-orbit consists of the undirected arcs of the union of one or
more arc-orbits. We have seen that G has only one arc-orbit if G has only one edge-orbit.
Hence, if G has two arc-orbits, they must be in different edge-orbits, and thus G has two
edge-orbits.

If G has three arc-orbits, then it has two or three edge-orbits, because the case of one
edge-orbit is not possible by Theorem 4.1.

Recall from the introduction that we called O1 the matching orbit. The other orbit
was called cycle-orbit. By definition O1 and O2 are arc-orbits, but by the corollary they
correspond to edge-orbits. By abuse of language we do not distinguish between O1 or
O2 as and arc- or edge-orbits. In this sense O2 is the disjoint union of cycles of the same
length or of 2-sided infinite paths.

5 Three arc-orbits
Let G be a connected, vertex-transitive, cubic graph with three arc-orbits. If we fix a vertex
v, then all neighbors of v are also fixed. As G is connected, this implies that all vertices of
G are fixed if one is fixed. To break its automorphisms it suffices to color one vertex black
and leave all others white. The distinguishing cost is 1.

Lemma 5.1. The distinguishing cost of connected, vertex-transitive, cubic graphs with
three arc-orbits is 1.

Recall that Graphical Regular Representations, or GRRs, are vertex-transitive graphs
with trivial vertex stabilizers. They have been widely investigated and although GRRs are
abundant, it is interesting to explicitly describe special classes.

From Corollary 4.3 we know that the case of three arc-obits allows two or three edge-
orbits. The smallest example of a GRR has 18 vertices. It has two edge-orbits and girth 6.
The smallest example for the case of three edge-orbits is the truncated cuboctahedron. It
is the skeleton of an Archimedean solid that was already described by Kepler, where each
vertex is in one cube, one hexagon and one octagon. For both graphs we refer to a list of
cubic GRRs with at most 120 vertices from 1981 by Coxeter, Frucht and Powers, see [8].

A series of infinitely many such graphs was constructed by Godsil in 1983 [14], the
smallest of order 19!/2. In Section 9 we also construct infinitely many such graphs, see
Corollary 9.5. The smallest has 48 vertices and is also listed in [8].

Let us note in passing that the same publication lists two GRRs of girth 5, both of them
on 110 vertices, whereas there is only one finite 2-distinguishable arc-transitive cubic graph
of girth 5, the dodecahedron, and no infinite one. See Theorem 6.2.

We continue with graphs with one and two arc-orbits. Clearly the cost in these cases is
at least 2.
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6 One arc-orbit
By definition such graphs are arc-transitive. Tutte [31] also calls them symmetric, but the
notation is not uniform and symmetric is also used for edge-transitive graphs that are not
arc-transitive. To avoid confusion we only speak of arc-transitive graphs. But we need a
refinement of the concept.

Following Tutte [31] we call a sequence of distinct vertices v0, v1, . . . , vs ∈ V (G) an
s-arc if vivi−1 ∈ E(G) for 1 ≤ i ≤ s, but vi−1 ̸= vi+1 for 1 ≤ i < s. Then G is s-arc-
transitive if Aut(G) is transitive on the set of all s-arcs on G. Moreover, we call G s-arc-
regular if for any two s-arcs v0v1 . . . vs and w0w1 . . . ws there is a unique automorphism
φ that maps v0v1 . . . vs into w0w1 . . . ws and respects the order of the vertices.

In this section we shall prove the following theorem.

Theorem 6.1. Let G be an arc-transitive, cubic graph different from K4, K3,3, the cube
and the Petersen graph. If it has finite girth, then ρ(G) ≤ 5, otherwise it is the infinite
cubic tree T3, which has infinite distinguishing cost and distinguishing density 0.

We will break up the proof of Theorem 6.1 into several parts, but begin with the remark
that there is only one connected acyclic cubic graph. It is the infinite cubic tree T3, of which
we already mentioned that it has distinguishing density zero.

It thus remains to prove the theorem for graphs with finite girth. We begin with a
structure theorem about graphs of girth at most 5. For girth 3 and 4 the theorem is folklore,
for finite graphs of graphs of girth 5 it was shown by Glover and Marušić [12]. Here is a
concise proof for all cases.

Theorem 6.2. The only connected, arc-transitive, cubic graphs of girth at most 5 are K4,
K3,3 the cube, the Petersen graph and the dodecahedron.

Proof. Let G be a connected, arc-transitive, cubic graphs of girth at most 5. Because we
forbid multiple edges the smallest girth is 3 and the arcs incident to an arbitrary vertex
induce a K1,3. Let a, b, c be the arcs incident with a vertex v of G. We show first that there
is an automorphism α of G that rotates a, b, c. In other words, there is an automorphism α
whose cycle representation of its action on {a, b, c} is (abc) or (acb). If this were not the
case, there would exist automorphisms whose actions on {a, b, c} are of the type (ab), (ac),
because of arc-transitivity. Then their product (ab)(ac) = (abc) is the desired rotation.

Let x, y, z be the endpoints of a, b, c different from v, and let the notation be chosen
such that there exists an automorphism α of G that rotates the arcs a, b, c and their end-
points.

x y z

x2 y1 y2 z1 z2x1

v

Figure 4: Basic structure for girth 5.
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Girth 3. If G has a triangle we can assume without loss of generality that it is vxy. By
applying α twice we see that G also contains the edges yz and zx. Hence G = K4.

Girth 5. We first observe that the neighbors of x, y, z that are different from v are
distinct. Let them be x1, x2, y1, y2, z1, z2 and vxx1y1y a pentagon, see Figure 4.

Rotating clockwise it is seen that there is a pentagon vyα(x1)z1z, where α(x1) ∈
{y1, y2}. Suppose α(x1) = y1. Notice that we have two pentagons that share two edges.
The rotation moves z1 into a neighbor of x. It must be x2, because we have no triangles.
By further rotations we obtain the 6-cycle x1y1z1x2y2z2, see Figure 5. Clearly G is the
Petersen graph.

x

v z

z1

x2

y z2

y1

y2

x1

Figure 5: The Petersen graph.

Suppose now that no two pentagons share two edges. Then α(x1) = y2, which implies
α(x2) = y1. Furthermore, we can choose the notation such that α(y1) = z2, and α(y2) =
z1. Thus z2 = α(y1) = α2(x2), and hence α(z2) = x2 and α(z1) = x1. By rotation we
obtain the pentagons vyy2z2z and vzz1x2x from vxx1y1y. Let H be the union of these
pentagons, see Figure 6. Note that v is in three pentagons, hence, by vertex-transitivity,
this holds for all vertices. More important, any two incident arcs determine exactly one
pentagon.

v

x = α(z)

z = α(y)

z1 = α(y2)

x2 = α(z2)

x
′

2

z
′

1

z2 = α(y1)

z
′

2

y
′

2

y
′

1

y1 = α(x2)

y = α(x)

x
′

1

x1 = α(z1)

p

Figure 6: The subgraph H (solid lines).
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v

x

z

z1

x2

x
′

2

z
′

1

z2

z
′

2

y
′

2

y
′

1

y1

y

x
′

1

x1

r

p

Figure 7: The graph H ′.

The vertices of valence 2 in H form the set S = {x1, y1, y2, z2, z1, x2}. If u ∈ S, let
u′ be the third neighbor of u. Let S′ = {x′1, y′1, y′2, z′2, z′1, x′2}. By the girth condition and
the condition that two pentagons share only one edge we infer that the sets S′ and H are
disjoint and that any two vertices of S′ distinct.

Now consider x. It is in two pentagons in H , but has to be in a third in G. Neither x1x′1
nor x2x′2 can be in the first two pentagons, hence x1x′2 ∈ E(G). Similarly we find that
z′1z

′
2 and y′1y

′
2 are in E(G). The new graph, say H ′, is depicted in Figure 7.

Consider the path x′2x2z1z
′
1. Its edges must be in a pentagon that is not in H ′, which is

only possible if there exists a vertex, say p, that is adjacent to x′2 and z′1. Because G has
girth 5 the vertex p cannot be a neighbor of x′1, nor of z′2, and because G is cubic it cannot
be any vertex of H ′.

Now consider the neighbors of x′1, p and z′2 that are not in V (H ′) ∪ {p}, and denote
them by q, r, s. Because of the girth condition and because G is cubic they are pairwise
distinct and not in V (H ′) ∪ {p}.

Finally, because all vertices have to be in three pentagons we find four additional edges
that complete the graph to a dodecahedron.

Corollary 6.3. The only 2-distinguishable, finite or infinite, connected, arc-transitive, cu-
bic graph of girth at most 5 is the dodecahedron. Its distinguishing cost is 3.

Proof. We already know thatK4,K3,3, the cube and the Petersen graph are not 2-distinguish-
able. Hence, by the theorem, the only 2-distinguishable graph of girth at most five is the
dodecahedron. It is easily seen that its distinguishing cost is 3.

For girth > 5 we will invoke a result of Tutte for finite graphs and its extension to
infinite graphs by Djokovic and Miller. First the result from [32] for finite graphs.

Theorem 6.4. Let G be a connected, finite, arc-transitive, cubic graph. Then G is s-arc-
regular for some s ≤ 5.
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And now the extension to infinite graphs from [9].

Theorem 6.5. Every connected, infinite, arc-transitive, cubic graph is s-arc-regular for
some s ≤ 5 with the exception of the infinite cubic tree.

We begin with a result for 1-arc-regular graphs.

Lemma 6.6. Each connected, 1-arc-regular cubic graph has distinguishing cost 2.

Proof. Let G be a connected, 1-arc-regular cubic graph. Then the action of Aut(G) on the
arcs incident with an arbitrary vertex v cannot have involutions. To see this, let a, b, c be
the arcs incident with v, and α ∈ Aut(G) induce the involution (cb) on {a, b, c}. Then
α(a) = a, which contradicts 1-regularity.

Furthermore, by Theorem 6.2 the girth of G must be at least 5, because the graphs
K4, K3,3, the cube, the Petersen graph and the dodecahedron are not 1-arc-regular. We
now choose two vertices u, v of distance 2 in G and color them black. Because g(G) > 4
there is a unique vertex w that is adjacent to both u and v. Therefore any color preserving
automorphism α fixes w. If it interchanges u with v, then it interchanges two arcs incident
with w and fixes the third, and thus induces an involution on the arcs incident with w. If α
fixes u, then it fixes the arc uw and is the identity by 1-arc-regularity.

The existence of such graphs is guaranteed by a result of Frucht [11], who provided an
example of a 1-arc-regular cubic graph of girth 12 with 432 vertices. It can be embedded
in a surface of genus 55 so as to form a map of 108 dodecagons.

For the girth of s-arc-regular cubic graphs we will use the bound

2s ≤ g(G) + 2 (6.1)

from [31].
We first consider girth 7 and then girth 6.

Lemma 6.7. Let G be a connected, s-arc-regular, cubic graph of girth at least 7. If s = 1,
then ρ(G) = 2, otherwise ρ(G) ≤ 3, unless s = 4 and g(G) = 7, then ρ(G) ≤ 4.

Proof. Because of arc-transitivity we can invoke Theorems 6.4 and 6.5. They imply that
our graphs are s-arc-regular for some s ≤ 5.

By Lemma 6.6 we can assume that s > 1. For s = 2 or 3 we choose a path uxvw in G.
This is possible because the girth is > 6. We color u, v, w black as visualized in Figure 8.
Each color preserving automorphism φ fixes u because it is the only black vertex without
black neighbors. As v and w have different distances from u, they are also fixed. Hence φ
fixes the s-arcs ux, uxv and uxvw, where s = 2, 3, respectively. By s-arc-regularity φ is
the identity.

Now, let s = 4. For girth g > 7 we choose a path uxyvw and color u, v and w black
as in Figure 8. Then we argue as before to prove that the 4-arc uxyvw is fixed by all color
preserving automorphisms. If the girth is 7 this coloring allows that both v and w have
distance 3 from u. In this case it suffices to color y black to fix the 4-arc uxyvw by all
color preserving automorphisms.

For s = 5 we first observe that the girth is at least 8 by Equation (6.1). We choose a
path uxyzvw of length 5 and color u, v and w black. If the girth is different from 9 this
coloring fixes the 5-arc uxyzvw. If the girth is 9, then v, w could be interchanged by color
preserving automorphisms.
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u x v w

u x y v w

u x y z v w

s = 2; 3

s = 4

s = 5

u x y z v w

s = 5; g = 9

u x y v w

s = 4; g = 7

Figure 8: Colorings of s-arcs.

Lemma 6.8. Let G be a connected, arc-transitive, cubic graph of girth 6. Then G is at
most 4-arc-regular. If G is 1-arc-regular, then ρ(g) = 2, if G is 2 or 3-arc-regular, then
ρ(G) ≤ 3, otherwise ρ(G) ≤ 5.

Proof. ThatG is at most 4-arc-regular follows from Equation 6.1. WhenG is 1-arc-regular
we invoke Lemma 6.6 and when G is 2- or 3-arc-regular we can use the same coloring as
in the proof of Lemma 6.7.

v1

v2

v3

v4

v5

v0

v

Figure 9: Coloring for s = 4 and girth 6.

If G is 4-arc-regular we choose an arbitrary 6-gon v0 · · · v5 and color v0, . . . , v3 black
as well as the neighbor of v4 that is not in the cycle. Let this neighbor be v, see Figure 9.
Clearly v cannot be adjacent to any vertex of the cycle, because G has girth 6. Hence v is
fixed by the coloring. Furthermore, v cannot have distance 2 from v0, otherwise G would
have a cycle of length 5. As v has distance 2 from v3, this implies that the coloring fixes
v3. Invoking the girth condition we see that v4 is also fixed, because it is on a path of
length 2 between the fixed vertices v3 and v. This fixes the entire 4-arc v0v1v2v3v4. By
4-arc-regularity this coloring is distinguishing.

Together with Corollary 6.3, Lemma 6.7 and Theorem 6.5 this also completes the proof
of Theorem 6.1.

Let us mention that, except for the interchange of black and white, our coloring for the
4-arc-regular case is the same as that for a graph described in [16, Theorem 7.3].

We also observe that there exists only one finite, connected, 4-arc-regular, cubic graph
of girth 6. It is the Heawood graph, see [7, 10], also known as Tutte’s 6-cage [31]. It is not
know whether there exist infinite, connected, 4-arc-regular, cubic graphs of girth 6.

Similarly, by [7] there are only two finite, connected, 3-arc-regular cubic graphs of girth
6, namely the Pappus graph and the generalized Petersen graph GP (10, 3).
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Question 6.9. Are there any infinite, 3-arc- or 4-arc-regular, cubic graphs of girth 6?

7 Two arc-orbits
Now we turn to connected, vertex-transitive, cubic graphs G with two arc-orbits, say O1

and O2. We choose the notation such that O1 is the matching orbit and O2 the cycle-orbit.
By the elements of O1 and O2 we mean their connected components, and recall that, by
Lemma 4.2, the case of two arc-orbits coincides with the case of two edge-orbits. Hence, in
this case we need not distinguish between arc- and edge-orbits, but we need the following
observation about the action Aut(G) on the elements of O1 and O2.

The group of automorphisms ofG acts on the elements ofO2 by reflections and vertex-
transitively, that is, Aut(G) induces the full group of automorphisms on each element of
O2. The full groups of automorphisms of finite cycles are called dihedral, and the full group
of 2-sides infinite paths is called infinite dihedral. It acts by reflections and translations.
On the elements of O1 the group Aut(G) acts by reflections.

First a Theorem about connected, vertex-transitive, cubic graphs with two arc-orbits
that are rigid. Recall that graphs with two arc-orbits are rigid if the order of the group
induced by Aut(G) on the subgraph formed by a matching edge and its four incident edges
is 2.

Theorem 7.1. The distinguishing cost of connected, vertex-transitive, rigid cubic graphs
G with two arc-orbits is 2, unless G is an infinite ladder, a k-ladder or a k-Möbius ladder
with k > 3. Then ρ(G) = 3.

Proof. Let G be a connected, vertex-transitive, rigid cubic graph with matching orbit O1

and cycle-orbitO2. Suppose there is a quadrangle uvwz, where uv and wz are inO1. If we
color u, v, w black and leave all other vertices white, then w is fixed by all color preserving
automorphism α, and hence also u, because uv is a matching edge. Hence α also fixes w,
and therefore the element of the cycle-orbit that contains uw, say A.

If an automorphism α of a rigid graph fixes an element A of O2, be it a cycle or a
2-sided infinite path, then α fixes all neighboring elements of A in O2, and because G is
connected all elements of O2, and thus the entire graph G.

It is easily seen that the only graphs that satisfy the assumptions of the lemma and that
contain such a quadrangle uvwz are an infinite ladder, or a k-ladder, resp. a k-Möbius
ladder. As the 3-ladder is the cube and the 3-Möbius ladder the K3,3, both of which are not
2-distinguishable, we have to require that k > 3.

In all other cases one considers a matching edge uv together with a neighbor w of
v, and colors u and w black. As there is no quadrangle uvwz in G, the vertex v is the
only common neighbor of u and w, and hence fixed. Now we conclude as before that the
coloring is distinguishing.

We have two corollaries, one about the order of the vertex-stabilizers of rigid and of
flexible graphs, and one about planar graphs.

Corollary 7.2. Let G be a connected, vertex-transitive, cubic graph with two arc-orbits.
When G is rigid, then the order of its vertex-stabilizers is 2, otherwise, that is when G is
flexible, it is at least 4.

Proof. The validity of the assertion for rigid G is clear by the proof of the theorem, and for
flexible G it follows directly from the definition.
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Corollary 7.3. Let G be a 3-connected, planar, vertex-transitive, cubic graph with two
arc-orbits. Then G is rigid and ρ(G) = 2 unless G is a k-ladder or a k-Möbius ladder
with k > 3.

Proof. Let G satisfy the assumptions of the corollary. By Whitney’s theorem, which by
[29] also holds for infinite graphs, G is uniquely embeddable into the plane in the sense
that any automorphism that reverses the order of the edges incident with an arbitrary vertex
reverses this order for all vertices. Hence G is rigid, and ρ(G) = 2 by Theorem 7.1.

For flexible cubic graphs we have the following lemma.

Lemma 7.4. Let G be a connected, vertex-transitive, flexible cubic graph with two arc-
orbits, say O1 and O2, where O2 consists of finite cycles. Then:

(i) One arc-orbit of G, say O1, consists of arcs (u,v) and (v,u), where the edges uv form
a complete matching.

(ii) The number of cycles in O2 is a least 2.

(iii) O2 consists of finite cycles of equal lengths without diagonals.

(iv) The number of edges between pairs of adjacent cycles is either 1 for all pairs, or 2
for all pairs.

(v) If the number of edges between adjacent cycles is 2, then the edges between neigh-
boring cycles connect pairs of opposite vertices.

(vi) If the length ℓ of the cycles in the cycle-orbit is at least 6, then g(G) = ℓ.

Proof. Item (i) is Lemma 4.2. As usual we let O1 be the matching orbit.
For (ii) we begin with the case when O2 has only one connected component. Suppose

it is the cycle Cn = u0u1 . . . un−1 of length n. By (i) each vertex of Cn is incident with
exactly one edge of O1. Let u0uj be the edge of O1 that is incident with u0, and α be the
reflection ofO2 that fixes u0. Clearly α(uj) = un−j . BecauseG is cubic, u0uj = u0un−j ,
which is only possible if n is even, say n = 2k, and j = k. By vertex-transitivity the other
edges of O1 are of the form uiui+k. The resulting graph is the k-Möbius ladder. As we
have already seen, for k = 3 it is the K3,3, which is not 2-distinguishable, and for k > 3 it
is rigid. This proves (ii).

So we turn to the case when O2 has at least two cycles, and all cycles of O2 have the
same length, say ℓ. If a cycle has a diagonal, then this diagonal must be in O1. By vertex-
transitivity this implies all elements of O1 are diagonals, but then G is disconnected. This
proves (iii).

Now, let k be the number of edges between neighboring cycles. Clearly k is a divisor
of ℓ. When k = ℓ, then G is the prism over the k-cycle and rigid.

When 3 ≤ k < ℓ, consider a cycle u0u1 . . . uℓ inO2 and a neighboring cycle u′0u
′
1 . . . u

′
ℓ

in O2, and then the induced subgraph of G that contains the paths from uℓ−ℓ/k to uℓ and
from u′ℓ−ℓ/k to u′ℓ. It consists of two cycles of length 4ℓ/k + 2 with the common edge
u0u

′
0, which is in O1. When u0 is fixed and uℓ−ℓ/k is interchanged with uℓ, then u′ℓ−ℓ/k is

interchanged with u′ℓ. In this case G is rigid. This means that k is 1 or 2 if G is flexible,
which proves (iv).
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If k = 2, then ℓ is even. Furthermore, the matching edges between two neighboring
cycles must connect pairs of opposite edges in the cycles. To see this, let C = v0v1 . . . vℓ
be an element of O2, C ′ a neighboring cycle, and v0, vj be the origins of the matching
edges form C to C ′. Because the edges v0vℓ−1 and v0v1 are in the same arc-orbit, there
is an automorphism α that fixes v0 and interchanges vℓ−1 with v1. Clearly α preserves C ′

and maps vj into vℓ−j , which is only possible if vℓ−j = vj , because there are only two
edges between C and C ′. Hence ℓ = 2j. This proves (v).

It is easy to check (vi).

Lemma 7.4 excludes graphs whose cycle-orbits O2 consist of 2-sided infinite paths.
If such a graph exists, then it is easily seen that O2 contains at least two connected com-
ponents, and that there can be at most one matching edge between any two components,
otherwise G would be rigid. Furthermore G cannot be G acyclic, because then it is the
infinite cubic tree T3, which has only one arc-orbit. This leads to the following question:

Question 7.5. Are there any two arc-orbit, flexible, cubic graphs G whose cycle-orbits
consist of 2-sided infinite paths?

It is not hard to show that the girth of any such graph, if it exists, must be at least 9.
We conclude this part with a theorem on tree-like graphs. We call an infinite, flexible

cubic graph G tree-like if its cycle-orbit consist of finite cycles, and if the graph G∗ that
is obtained from G by contraction of the cycles in the cycle-orbit to single vertices and by
replacement of double edges, if they occur, by single edges, is a tree of valence at least 3.

Theorem 7.6. Let G be a tree-like infinite, flexible cubic graph. Then ρ(G) = ∞ and
δ(G) = 0.

Proof. Suppose G satisfies the assumptions of the theorem, and let k be the length of the
cycles in the cycle-orbit. Then G∗ is an infinite tree Tr of valence r = k or r = k/2, where
r ≥ 3. By [17] Tr is 2-distinguishable, has uncountable automorphism group, infinite
distinguishing cost and distinguishing density zero. It is easy to see that the coloring c ofG
that is obtained from a distinguishing coloring c∗ of G∗ by coloring an arbitrary preimage
of each black vertex of G∗ black is distinguishing, has infinitely many black vertices, and
distinguishing density 0.

To complete the proof we have to show that ρ(G) is infinite. We know that G∗ has
uncountable group and any automorphism of G∗ is induced by one of G. If α and β are
two automorphisms ofG that induce different automorphisms ofG∗ then they cannot leave
all k-cycles invariant and must be distinct. Hence Aut(G) is uncountable.

Tree like graphs are the basis for the construction of connected, vertex-transitive, flex-
ible cubic graphs of girth four with two arc-orbits, infinite cost and zero density. See
Lemma 9.3.

8 Flexible graphs of girth 3

Let G be a connected, vertex-transitive, cubic graph with two arc-orbits and girth 3. Then
the cycle-orbits of G are triangles. Let G∗ be the graph obtained by contracting each such
triangle to a single vertex, making the matching edges of G the edges of G∗.

This implies that Aut(G) and Aut(G∗) are isomorphic. To see this, let α be an au-
tomorphism of a graph H . It induces an incidence preserving permutation on E(H) that
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maps each edge uv of H into α(u)α(v). We denote it by αE and the group of incidence
preserving permutations of E(H) by AutE(H). If H is a nontrivial graph, then Aut(H)
and AutE(H) are isomorphic if and only if H has at most one isolated vertex and K2 is
not a component. It is not hard to prove directly, but actually it is a theorem about the
automorphism group of the line graph of a graph, see e.g. [19, Theorem 1.2].

This means that Aut(G∗) ∼= AutE(G
∗). Furthermore, each φ ∈ Aut(G) induces

an incidence preserving permutation φ∗
E of E(G∗). Clearly the mapping φ 7→ φ∗

E is
bijective and thus Aut(G) and AutE(G

∗) are isomorphic. By the above this implies that
Aut(G) ∼= Aut(G∗). We also observe:

1. G∗ is arc-transitive. By Theorems 6.4 and 6.5 this implies that it is s-arc-regular for
some s ≤ 5, unless it is the infinite cubic tree.

2. If G∗ ̸= T3, then G∗ is s-arc-regular for s > 2 if and only if G is flexible. In
particular, if G∗ is 3-connected and planar, then s = 2 and G is rigid. Observe
that the assertion about s for G∗ is a consequence of the unique embeddability of
3-connected planar graphs into the plane. Compare the proof of Corollary 7.3.

3. ρ(G) ≤ ρ(G∗), because if coloring the vertices of a set U ⊆ V (G∗) black distin-
guishesG∗, then coloring one vertex black in each triangle corresponding to a vertex
in U distinguishes G. A similar argument was used in the proof of Theorem 7.6.

4. In some cases one can show that ρ(G) < ρ(G∗) by using the extra freedom of three
choices for vertices in each triangle. Our approach is as follows. Let c be a coloring
of the vertices ofG and Aut(G)c be the group of the color preserving automorphisms
of G. Recall that Aut(G∗) ∼= Aut(G). So Aut(G)c is isomorphic to a subgroup,
say (Aut(G)c)

∗, of Aut(G∗). If G∗ is s-regular and if (Aut(G)c)
∗ fixes an s-arc,

then (Aut(G)c)
∗ must be the trivial group, and thus also Aut(G)c.

Therefore, if c is a 2-coloring with n black vertices, where the other vertices are
white, and n < ρ(G∗), then ρ(G) < ρ(G∗) if (Aut(G)c)

∗ is trivial.

Theorem 8.1. Let G be a finite, vertex-transitive, flexible cubic graph with two arc-orbits
and girth 3. Then ρ(G) = 2, unless g(G∗) = 4, 6, 8. In these cases G∗ is the K3,3, the
Heawood graph or the Tutte-Coxeter graph and ρ(G) = 3.

Proof. Suppose g(G∗) ≤ 5, so G∗ is K4, the cube, the dodecahedron, the Petersen graph,
or K3,3. The first three are 3-connected planar and thus G is rigid, contrary to assumption.
When G∗ is the Petersen graph or K3,3, then G is flexible, because both graphs are 3-
regular by [7].

By Theorems 6.4 and 6.5 G∗ is s-arc-regular with s ≤ 5. Given a G∗ with s ≤ 5, we
choose an s-arc whose arcs a∗1, . . . a

∗
s in G∗ correspond to matching arcs a1, . . . as in G.

Set ai = uiu
′
i, and color u1, us black. Let u∗1, u

∗
s be the vertices in G∗ corresponding to

u1, us in G.
If the girth of G∗ is at least 2s − 1 then u1u′1u2u

′
2 · · ·us is the unique shortest u1, us-

path in G. Because u1u′1 is a matching edge, but not u′s−1us each color preserving auto-
morphism ofGmust fix u1 and us. But if us is fixed, then u′s is also fixed. Letφ ∈ Aut(G)
fix u1 and u′s. Then it fixes a1, . . . as in G and φ∗ fixes a∗1, . . . a

∗
s in G∗. Because G∗ is

s-arc regular φ∗ is the identity, and thus also φ. Hence the coloring of G is distinguishing
and ρ(G) = 2, see Figure 10 for s = 5.
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Figure 10: Distinguishing coloring of G for s = 5, g(G) ≥ 9.

Therefore, cost 2 is assured for s = 3, 4, 5 when g(G∗) ≥ 5, 7, 9, respectively. This
leaves the cases g(G∗) = 4, 6, 8 for s = 3, 4 and 5.

If s = 3, then g(G∗) = K3,3, which is the only remaining graph g(G∗) of girth at most
5. It is Tutte’s 4-cage. Furthermore, at the end of Section 6 we noted that the only finite,
4-arc-regular, cubic graph of girth 6 is the Heawood graph, also known as Tutte’s 6-cage.
Finally, in 1991 M. J. Morton [21] showed that the Tutte-Coxeter graph, also called Tutte’s
8-cage, is the only finite graph with s = 5 and girth 8.

Using the same notation for all three cages, we color u1, us and u′s black. As
dG(u1, us) = 2s − 2 and dG(u1, u′s) = 2s − 3, all black vertices have to be fixed by
any color preserving φ ∈ Aut(G). As before we conclude that φ∗ fixes a∗1, . . . a

∗
s in G∗.

Hence the coloring of G is distinguishing, see Figure 11 for s = 4.
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Figure 11: Distinguishing coloring of G for s = 4, g(G) = 6.

It remains to show that ρ(G) > 2 when G∗ is a Tutte 4, 6 or 8-cage, that is when
s = 3, 4 or 5. We first show that each path of length s− 1 is in two cycles of length 2s− 2.
Let C be a cycle of length 2s − 2 in G∗ and a∗1, . . . a

∗
s be the arcs of an s-arc in C. By

arc-transitivity there is α ∈ Aut(G∗) that fixes a∗1, . . . a
∗
s−1, but not a∗s . It maps C into

another cycle α(C). Clearly the C ∩ α(C) = a∗1, . . . a
∗
s−1. By arc-transitivity this implies

that any path of length s− 1 is in two cycles of length 2s− 2.
To show that ρ(G) > 2 it suffices to show that to any vertices u,v in G there is an

automorphism ofG that interchanges them or a nontrivial automorphism that fixes them. If
u,v are in the same triangle, then there clearly is an automorphism that interchanges them.
Because the diameter of the cages is s−1 we can thus assume that 1 < dG∗(u∗, v∗) ≤ s−1.

Suppose dG∗(u∗, v∗) = s − 1 and that u∗ and v∗ are the endpoints of an s − 1-arc
a∗1, . . . a

∗
s−1. Clearly there are at least three automorphisms of G∗ that interchange u∗ and

v∗: one that reverses the s − 1-arc a∗1, . . . a
∗
s−1, another one that rotates C, and one that

rotates α(C). Therefore, if dG(u, v) = 2s− 2 or 2s, then an inflection interchanges u with
v, and if dG(u, v) = 2s− 1 a rotation interchanges them.
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This leaves the case d = dG∗(u∗, v∗) ≤ s− 2. If dG(u, v) = 2d− 1 or 2d+1 then we
can interchange u, v by an inflection. Hence we can assume that dG(u, v) = 2d. Then each
shortest u, v-path either begins or ends with a matching edge. We choose the notation such
that it begins with a matching edge. In G∗ there clearly is an s-arc a∗1, . . . a

∗
s where u∗ is

the origin of a∗2 and v∗ the origin of a∗d+2. Note that d+ 2 ≤ s. As before we let ai denote
the matching edge in G that corresponds to a∗i and set ai = uiu

′
i. By our assumptions

u = u2 and v = ud+2. There is an α∗ ∈ Aut(G∗) that moves a∗1, but fixes a∗2, . . . , a
∗
s . The

automorphism α∗ uniquely extends to an α ∈ Aut(G) that fixes u2, u′2, . . . ud+2, u
′
d+2.

Figure 12 depicts the case when d is maximal, i.e. when v = ud+2 = us. Observe that α
interchanges the neighbors of u2 that are different from u′2, fixes all other depicted vertices,
but the non-matching edges incident with u′s can be interchanged.

α(u′

1
)

u
′

1

u2 u
′

2
us

asa1

Figure 12: Nontrivial α fixing u = u2 and v = us.

We conclude the section with a remark about the construction of connected, vertex-
transitive, flexible cubic graph with two arc-orbits and girth 3. The process of contracting
triangles in G to get G∗ can be reversed by truncation, namely replacing each vertex by a
triangle. In this case, we begin with G∗ and construct G by truncating G∗. This way every
cubic graph is a G∗ for some cubic graph G. For example, in the proof of Theorem 8.1, the
graph G with G∗ = K3,3 is flexible since K3,3 is. In general, we have

Proposition 8.2. LetG∗ be an s-arc regular cubic graph, where s ≥ 3. Then its truncation
G is flexible of girth 3.

Proof. Clearly, G has two arc-orbits, one orbit consisting of arcs in the triangles and a
matching orbit corresponding to arcs in G∗.

9 Flexible graphs of girth 4
In this section we mainly consider connected, flexible, vertex-transitive, cubic graphs G
with two arc-orbits and girth 4. We show that this class contains finite graphs of arbitrarily
large distinguishing cost and infinite graphs with positive distinguishing densities.

For our constructions we need two operations on G, one we call folding, and the other
unfolding. The first folds the 4-cycles of a graph G into edges of a new graph F (G), and
the second unfolds the matching edges of a graph G into 4-cycles of a new graph U(G).

Figure 13 shows how a matching edge uv of the graph on the left is unfolded into a
4-cycle in the graph on the right, respectively it shows how a 4-cycle in the graph on the
right is folded into an edge of the graph on the left.

To be more precise, let G be a cubic graph with a complete matching M and C be the
subgraph of G with the edge-set E(G) −M . The edges not in M form a subgraph C in
which each edge has valence 2. Hence, each component of C is a finite cycle or a 2-sided
infinite path. When G is vertex-transitive only one of these options is possible, and if there
are finite cycles, then all have the same length.
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Figure 13: Unfolding and folding.

For a formal description of the new operations we denote incidence of edges a, b by
a|b, and non-incidence by a ∤ b. The unfolded graph U(G) is then defined by:

V (U(G)) = {(a, e) : a ∈ E(C), e ∈M,a|e},
E(U(G)) = {(a, e)(c, f) : a = c, a|e, a|f, e ̸= f or e = f, e|a, e|c, a ̸= c, a ∤ c}.

Each vertex u of G is incident with exactly one matching edge, say e, and two edges
from C, say a,b. It thus gives rise to two vertices of U(G), we say each vertex is split into
two vertices. Furthermore, if (a, e)(b, f) ∈ E(U(G)), then either a connects an endpoint
of e with one of f , or e connects an endpoint of a with one of b. Hence, identification of
the two vertices in each pair of split vertices is a homomorphism from U(G) onto G.

Clearly unfolding is well defined for all cubic graphs G with a matching M . The
folding operation, however, is only defined for cubic graphs G with a set of disjoint of
4-cycles. Given such a graph G, the folded graph F (G) is obtained by identification of
opposite vertices in the 4-cycles of G, and replacement of the ensuing multiple edges from
the 4-cycles by single edges.

Observe that we did not require vertex-transitivity for our operations.
Now we recall that any α ∈ Aut(G) induces an incidence preserving permutation on

E(G) that maps each edge uv of G into α(u)α(v). We denote it by αE and, as before,
we let AutE(G) be the group of incidence preserving permutations of E(G). We already
observed that Aut(G) ∼= AutE(G) if and only if G has at most one isolated vertex and K2

is not a component.

Lemma 9.1. LetG be a connected, vertex-transitive, cubic graph with a complete matching
M , and let C denote the subgraph of G consisting of the edges not in M . Then

(i) U(G) is a connected, cubic graph that consists of disjoint quadrangles, which form
a spanning subgraph, and a set of independent edges that form a complete matching.
The quadrangles arise from the edges in M , and the matching edges of U(G) are in
one-one correspondence with the edges of C.

(ii) If all quadrangles of G are components of C, then any two adjacent quadrangles in
U(G) are connected by exactly one edge.

(iii) There is an isomorphism of AutE(G) into Aut(U(G)). If G has three arc-orbits,
then U(G) is not vertex-transitive.

(iv) If G is vertex-transitive with two arc-orbits, then U(G) is also vertex-transitive, but
may have three arc-orbits, see Corollary 9.5.
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(v) IfG is vertex-transitive and flexible with two arc-orbits, thenU(G) is vertex-transitive
with two arc-orbits, but may be rigid. See Corollary 9.8 and the remark after its
proof.

Proof. Let e = uv ∈ M , and a, b, c, d ∈ V (C), where a, b are incident with u, and c, d
incident with v. Then (a, e)(c, e)(b, e)(d, e) is a quadrangle in U(G). Note that (a, e) is
adjacent to (c, e) and (d, e) in U(G), but not to (b, e).

If a = ux ∈ M and ex is the matching edge incident with x, then (a, e)(a, ex) ∈
E(U(G)). Hence the the neighbors of (a, e) are (c, e), (d, e) and (a, ex). This proves (i).

For (ii) let A, B be two neighboring quadrangles in U(G) that are joined by (at least)
two edges. By (i) they are matching edges, say e, f . Let ae, af be the endpoints of e,
resp. f , in A and be,bf be the endpoints in B. If ae and af arise from the same vertex in
G, then G has a double edge or a triangle, depending on whether be and bf arise from the
same vertex in G or not. Hence ae, af , be, bf arise from different vertices in G. It also
means that aeaf and bebf arise from matching edges, while e, f arise from non-matching
edges. But then G has a quadrangle that is not in C, contrary to assumption. This proves
(ii).

To prove (iii) we observe that the mapping (a, e) 7→ (αE(a), αE(e)) is an automor-
phism of U(G), say α∗. It is then easy to see that the mapping αE 7→ α∗ from AutE(G)
into Aut(U(G)) is an injective isomorphism. If G has three arc-orbits and if a, b are the
non-matching edges that are incident with a vertex v and if e is the matching edge incident
with v, then there is automorphism of G that fixes v and interchanges a with b, and thus no
automorphism of U(G) that maps (a, e) into (b, e). This proves (iii).

To prove (iv) consider two vertices (a, e), (b, f) of U(G). Let u be the common vertex
of a and e, and v the common vertex of b and f . IfG is vertex-transitive with two arc-orbits,
then there exists an automorphism α that maps u into v, where αE(e) = f and αE(a) is
incident with v. If αE(a) ̸= b, then there is a β ∈ Aut(G) that fixes v and maps αE(a)
into b. Then (βα)∗(a, e) = (b, f), and U(G) is vertex-transitive. This proves (iv).

Finally, consider a vertex (a, e) and its two non-matching neighbors, say (c, e), (d, e).
If e = uv, then c, d are non-matching edges of G that are incident with v. Because G is
flexible with two arc-orbits, there is an automorphism α that fixes a, u, e and v and where
αE interchanges c, d. Clearly α∗ fixes (a, e) and interchanges (c, e) with (d, e).

Lemma 9.2. Let G be a cubic graph with a complete matching M and a set C of quadran-
gles, where any two neighboring quadrangles of C are connected by one edge of M . Then
there is a natural isomorphism between Aut(G) and Aut(U(G)).

Proof. Suppose G satisfies the conditions of the lemma. Then all quadrangles of G must
be in the set C. If not there must be a quadrangle uvwx that contains a matching edge, say
e = uv. Vertices u and v are in different quadrangles from C, say A and B. Then ux is in
A, vw in B, and wx is a second edge that connects A with B.

By Lemma 9.1 this implies that any two neighboring quadrangles in U(G) are con-
nected by exactly one edge, and thus the partition of E(U(G)) into a set of matching edges
and a set of quadrangles is unique. Hence the set of pairs of split vertices arising in the con-
struction of U(G) from G is exactly the set of pairs of opposite vertices of the quadrangles
in U(G). Thus there is only one way to fold U(G), and G = F (U(G)).

Each automorphism α of U(G) preserves the pairs of opposite vertices of the quadran-
gles in U(G) and thus acts as a permutation α′ on V (G). As adjacences are preserved α′

is an automorphism. Moreover, (ϕψ)′ = ϕ′ψ′, and thus ϕ 7→ ϕ′ is a homomorphism.
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If there were two distinct automorphisms ϕ and ψ of U(G) that induce the same action
on G, they would have to coincide on these pairs as sets, but in at least one pair {u, v}
they would have to act differently. Then ψ−1ϕ(u) is not the identity on {u, v}, and thus
interchanges u and v. But then the matching edge eu incident with u has to be interchanged
with the matching edge ev incident with v. As eu and ev lead to different quadrangles,
not all pairs of opposite vertices in the quadrangles can be preserved. Hence ϕ 7→ ϕ′ is
injective, and hence also the mapping ϕ 7→ (ϕ′)E

The observation that Aut(G) ∼= AutE(G) and that there is an injective isomorphism
of AutE(G) into Aut(U(G)) completes the proof.

As an application of Lemma 9.1 we have the following lemma.

Lemma 9.3. There exist infinitely many connected, vertex-transitive, flexible cubic graphs
of girth four with cost ≤ 5 or with infinite cost and zero density.

Proof. LetG be the truncation of an s-transitive cubic graph, where s ≥ 3. By Lemmas 8.2
and 8.1 it is flexible with cost ≤ 5 or zero density. Then U(G) has girth 4 and it is easy to
see that it is flexible with cost ≤ 5 or zero density.

Similarly, if G is one of the tree-like graphs of Theorem 7.6, then U(G) is flexible of
girth 4 and its density is zero.

9.1 The graphs Q(n) and Qk(n)

In Section 2 we defined the chain of quadrangles Q, which we also called the infinite
crossed ladder, as a graph with vertex set V (Q) = {ui, vi : i ∈ Z} and edge set

E(Q) = {uiui+1, vivi+1, u2iv2i+1, v2iu2i+1 : i ∈ Z }.

If we replace Z in the definition of Q by Z2k and take indices modulo 2k, then we
obtain the crossed 2k-ladder, which we will denote by Qk. As the crossed 4-ladder is the
cube, which is not 2-distinguishable, we only consider crossed ladders Qk for k ≥ 3.

Q and Qk for k ≥ 3 consist of a set M of matching edges and a set C of disjoint
quadrangles, where adjacent quadrangles are connected by two matching edges. Note that
M consists of the edges of G that are not in the quadrangles and that no matching edge
is in a 4-cycle of G. Hence, if G is Q or a crossed 2k-ladder for k ≥ 3, then U(G) is
well-defined if we unfold with respect to M . By Lemma 9.1 U(G) also consists of a set
of matching edges and a set of quadrangles. This property is retained by all graphs that are
obtained by iterations of the unfolding process if we unfold with respect to the edges that
are not in the quadrangles.

We set Q(1) = Q, Qk(1) = Qk, and, for k ≥ 3, n > 1, iteratively define Qk(n) by
Qk(n) = U(Qk(n − 1)), and Q(n) = U(Q(n − 1)). We always unfold with respect to
the edges that are not in the quadrangles. They are uniquely defined, and hence so are also
Q(n) and Qk(n).

Q(1) and Qk(1), k ≥ 3, are vertex-transitive and flexible with two arc-orbits. As we
unfold with respect to the matching orbit we infer by Lemma 9.1 that Q(n) and Qk(n),
k ≥ 3, 2 ≤ n < k − 1, are connected, vertex-transitive, flexible cubic graphs with two
arc-orbits, where the cycle orbit consists of 4-cycles, and where any two adjacent 4-cycles
are connected by exactly one edge in the matching orbit.

Furthermore, by Corollary 9.8 we shall see that Qk(k − 1) is rigid with two arc-orbits.
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As there is a unique matching orbit in Qk(k − 1) the graph Qk(k) = U(Qk(k − 1)) is
vertex-transitive by Lemma 9.1(v). That it has three arc-obits is asserted in Corollary 9.5.

Because we keep unfolding with respect to the edges that are not in quadrangles, the
graphs Qk(n) are still uniquely defined for n > k, but not vertex-transitive any more.

In the definition of F (G) we only merged multiple edges that arose from folded 4-
cycles, but not multiple edges that arise from matching edges. Such cases may occur, for
example when folding the chain of quadrangles Q, which we now call Q(1), see Figure 3.
The folding process maps Q(1) into a chain of alternating single and double edges and
Qk(1) into a cycle of alternating single and double edges. We set Q(0) = F (Q(1)) and
Qk(0) = F (Qk(1)). ForQ(0) see Figure 14, and for a part ofQ(0) and how it is unfolded,
see Figure 15.

u0 u1

Figure 14: Q(0).
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Figure 15: A part G of Q(0) and how it is unfolded.

Clearly all unfolded graphs of Q(0) are isomorphic up to AutF (Q(0)), and the graphs
Qk(0) are isomorphic up to F (Qk(0)). Moreover, Aut(Q(1)) ∼= AutF (Q(0)), and
Aut(Qk(1)) ∼= AutF (Qk(0)). Recall that Q2(1) = U(Q2(0)) is the cube.

Theorem 9.4. The order of Aut(Qk(n)), k ≥ 3, 1 ≤ n ≤ k, is 2k · 2k.

Proof. Clearly the order of AutE(Qk(0)) is 2k · 2k. By Lemma 9.1(iii) this is also the
order of all groups Aut(Qk(n)), k ≥ 3, 1 ≤ n ≤ k.

Corollary 9.5. For k ≥ 3 the graphs Qk(k) are GRRs.

Proof. By the lemma |Aut(Qk(k))| = 2k · 2k, which equals |V (Qk(k))|. Because Qk(k)
is vertex-transitive this implies that its vertex stabilizers are trivial. Hence Qk(k) has three
arc-orbits and is a GRR.

Note that the smallest such graph isQ3(3) and has 48 vertices. The graphQ4(4) already
has 128 vertices.

Finally, observe that the graphs Qk(n) for n > k are not vertex-transitive by
Lemma 9.1(iii).

One calls a partition of the vertex set of a vertex-transitive graph a system of imprim-
itivity if it is preserved by all automorphisms. The partition of V (G) into sets of size
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one, {{v} : v ∈ V (G)} and into just one set of size |V (G)| are called trivial parti-
tions. We have seen that the sets of pairs of opposite vertices in the quadrangles of Q(1),
resp. Qk(1), k ≥ 3, form sets of imprimitivity. Each such pair is the preimage of a single
vertex in Q(0), resp. Qk(0), k ≥ 3.

Lemma 9.6. Let n ∈ N and G be one of the graphs Q(n) or Qk(n), k ≥ 3. Furthermore,
let φ denote the mapping from V (G) into V (F (G)). Then the preimages of the vertices
of Q(0), resp. Qk(0), k ≥ 3, with respect to φn, are a system of imprimitivity in Q(n),
resp. Qk(n), k ≥ 3.

Proof. The assertion of the lemma is true for n = 1. Suppose it is true for n ≥ 1. Let
G be Q(0) or Qk(0), k ≥ 3, and {φ−n(v) : v ∈ V (G)}, where φ−n(v) is the preimage
of v with respect to φn. By the induction hypothesis {φ−(n−1)(v) : v ∈ V (G)} is a
system of imprimitivity in U (n−1)(G). The set φ−n(v) arises from φ−(n−1)(v) by splitting
each of its vertices into a pair of opposite vertices in the quadrangles of U(U (n−1)(G)).
The observation that Aut(U(U (n−1)(G))) preserves the set of these pairs concludes the
proof.

Let G be Q(0) or Qk(0), 3 ≤ k, and n ≥ 1. Then we call the sets φ−n(v), v ∈ V (G),
the columns of Un(G), and denote them by cnv . Setting V (Q(0)) = Z and V (Qk(0)) =
Z2k, k ≥ 3, the columns of Un(G) are thus cni , i ∈ Z or Z2k.

Lemma 9.7. Let n ∈ N and cn−n+2, . . . c
n
n+1 be 2n columns in Q(n) or Qk(n), where

k − 1 ≥ n. Then there exists an α ∈ Aut(Q(n)), respectively α ∈ Aut(Qk(n)), that
moves all vertices in columns cn−n+2, . . . , c

n
n+1 and fixes all other vertices.

Proof. We proceed by induction with respect to n and note that the assertion of the lemma
is true for n = 1. Let G be Aut(Q(n)) or Aut(Qk(n)) and suppose the assertion is true
for n ≥ 1. Then there exists an α ∈ Aut(G) that moves all vertices in cn−n+2, . . . , c

n
n+1

and fixes all other vertices.
Recall from Lemma 9.1, if G is a connected, vertex-transitive cubic graph with a com-

plete matching M , then Aut(G) ∼= AutE(G) ∼= Aut(U(G)). Furthermore, a vertex u
of G that is incident with a matching edge e and the non-matching edges f , g gives rise to
the vertices (f, e) and (g, e) in U(G). Each α ∈ Aut(G) then gives rise to an automor-
phism α∗ of U(G) defined by α∗(f, e) = (αE(f), αE(e)). This means that all elements in
cn+1
−n+2, . . . , c

n+1
n+1 are moved by α∗. As the edges between cn+1

−n+1 and cn+1
−n+2 are matching

edges, as well as the edges between cn+1
n+1 and cn+1

n+2, the vertices in cn+1
−n+1 and cn+1

n+2 are also
moved.

As α fixes all vertices in cn−n and cnn+3, as well as the vertices in the neighboring
columns, all edges incident with vertices in cn−n and cnn+3 are fixed, and thus α∗ fixes all
vertices in cn+1

−n and cn+1
n+3.

It is easily seen that all other vertices of U(G) that are not in cn+1
−n+1, . . . , c

n+1
n+2 are also

fixed. But, we wish to point out that columns cn+1
−n and cn+1

n+3 can be adjacent. In this case
n = k − 1, cn+1

−n , cn+1
n+3 are connected by matching edges and are the only columns whose

elements are fixed by α∗.

Corollary 9.8. The graphsQ(n) andQk(n), n ∈ N, k−2 ≤ n, are flexible, butQk(k−1)
is rigid.
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Proof. Let α ∈ Aut(Q(n)) or Aut(Qk(n)) be the automorphism that moves all vertices in
the columns cn−n+2, . . . , c

n
n+1 and fixes all other vertices. Observe that the edges between

cn−n+2 and cn−n+3 are matching edges, and hence also the edges between cn−n and cn−n+1,
which are fixed. Let v be a vertex in cn−n+1. It is fixed and has two neighbors, say w,z in
cn−n+2 that are both moved. The other neighbor of v, say u is in cn−n, and uv is a matching
edge. Clearly the other two neighbors of u, say x,y are in cn−n−1 and fixed, unless k−1 = n,
because then c−n−1 = c−n+2k = cn+1, all of whose elements are moved, which means
that Qk(k − 1) is rigid.

The fact that Qk(n) is flexible for 1 ≤ n ≤ k − 2 and rigid for n = k − 1 is also a
consequence of Theorem 9.4 and Corollary 7.2. To see this, observe that |V (Q(k, n))| =
2k·2n. The graphs are vertex-transitive and the order of their automorphism groups is 2k·2k
by Theorem 9.4. Hence the order of their vertex-stabilizers is at least 4 when n ≤ k − 2
and 2 when n = k − 1. Now an application of Corollary 7.2 completes the argument.

Theorem 9.9. Let G be Q(n) or Qk(n), k − 1 ≥ n. Then the motion m(G) of G is
n · 2n+1, and to each automorphism α of G that stabilizes the columns of G there is a row
of 2n columns, all of whose vertices are moved by α.

Proof. Let G be Q(n) or Qk(n), n ≤ k − 1. By Lemma 9.7 there exists an automorphism
that moves all vertices in the 2n columns cn−n+2, . . . , c

n
n+1 of G. Because each column

contains 2n vertices, m(G) ≤ n · 2n+1.
If an automorphism of G moves a column into another one, then it has to move all

columns. This is easily seen, because after n foldings G maps onto Q(0) or Qk(0), whose
automorphisms move all vertices if they move at least one vertex. Hence, if not all columns
are stabilized, then at least 2k columns are moved, and thus at least 2k·2n > 2n·2n vertices.

We can thus restrict attention to automorphisms that stabilize the columns. We shall
show the existence of a row of 2n columns to each automorphism α of G, where α moves
all vertices in the columns, and where the edges between the outermost pairs of columns
are matching.

This is true for n = 1. We wish to show that it holds for n under the assumption that
it holds for n − 1 ≥ 1. Each automorphism of G is of the form α∗, where α ∈ F (G),
where F (G) is Q(n− 1) or Qk(n− 1), n ≤ k − 1. Hence there are 2n− 2 columns,all of
whose vertices are moved by α. By vertex-transitivity we can assume that the columns are
cn−1
−n+3, . . . , c

n−1
n . (This also assures that the edges between the outermost pairs of columns

are matching.)
Then α∗ moves all vertices in cn−n+3, . . . , c

n
n. As the edges between columns cn−n+2,

cn−n+3, and cnn, cnn+1 are matching, all vertices in the columns cn−n+2, . . . , c
n
n+1 are moved.

Theorem 9.10. The graphs Q(n), n ∈ N, are connected, vertex-transitive, flexible cu-
bic graphs with two arc-orbits, girth 4, and motion m(Q(n)) = n · 2n+1. Furthermore,
ρ(Q(n)) = ∞ and δ(Q(n)) = 1/m(Q(n)).

Proof. By Lemma 9.7, Theorem 9.9 and Corollary 9.8 we only have to find a distinguishing
coloring with density 1/(n · 2n+1). We choose the columns cn2nj , j ∈ Z − {0} and color
one vertex in each column black. Then we choose a vertex in cn0 , say u. It is incident
with a matching edge e, say uv. Instead of coloring u, we color v black. Let c be this
coloring. Clearly the projection of c intoQ(0) distinguishes Aut(Q(0)), where Aut(Q(0))
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is the group of permutations of V (Q(0)) that preserve double and single edges. Hence any
color preserving automorphism of Q(n) stabilizes the columns, and thus fixes all black
vertices. But, because e is a matching edge, it also fixes u, and thus any color preserving
automorphism α fixes at least one vertex in any row of 2n columns. By Theorem 9.9 α
must be the identity.

Theorem 9.11. The graphs Qk(n), 1 ≤ n ≤ k − 2, are connected, vertex-transitive,
flexible cubic graphs with two arc-orbits, girth 4 and motion m(Q(n)) = n · 2n+1. Their
distinguishing cost is ρ(G) = ⌈ k

n⌉, unless k
n = 2; then ρ(G) = 3. In all cases δ(Qk(n)) ≤

1/4.

Proof. We choose the columns cn2nj , 1 ≤ j ≤ ⌈ k
n⌉, and color one vertex in each column

black. For cn0 we proceed differently. We choose a u ∈ cn0 . It is incident with a matching
edge e = uv, and instead of coloring u, we color v black. Let c be this coloring.

If k/n ̸= 2 the projection of c into Qk(0) distinguishes Aut(Qk(0)), hence any color
preserving automorphism ofQk(n) stabilizes the columns, and thus fixes all black vertices.
But, because e is a matching edge, it also fixes u, and thus any color preserving automor-
phism α fixes at least one vertex in any row of 2n columns. By Theorem 9.9 α must be the
identity.

If k/n = 2 we need three black vertices in Qk(0) to break Aut(Qk(0)). It is easily
seen, that it suffices to color one vertex in each of the columns cn0 , cn1 , and cnn black, in
order to obtain a distinguishing coloring. Hence ρ(G) ≤ 3.

But we still have to show that two black vertices do not suffice. Suppose two black
vertices suffice, say u,v. When k/n = 2 we have 4n columns, and because there are
automorphisms that move 2n contiguous columns and fix all vertices of the other columns,
we have to place the black vertices in columns of distance 2n, say u ∈ cn1 and v ∈ cn2n+1.
We do not need consider the case that the black vertices are in cn0 and cn2n, because there is
a reflection that interchanges the pair cn1 , cn2n+1 with cn0 , cn2n.

By vertex-transitivity there is an automorphism β with β(u) = v. Setw = β(v). If u =
w, then our coloring is not distinguishing, hence w ̸= u. If we can find an automorphism
that ψ that fixed v and maps w into u, then ψβ(u) = v and ψβ(v) = ψ(w) = u, and the
coloring is not distinguishing.

Let n be fixed and 1 ≤ m ≤ n. If m = 1, then cm1 consists of just two vertices, u and
w and one sees directly that one can interchange them while fixing the vertices in cmℓ , for
2m+ 1 ≤ ℓ ≤ 4n− 2m− 1. i.e. also v. We continue by induction with respect to m and
assume that for m− 1 ≥ 1 and any two vertices x, y ∈ cm−1

1 there is an automorphism ψ,
such that x = ψ(y) and where ψ fixes all vertices in cmℓ , 2m+1 ≤ ℓ ≤ 4n−2m−1. Given
u,w ∈ cm1 we consider their images under the folding homomorphism φ. Let x = φ(u)
and y = φ(w). There is an automorphism ψ of Q(m − 1, k) that maps y into x and fixes
cmℓ , 2m − 1 ≤ ℓ ≤ 4n − 2m + 1 pointwise. Then ψ∗ moves the preimage of y into the
preimage of x and fixes all vertices in the columns cmℓ for 2m + 1 ≤ ℓ ≤ 4n − 2m − 1.
If ψ∗ does not move w into u, then it moves it into a vertex u′, where u, u′ are opposite
vertices in a quadrangle. But then there is an automorphism that moves u′ into u and fixes
all vertices in cmℓ for 2m+ 1 ≤ ℓ ≤ 4n− 2m− 1.

Question 9.12. We wonder whether there exist any infinite, connected, vertex-transitive
cubic graphs with positive density other than Q(n), where 1 ≤ n, or finite connected,
vertex-transitive cubic graphs with cost > 5 other than Qk(n), where 1 ≤ n ≤ k − 2 and
⌈ k
n⌉ > 5. If they exist, they must be flexible with two arc-orbits.
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9.1.1 Split Praeger–Xu graphs

The graphs Qk(n), 1 ≤ n ≤ k − 1, k ≥ 3, are also know as Split Praeger–Xu graphs
SPX(2, k, n), see [20]. Their vertex sets are Zn

2 × Zk × {+,−} and the edge-sets consists
of the pairs

(i0, . . . , in−1, x,+)(i1, . . . , in, x+ 1,−) and (i0, . . . , in−1, x,+)(i0, . . . , in−1, x,−)

for ij ∈ Z2, x ∈ Zk.

(0; 0; 0;+)

(0; 1; 0;+)

(1; 0; 0;+)

(1; 1; 0;+)

(0; 0; 1;−)

(0; 1; 1;−)

(1; 0; 1;−)

(1; 1; 1;−)

(0; 0; 1;+)

(0; 1; 1;+)

(1; 0; 1;+)

(1; 1; 1;+)

(0; 0; 2;−)

(0; 1; 2;−)

(1; 0; 2;−)

(1; 1; 2;−)

(0; 0; 2;+)

(0; 1; 2;+)

(1; 0; 2;+)

(1; 1; 2;+)

(0; 0; 3;−)

(0; 1; 3;−)

(1; 0; 3;−)

(1; 1; 3;−)

(0; 0; 3;+)

(0; 1; 3;+)

(1; 0; 3;+)

(1; 1; 3;+)

Figure 16: Part of SPX(2, k, 2) for large k.

For SPX(2, k, 2), where k is large, compare Figure 16. We leave it to the reader to
verify that Qk(n) = SPX(2, k, n). Note that the graphs SPX(2, k, n), k ≥ 3, are flexible
for 1 ≤ n ≤ k − 2, rigid for n = k − 1 by Corollary 9.8, and not defined as SPX-graphs
for n = k.

By our preceding results onQk(n) the following theorem characterizes the Split Praeger–
Xu graphs.

Theorem 9.13. Let 1 ≤ n ≤ k − 1 and k ≥ 3. Then the Split Praeger–Xu graphs
SPX(2, k, n) are exactly those cubic graphs G that have a spanning subgraph consisting
of disjoint 4-cycles and can be folded onto Qk(0) by n foldings.

We could have based our presentation of Qk(n) on that of [20], but preferred the more
graph theoretic approach. It allowed us to directly treat the graphsQ(n), which are infinite,
and to illustrate the role of motion. Besides, it also led to a new series of GRRs.
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[12] H. Glover and D. Marušič, Hamiltonicity of cubic Cayley graphs, J. Eur. Math. Soc. (JEMS) 9
(2007), 775–787, doi:10.4171/jems/96.

[13] D. Gluck, Trivial set-stabilizers in finite permutation groups, Canadian J. Math. 35 (1983),
59–67, doi:10.4153/cjm-1983-005-2.

[14] C. D. Godsil, The automorphism groups of some cubic Cayley graphs, Eur. J. Comb. 4 (1983),
25–32, doi:10.1016/s0195-6698(83)80005-5.

[15] D. F. Holt, A graph which is edge-transitive but not arc-transitive, J. Graph Theory 5 (1981),
201–204, doi:10.1002/jgt.3190050210.

[16] S. Hüning, W. Imrich, J. Kloas, H. Schreiber and T. W. Tucker, Distinguishing graphs of max-
imum valence 3, Electron. J. Comb. 26 (2019), Paper No. 4.36, 27, doi:10.37236/7281.

[17] W. Imrich, F. Lehner and S. M. Smith, Distinguishing density and the distinct spheres condition,
Eur. J. Comb. 89 (2020), 103139, 10, doi:10.1016/j.ejc.2020.103139.

[18] W. Imrich, S. M. Smith, T. W. Tucker and M. E. Watkins, Infinite motion and 2-
distinguishability of graphs and groups, J. Algebr. Comb. 41 (2015), 109–122, doi:10.1007/
s10801-014-0529-2.

[19] J. Lauri and R. Scapellato, Topics in Graph Automorphisms and Reconstruction, volume 432 of
London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge,
2nd edition, 2016, doi:10.1017/cbo9781316669846.

[20] J. Morris, P. Spiga and G. Verret, Semiregular automorphisms of cubic vertex-transitive graphs
and the abelian normal quotient method, Electron. J. Comb. 22 (2015), Paper 3.32, 12, doi:
10.37236/4842.

[21] M. J. Morton, Classification of 4- and 5-arc-transitive cubic graphs of small girth, J. Aust. Math.
Soc., Ser. A 50 (1991), 138–149.

[22] N. Polat, Asymmetrization of infinite trees, volume 95, pp. 291–301, 1991, doi:10.1016/
0012-365x(91)90342-y.



32 Art Discrete Appl. Math. 5 (2022) #P3.15

[23] N. Polat, Similarity and asymmetrization of trees, volume 109, pp. 221–238, 1992, doi:10.
1016/0012-365x(92)90293-o, algebraic graph theory (Leibnitz, 1989).

[24] N. Polat and G. Sabidussi, Asymmetrizing sets in trees, Discrete Math. 95 (1991), 271––289,
doi:10.1016/0012-365x(91)90341-x.

[25] N. Polat and G. Sabidussi, Fixed elements of infinite trees, volume 130, pp. 97–102, 1994,
doi:10.1016/0012-365x(92)00526-w.
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