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Abstract

Redundant number systems (e.g., signed binary representations) have been utilized to efficiently
implement algebraic operations required by public-key cryptosystems, especially those based on elliptic
curves. Several families of integer representations have been proposed that have a minimal number of
nonzero digits (so-callehinimal weightepresentations). We observe that many of the constructions for
minimal weight representations actually work by building representations which are minimal in another
sense. For a given set of digits, these constructions boikekicographically minimatepresentations;
that is, they build representations where each nonzero digit is positioned as far left (toward the most
significant digit) as possible. We utilize this strategy in a new algorithm which constructs a very general
family of minimal weight dimensiort joint representations for arfy > 1. The digits we use are from
the setfa € Z : ¢ < a < u} where¢ < 0 andu > 1 are integers. By selecting particular values
of £ andu, it is easily seen that our algorithm generalizes many of the minimal weight representations
previously described in the literature. From our algorithm, we obtain a syntactical description of a
particular family of dimensiort joint representations; any representation which obeys this syntax must
be both colexicographically minimal and have minimal weight; moreover, every vector of integers has
exactly one representation that satisfies this syntax. We utilize this syntax in a combinatorial analysis of
the weight of the representations.

Key words. redundant number systems, signed digits, integer representations, joint representations,
minimal weight, colexicographic order, Joint Sparse Form.

AMS classification. Primary 11A63; Secondary 94A60, 68W40.

1 Introduction and Background

In this paper, we deal with a class of integer representations knoyamasepresentations

Definition 1.1. Letd > 1 andr > 2 be integers. Alimension-d radix-r joint representatias a sum of the
form 3575 Ajri where eachh; e z9x,
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Joint representations are representationgestorsof integers. We are patrticularly interested in the case
when the radix is equal to 2. IfN e Z9*! is a vector such thaN = Z?;%) A;2!, then we say that

Z?;%, A2l is aradix-2 joint representation of N To denote radix-2 joint representations, we use the
following notation:
(As—1. .. AtAg)2 i= As 1251+ + A2+ A

EachA is a column vector and the entries in these column vectors are dédfigsl Note that a dimension-1
joint representation is an ordinary integer representation.

Example 1.2. Here is a dimension-4 radix-2 joint representation with digits from th¢Gsd4:

0111 0 1 1 1 7
1011} [(1).s, {0}z, (2], (2] 0 [12
101 = (2|2 2|% o2t ]1]% = |13
1110 5 1 1 1 0 14
The values ofAz, Ay, A1, Ag are as listed above. O

Example 1.3. Here is a dimension-4 radix-2 joint representation with digits from th¢Gsdt 2, 3}:

10 1 0 3 7

203] | 2] 2 0] 1 3o |11

301 =|3|% T |o|% T|1]% |13

302/, 3 0 2 14
The column vectoN = (7,11, 13,147 has several other joint representations which use the digits
{0,1, 2, 3}. Notice that the representation above has just two nonzero columns, namahd Aq. The
representation in Example 1.2 has four nonzero columns. O

Joint representations were introduced by Solinas [18] when he considered how to compute a linear
combination of two elliptic curve points efficiently; i.e., he considered the computationRf+ n,P.,
whereny, n, € Z and Py, P, are elements of an elliptic curve group. What motivated Solinas to consider
this particular algebraic operation was its use in the Elliptic Curve Digital Signature Algorithm’s signature
verification operation [4].

The algorithm for computing; P, 4+ n, P, Solinas investigated is a special case of an algorithm due to
Straus [19, see the proof at the bottom of page 80Me general form of Straus’ algorithm is presented in
Appendix A and the special case is presented as Algorithm 1. The general algorithm coﬁﬁgmﬁ
using a dimensiomntradix-2 joint representation ol = (ny, n,, ..., Ng)" with digits in{0, 1, ..., 2 —1}.

Setting the parameteds= 2 andk = 1, we get an algorithm that computesP; + n, P, using a dimension-

2 joint representation with digits ifD, 1}; i.e., the rows of the joint representation are just ordir@nary
representations. For each nonzero column of this joint representation (not codgtingan elliptic curve
addition operation is performed (see lines 6-9). These addition operations are computationally expensive,
so it is desirable to do only as few of them as necessary.

For a given value ofN, we could reduce the number of addition operations in Algorithm 1 by utilizing
a joint representation dfl with fewer nonzero columns. However, when restricted to the dfgits}, this
observation is of little consequence; every vedtbof nonnegative integers has exactly one radix-2 joint
representation with digits ifi0, 1}. But if we instead consider joint representations which use the digits
{0, £1}, the situation changes.



Algorithm 1 Straus’ algorithm fod =2,k =1
Input: N = (N, nx)", P = (P, P)
Output: Q =P+ nyP;

1. R« P+ P

2. As_1... A1 Ag « the columns of the dimension-2 radix-2 joint rep.Nfwith digits from {0, 1}
3: based on the value dfs_1, initialize Q to one ofP;, P,, R

4: for j=s—2...0do

5: Q <« 2Q

6: if A; # Othen

7: if Aj=(1,0"thenQ « Q+ P,

8: elseifAj =(0,1)TthenQ « Q+ P,

o: elseifAj = (1, )T thenQ « Q+ R

10: return Q

It is possible to modify Algorithm 1 so that it processes a radix-2 joint representatibinvdth digits
in {0, +1}.2 This is done in Algorithm 2. Notice now that for every nonzero columidn; . .. A; Ag (not
countingAs_1) an addition oisubtractionoperation is carried out. In elliptic curve groups, point subtraction
can be done just as efficiently as point addition, so utilizing this operation does not carry any extra cost.
Every nonzero vectoN e Z2*! has infinitely many radix-2 joint representation with digits fr¢én+1},
and any one of these can be used in Algorithm 2. This led Solinas to the following problem:

Problem 1.4. Given N e Z?*1, construct a radix-2 joint representation of N using the digls+1} that
has a minimal number of nonzero columns.

The number of nonzero columns in a joint representation is often referred toraesgtst

Solinas solved Problem 1.4 by presenting an algorithm that constructs a canonical joint representation for
any pair of integers called theint sparse form{dJSF). The JSF was developed as a generalization of the well-
known nonadjacent fornr{NAF) due to Reitwiesner [17]. The NAF is a family of radix-2 representations
with digits in {0, 1} that have the property thaf any two consecutive digits, at most one is nongego,
their nonzero digits are nonadjacent). Reitwiesner showed that every integer has exactly one NAF, and
that this representation has a minimal number of nonzero digits. Solinas showed every pair of integers has
exactly one JSF, and that this representation has a minimal number of nonzero columns.

Example 1.5. Here are two radix-2 joint representations(602 1365 with digits from {0, £1}:

(00101&0?.01() (OlOlO_LOiOlO)

101010101011 ,\101010101041,°

Note that we use1” to denote “-1”. The first representation is composed of 12 columns, 7 of which

are nonzero. The second representation has 11 columns and all 11 are nonzero. Each row of the second
representation is a NAF. This demonstrates that taking each row of a joint representation to be a NAF does
not necessarily give a minimal number of nonzero columns. %

Solinas suggested some additional research problems involving joint representations. The ones most
relevant to the work presented here are the following:

IThis special case of Straus’ algorithm is often incorrectly attributed to Shamir. Bernstein explains this and a number of other
misconceptions regarding exponentiation algorithms in a manuscript [2].

2The benefits of using radix-2 representations with dig){st1} in elliptic curve arithmetic were first demonstrated by Morain
and Olivos [12].



Algorithm 2 Straus’ algorithm fod = 2, k = 1 modified to use the digit©, +1}
Input: N = (N1, np)7, P = (Py, Py
Output: Q =P+ nyP;
1. R«P+P,, SP—-P
2. As_1... A1 Ag « the columns of a dimension-2 radix-2 joint rep.Nfwith digits from{0, +1}
3: based on the value &._1, initialize Q to one of+=Py, £P,, +R, S
4: for j=s—2...0do

5: Q « 20
6: if A; # Othen

7: if Aj=(1,0"thenQ « Q+ P,

8: elseifA; = (1,0)"thenQ « Q— P,
o: else ifAj = (0,1)"thenQ « Q+ P,
10 elseifAj = (0,1)TthenQ « Q— P,
11: elseifAj = (1, )T thenQ « Q+ R
12: elseifAj = (L, )"thenQ « Q—R
13: elseifAj = (1,1)"thenQ < Q+ S
14: elseifAj = (1,1)TthenQ « Q-S
15: return Q

Problem 1.6. Generalize the JSF to dimension d where .
Problem 1.7. Give an analogue of the JSF which uses digits other fitad-1}.

Problem 1.6 was solved independently by Proos [16] and by Grabner, Heuberger and Prodinger [6]. Both
works demonstrate how to build arbitrary dimenstradix-2 joint representations using the digis +-1}
that have minimal weight. To date, there has been little progress made on Problem 1.7.

Our contributions. We consider the problem of constructing minimal weight dimensioadix-2 joint
representations, for arbitrad/> 1, which use the digitfa € Z : ¢ < a < u}, where¢ < 0 andu > 1 are
integers. We provide an efficient algorithm which constructs such representations. By selecting particular
values ofd, ¢, u, it can be seen that our construction generalizes a number of previously known minimal
weight representations (see Table 1). One unusual property of the digit sets we consider is that they are not
necessarily symmetric about zero; i.e., they can contain an unequal number of negative and positive digits.

| minimal weight representation | d | ¢ \ u \
nonadjacent form [17] 1 -1
width-w nonadjacent form [15] [1] [14] 1 |- t-1|2vt-1
signed fractional window representation [15] [111] 1 —-m m
simple joint sparse form [6] >1 -1 1

TABLE 1: Families of minimal weight integer representations (citations are given to minimality proofs).

An important concept we emphasize is the commonality between minimal weight representations and
colexicographicallyminimal representations.For a fixed set of digits, the set of all joint representations
of a vectorN € Z can be ordered by comparing tpesitionsof their nonzero columns, as read right-to-
left. Representations which are minimal with respect to this (colexicographic) ordering share a number of

3Common properties of minimal weight and colexicographically minimal integer representations were described in Muir's Ph.D.
thesis [13, see Ch.4].



properties with those that have minimal weight. Thus, for a given set of digits, it is natural to ask whether
a colexicographically minimal representation has minimal weight. For the digit sets we consider, this is
indeed true, and the design of our algorithm exploits this fact.

The main results presented herein can be summarized as follows:

¢ the outputs of our algorithm are minimal weight representations (Theorem 1).
¢ the outputs of our algorithm are colexicographically minimal representations (Theorem 2).

e any representation with digits restricted{te Z : ¢ < a < u} that is colexicographically minimal
must also have minimal weight (Corollary 3).

e any representation with digits restricted{® € Z : ¢ < a < u} which satisfies three syntactic
properties must be colexicographically minimal and have minimal weight. Every integer vector admits
exactly one representation satisfying these three syntactic properties (Theorem 4).

e the probability distribution of the weight of theleast significant columns of a colexicographically
minimal representation oN can be explicitly determined; from this, asymptotic formulae for its
expected value and variance follow (Theorem 5).

Related Work. Integer representations using digit sets of the f¢ane Z : £ < a < u} wheref < 0 and

u > 1 have been proposed previously in the literature. Phillips and Burgess [15] introduced a “generalized
sliding window” transformation which is applied to an integer’s standard radepresentation where> 2.

If the parameterg andu satisfyf = 0orf{ =1 (modr) andu = —1 (modr), then they are able to prove

that their transformation produces a minimal weight representation. In the case rwher2, which is

the only radix value considered in our work, these two conditions can always be satisfied because of the
fact that only the odd digits fronfa € Z : ¢ < a < u} are utilized (e.g., ilu is even, it can be replaced

with u — 1 and then their proof will go through). Although Phillips and Burgess consider only integer
representations (not joint representations), our technique for proving minimality is similar to theirs (both
works use induction and the properties of addition) with the exception that we do not require any extra
conditions or? andu; this is important since our joint representations, in general, utilize both even and odd
digitsfrom{a e Z : ¢ <a < u}.

The connection between colexicographically minimal representations and minimal weight representa-
tions is unique to our work. This observation provides some perspective on sliding window transformations,
including the one proposed by Phillips and Burgess. Sliding window transformations tend to produce colex-
icographically minimal representations, and this is why they often give minimal weight representations.

Outline. We begin by presenting some preliminary concepts and notations in 82. In 83 we explain the
design of our algorithm. A number of properties common to both minimal weight and colexicographically
minimal representations are presented in 84. That the outputs of our algorithm are minimal is established in
85. A syntax which characterizes the outputs, along with an analysis of their weight, is given in §6. We end
with some remarks in §7.

2 Preliminaries

2.1 Column-strings

Let D C Z be afinite set of digits with @ D. DY%! denotes the set of all dimensiahcolumn vectors with
entries (digits) fronD. We use) to denote the all-zero column vector. Column vectors can be concatenated
together to form strings of column vectors.



Given N e Z9%1 when looking for a column-stringl = As_1 ... A1 Ay such that(4), = N, leading
zeros do not matter since we obviously h&4, = N if and only if (6A)2 = N. We denote the number of
nonzero columns in the string by wt(.4). This value is often referred to as tfgnt Hamming weightor
simply, theweight of A.

To denote the columns of a joint representation, we use capital lettersAg.g.,.. A1 Ag where each
A; e D%, To denote the digits of an integer representation, rather than a joint representation, we use lower
case letters; e.gas_1 ... apa Where eacla; € D.

2.2 Colexicographic Order

For a vectorN e Z9%! and a digit seD c Z, consider the set of all dimensiahradix-2 joint represen-
tations of N with digits restricted toD. We can order the representations in this set by considering the
positions of their nonzero columns.

SupposgAs_1... A1Ag)2 = N. FromA = Ag_;1... Aj Ay, we derive a binary stringhar(A) defined
as follows: char(A) = as_1 ... axa;a9 Wwhere

0 if A isazerocolumn
1 otherwise

Now, if B = Bs_1...B1Bp and(B), = N, we write A < B if char(A) is less than or equal tchar(B)
when they are comparemlexicographically Colexicographic order is similar to lexicographic order except
that strings are compared by reading their symbiglst-to-left rather than left-to-right. Here is an example
to illustrate:

column string
digit minimal
minimal column
radix representation
representation weight
string digit
weight radix

The strings in the left column are ordered lexicographically, and the strings in the right column are ordered
colexicographically.

Comparing integer representations using colexicographic order has been utilized previously in the lit-
erature. Grabner, Heuberger and Prodinger [6, see p. 330] used colexicographic order to prove that their
Simple Joint Sparse Form has minimal weight. Muir and Stinson [14] showed that thewittthadjacent
form of an integer is uniquely determined as its colexicographically minimal representation.

2.3 The Digit SetD, y
For integers < 0 andu > 1, we define the digit set
Diui={aeZ:¢<a<u.

Notice that because of the bounds®andu, D, always contains the digits, @. Also, if D, contains
negative digits, ther-1 € D, . On the other hand, f = 0, then the digits irDg, can certainly only be
used to represent nonnegative numbers. Observe bat # u — ¢ + 1.

Given a set of digitD, ,, we definew to be the unique positive integer that satisfies

2°7L < #Dgy < 2%,

6



This implies thatD, , contains a complete system of residues modtifo'2Two such systems are

lower(Dyy) i={ae Dpy:f <a<{+2°71,
upper(Dgy) i={ae Dgy:u—2""" <a<ul.

Depending on the values é¢fandu, these two sets might coincide. Note tHat, doesnot contain a
complete system of residues modulotecause B, , < 2*. Since{0, 1} C D, ,, it is always the case that
2 < #D¢y; from this, we see thab > 2.

Example 2.1. For¢ = —3 andu = 7, we have
D—3,7 = {_3, _29 _19 05 13 29 35 43 59 65 7}5

and 2 < #D_37 < 2*(i.e.,w = 4). Each of the eight congruence classes modtilea either one or two
representatives iD_s 7:

012 3 456 7

321
01 23 456 7

Each of the sixteen congruence classes modtitw2 either zero or one representativeding 7:

0123456789 10 11 12 13 14 15
01234567 3 2 1. 0

We say that a digie € D, is unique moduld2*~! if there is no other digie’ € D, such that
a =a (mod 2*~1) anda’ # a. The set of digits ofD,, which are unique modulo*2? is denoted by
unique(D, ). Itis easily seen that

unique(Dy,) = lower(D;,) Nupper(Dyy) ={ae Dy :u—2""1 <a < £42°71). (1)
The set of digitD, , \ unique(Dy ) is denoted byionunique(Dy ). We have
nonunique(D;,) = lower(D,,,) A upper(D,y) ={ae Diy:a<u—2""tor ¢4+2°t<a); (2
here,/A denotes the symmetric difference of two sets. From Example 2.1, we see that

unique(D_37) = lower(D_37) Nupper(D_37) ={0, 1,2, 3, 4},
nonunique(D_37) = lower(D_37) A upper(D_37) = {—3, -2, -1,5,6, 7}.

Givenn e Z, to compute a digia € D, , such than = a (mod 2°~1), we can take either

a«{+((n—¢) mod 7Y, or (3)
a < u—((u—n) mod 2°7%). (4)

Since 0< x mod 2°~1 < 2»~1for anyx e Z, it is easily seen that both assignments yield a digDjn,.
Moreover, for the first assignment we have lower(Dy ), and for the second we hage= upper(Dg ).



3 The Algorithm

There are two main tasks ahead of us:

1. give an algorithm which builds minimal weight radix-2 joint representations where digits are restricted
to the setDy .

2. prove that the outputs of this algorithm do in fact have minimal weight.

In this section, we concentrate on task 1. Our strategy, which may initially seem misguided, will be to
develop an algorithm which buildsolexicographicallyminimal joint representations. We will see later

on that colexicographically minimal representations and minimal weight representations have a number of
common properties. This fact will hopefully postpone any misgivings about our approach until, with the
completion of task 2, they can be laid to rest completely.

3.1 Building Colexicographically Minimal Representations

GivenN e 79! and a set of digitD,, (if £ = 0, we require all components of to be nonnegative),

we will construct a joint representatiofs_; . .. A1 Ag)2, Of N by setting the value of each column in turn
from least- to most-significant (i.e., right-to-left). If we can correctly set the digits of the least significant
column, then this leads to an algorithm of the following form:

s« 0
while N # 0do
select digits fromD, , to form A, the least significant column of a representatiofNof
As « A
N« (N-A/2
S«s+1
return As—1...A1A0

We start with the columm,. So thatAs ;... AjAg has low colexicographic rank, we try to apply the
following rule: If possible, make fa zero column; otherwise, choose the digits gfsA that the number of
zero columns which follow gis maximized.

If N = (As_1...A1A0)2, thenN = Ay (mod 2. Thus, a condition under which it is not possible to
make Ag a zero column idN # 0 (mod 2. If this condition does not hold (i.e., fl = 0 (mod 2), then
we will set Ay « 0. But suppose it is the case that# 0 (mod 2. SinceD, , contains a complete system
of residues modulo2!, we can choosd so thatN = Ay (mod 2°~1). Setting the digits ofA, in this
manner allowst leastw — 2 zero columns to followAg. But, depending on the valueswf¢ andN, there
can be more than one possibility f8p; our choice can influence the number of zero columns followigg

Using the expression in (3), we initially sy < L + (N — L) mod 2°~1) whereL = (¢,¢,...,0)".
Each digit of Ay is either unique modulo“2? (in D) or not. The next possible nonzero column will
occur no sooner thaa,,_;. By computingM « (N — Ag)/2*~! and checking iM = 0 (mod 2, we can
determine if the initial value o\, causesA,,_; to be nonzero. However, it is only the digits &f which
are unique modulo2-! which determine whether or n@t,_; must be nonzero. This is because a digit of
Ao = (a1, @, ..., aq)" which is not unique can be replaced waht2*~1, and this changes the parity iof
whereM = (my, my, ..., my)". These replacements can sometimes be used to makea zero column.

Using the setsinique(Dy ), nonunique(Dy ) introduced in (1) and (2), our observations so far on
how to computeA, are incorporated in the method below:

if N =0 (mod 2 then
A0
else



AL+ ((N=L) mod 207%
Tunique < {i €{1,2,...,d} : g € unique(D, )}
Tnonunique < {i € {1,2,...,d} : & € nonunique(D, )}
M « (N = A)/2v1
if mi =0 (mod 2 foralli € Zynique then
for i € Znonunique SUch thatm; =1 (mod 2 do
a «a +2"7
m<m—1
Ag < A
However, as the following example shows, we are not done yet.

Example 3.1. Consider the vectoN = (3,5)T and the digit seD_3; = {—3, -2, —1,0,1}. We have
unique(D_31) = {—2, —1, 0} andnonunique(D_31) = {—3,1}. By iterating the method above, we

obtain the following representation: L
10301y (3
12:), 7 \s)

However, this representation is not colexicographically minimal because

(101) _ (3)
101/, 5
has lower colexicographic rank. Our method sets the least significant colutrrilie-3)". The digit 1
could be used in place ef3, but our method does not recognize the advantage of doing so. O

If it is true that bothAg and A,_; must be nonzero columns (i.e., M # 0 (mod 2 andm; = 1
(mod 2 for somei € Zynique), then our current method does not make any changes to the initial value of
Ag. But there is another reason to change the initial valuAgfaside from making?,_1 a zero column.
Doing so may result in more choices for the digits of coluf_1; this in turn may allow us to prevent a
nonzero column when choosing digits fas,,_».

The vectorM above determines which digits can be used in coliin;. By computingl + ((m; —
¢) mod 2°~1) and checking if this digit is imnique(D, ;) or nonunique(D; ), we can determine whether
or not we have a choice for the digit at coordinat A,_;. By replacingm; with m; — 1 (after updating
Ap), itis sometimes possible to move coordiniaté A,,_; from unique(D, ) into nonunique(D, ). From
(1), we see that the minimum digit ahique(D,,,) isu—2°~1+1. Itis easily seen that ifonunique(Dy )
is nonempty, then the following implication holds foy:

£+ ((mj —¢) mod 2°7Y) = u— 2" 4 1 € unique(D¢y)
= (+ (M —1—¢) mod 2°~Y) = u—2""! € nonunique(Dy,,,).

We will test for the conditiorf + ((m; — ¢) mod 2°~!) = u—2*~! 4+ 1 and make the changes necessary to
allow two choices for digit of A,,_1.* We do this by adding an “else” clause to the second “if” statement
in the previous pseudocode listing. This is the only condition under which replagingth m; — 1 moves
us fromunique(Dy ) into nonunique(Dy ).
Here is the modified “if” statement:
if m =0 (mod 2 foralli € Zynique then
for i € Znonunique SUch tham; =1 (mod 2 do

4The test condition can be simplified (e.g., it is equivalentfo= u + 1 (mod 2°~1)), but, for the sake of clarity, we leave it
asis.



g «a +2"7
m «<m —1
else
for i € Znonunique SUch that + ((m — ¢) mod 2~ =u—2»"1 4+ 1do
a g +2vt
m«<m—1
This change completes our algorithm.

Example 3.2. Repeating Example 3.1 with our modified pseudocode results in the following representation:

(101) _ (3)
101/, 5
It is easily seen that this representation is colexicographically minimal. %

3.2 The Final Algorithm

Our final algorithm is listed as Algorithm 3. The claim made in the caption there (i.e., that the outputs are
colexicographically minimal and have minimal weight) will be justified later on. Here, we show only that
Algorithm 3 terminates for all its inputs (i.e., we show that it really is an algorithm).

Lemma 3.3. For any valid input Ne Z9%*, Algorithm 3 terminates.

By “valid input”, we mean that i¥ = 0, then all components df must be nonnegative; #f < 0, then any
N e Z91is valid.

Proof. We first consider the case that< 0 (i.e., we also have negative digits). Then we obviously have
max|ul|, |f]} < u—¢—1 < 2 — 2. We note that ifA # 0 in some step of the algorithm, we have

N = A (mod 2°~1). This implies that in the subsequant— 2 steps of the algorithm, we will hav = 0.

We temporarily call these — 2 steps “insignificant steps” as opposed to the other steps, which we call
“significant steps”.

We claim that||N|| strictly decreases from one significant step to the next significant step. Here,
IN|ls denotes the infinity norm o, i.e., max{|n;|}. If A = 0 in some step of the algorithm, it is clear
that||[(N — A)/2]lcc = IIN/2]lcc < [IN||oo. If A # 0, we have to consider the next significant step, i.e., the
next number will bg N — A)/2°~ 1 If ||N|» > 2, we have

N = A)/2° Hloo < (INloo +max{]ul, 1£1)/2°7 < (INfles +2(2°71 = 1))/2°7% < [IN| oo,

as claimed. We still have to consider the case Nl = 1. The algorithm will choosé = N in this
case, since all entries &f belong to the digit set. Thus the algorithm terminates in this case.

We now turn to the casé = 0. Here, we have to show that during the execution of the algorithm, no
component oN ever becomes negative. This could only happen-#u < 0 for somd. This means that;
itself is a digit. The situation can only be dangerous; if- 2°~ is also a digit, thus; e nonunique(Do,,)
with n; e lower(Dgy). Thus, at line 16, the quantity; equals 0. Bub; + 2¢~1 will neither be taken to
makem; even (at line 19) nor will it happen that8 m; mod 2°~! = u — 2*~1 4 1 (at line 25) because
u > 2¢~1 (since we have a digit inonunique(Dq,y)). Thusa = n; in this case.

This means that in the cage= 0, all intermediate numbeid will be nonnegative and the components
of N will strictly decrease until they reach 0, where they remain. O

When Algorithm 3 terminates for an inptt € Z9*, from line 30 it is clear that the columns returned
form a joint representation afl.

10



Algorithm 3 Computation of a colexicographically minimal & minimal weight joint representation

Input:

N =(ny,ny, ...,ng)" € 29, £ < 0,u > 1 (with all components oN nonnegative i = 0).

Output: As_1...A1Ay, acolexicographically minimal & minimal weight representatioriNof

W INDNRNNMNNNNNNNRRRRRRERPRR R
© © O N U A WNREREOO®NORWNRO

31:

Diy<—{aeZ:t<a<u}
w « the integer such that’2! < #D,, < 2"
unique(Dyy) < {ae Dyy:u—2""1<a <4 2v7Y
nonunique(D;,y) < {ae Dyy:a<u—2°"1 or £4+2v71 < a}
{these sets respectively consist of the digits which are unique and nonunique modulo 21}
S0 L«(t,...,07
while N # 0do
if N=0 (mod 2 then

else

{We can make column s zero, so we do this.}
A«<O

{We cannot make column s zero, thus it will be nonzero.}
A« L+ ((N=L) mod 2071
Zunique <~ {1 € {1,2,...,d} : & e unique(D; )}
Tnonunique < {i € {1,2,...,d}: & e nonunique(D, )}
M « (N = A)/2vt
if m =0 (mod 2 foralli € Zynigue then
{We can make column s+ w — 1 zero.}
for i € Znonunique SUCh thatm; is odddo
a «a + 271
m «<m—1
else
{Column s + w — 1 will be nonzero.}
{Use redundancy at column s to increase redundancy at column s+w—1.}
for i € Znonunique SUCh that + ((m; — ¢) mod 2°71) =u—2*"1 4+ 1do

a <« g +2°!
m < m —1
{We have N = A (mod 22~} and M = (N — A)/2v1)
As <« A
N « (N — A)/2
S«s+1

32: return As_1... A1Ag

4 Common Properties

Here, we describe some common properties of colexicographically minimal representations and minimal
weight representations. The properties are presented as a sequence of lemmas. We first show that both kinds
of representations are recursive.

Lemma4.1. If (... AsA1Ap) is a colexicographically minimal representation of a vectoreNZ9%2, then
(... A2Ay); is a colexicographically minimal representation@® — Ag)/2.

Proof. Let A = ... AAjAgand A’ = ... A;A;. Let B’ be the columns of a colexicographically minimal

11



representation ofN — Ag)/2. Supposehar(B') is strictly less tharchar(.4’), colexicographically. Then
B <A
= B'Ay< AA
= BAy=< A.
Since(B’'Ag)2 = N, we see thatd is not a colexicographically minimal representatiori\of O

The same recursive property is true for minimal weight representations.

Lemma 4.2. If (... A,A1Ap)» is a minimal weight representation of a vector NZ9*2, then(... A A1)
is a minimal weight representation O — Ag)/2.

Proof. Let A = ... AJAjAgand A’ = ... AbA;. Let B’ be the columns of a representation(df — Ag)/2
that has fewer nonzero columns thdh Then

wt(B') < wt(A)
= Wt(B'Ag) < wt(A'Ao)
= Wt(B'Ag) < wt(A).

Since(B’'Ag)2 = N, we see thatd is not a minimal weight representation Mdf O

Notice that the above lemmas are truedoydigit setD c Z. For the digit seD, ,, other commonalities
can be demonstrated. Before we get to those, we establish two short facts.

Fact 4.3. For any representatioa,,—> . . . 8180)> Where each pae D, ,, the Diophantine equation
(Qy—2...a180)2 =X-2""t+y 5)

has a solution(x, y), with x, y € Dy .

Proof. Observe that all integers in the range
-2y, ,u-20t 4

can be expressed as 2¢~! 4 y with x, y € D,y. Now, sincef < 0 andu > 1, we have

-2 <2t < (@pp...mag)s<u-2°t—u<u-20 4y,
and so(a,_» . ..a189)2 is an integer in this range. O

Fact 4.4. For any representatioOas_; . . . a18p)», With each @ € D, , and integer a, with & D, , there
exists a representatiofbsbs_1 . . . b1bg)2, with each p € D, such that

(bsbs—1 ... b1bg)2 = (Oas_1 ... a1a0)2 + a,

and
wt(bsbs_1...bibg) < wt(Oas_;...ana0) + 1.

Proof. Use the classical addition algorithm to aaltb (Oas_; . . . a1a9)». This may trigger a carry, however,
carries stop when reaching the first zero column from the right, at the latest. Therefore, the Hamming weight
will be increased by at most one. O

12



Fact 4.4 extends to joint representations as well; that is, we can carry out the ad@iion. .. A1 Ag)>+ A
with only increasing the number of nonzero columns by at most one. We use this to establish additional
common properties.

Lemma 4.5. If (... A,A1 A)» is a colexicographically minimal representation of a vectoreNZ*! with
digits restricted to [, then every nonzero column ©f . A, A; Ag)> must contain an odd digit.

Proof. Let A = ... A,A1 Ap and supposed contains a nonzero column consisting of only even digits. By
Lemma 4.1, we can assume thgfis such a nonzero column. L&t be the first zero column that precedes
Ao. Then we have

A=...0A_1... AlA;.

nonzero columns

By Fact 4.4, we can replace the colunﬁm_l .o ALAgwith BiBi_g ... 516 where
(BBio1... By = (OA1... Ar)a + Ag/2
Thus, we have
N=(.. Au2A10A 1... AtAg)2 = (... AyaA11BiBi1 ... Bi0)2;

but this new representation contradicts the fact it is colexicographically minimal (it has lower colex-
icographic rank becausk, # 0). O

Lemma 4.6. Every vector Ne Z*! (with N > 0if £ = 0) has a minimal weight representation with digits
restricted to D , where each nonzero column contains an odd digit.

Proof. Supposk. .. A;A; Ag)2 is a minimal weight representation bif that has a nonzero column consist-

ing of only even digits. Letd = ... A,A;Ap. By Lemma 4.2, we can assume thR&f is such a nonzero
column. We describe how to modifyt so thatAy; becomes a zero column while the joint weight does not
change.

Let A; be the first zero column that preced&s Then we have

A=.. . 0A_1... AlAy.
——

nonzero columns

By Fact 4.4, we can replace the colurrfm}_l ... AjAg with B{B;_1 . .. Blf) where
(BtBi_1...B1)2 = (0A_1... A1)z + Ag/2,
and

WEt(B(Bi_1...B1) < Wt(0A_1... A)) + 1
— Wt(BBi_1...B0) < Wt(0A_1... A1 A)).

Because of the bound above, this replacement cannot increase the number of nonzero columns; thus, we
maintain the minimal weight property. O

Example 4.7. A dimensiond joint representation witld = 1 is just a radix-2 representation of an integer.
Suppose we want to build minimal weight integer representations using the digit set

D_77 = {0, £1, 42, £3, +4, 45 46, £7}.
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According to Lemma 4.6, if we restrict ourselves to the smaller digit set
{0, £1, £3, 45, £7}

we will still be able to construct minimal weight representations. This is because any minimal weight
representation with digits iD_; ; can be transformed into one with digits {0, £1, +3, £5, £7} which

has the same weight. This property underlies the construction of the widbhnadjacent forms. The digits

{0, +£1, +3, 45, +7} are the width-4 nonadjacent form digits. Note however, that all this is only true in
dimension 1. O

Lemma4.8. Let(... Ay A1 Ag)- be a colexicographically minimal representation of a vectoe 9% with
digits restricted to R. If A; # O, then A,,—» = --- = Aj;1 = 0 (i.e., immediately preceding any
nonzero column, there must be at least- 2 zero columns).

Proof. Suppose the result is false. Ldt= ... A, A; Ag. By Lemma 4.2, we can assume thgtis nonzero
and one ofA,,_,... Ay is also nonzero. By Fact 4.3, there existY e D[,udX1 such that

(Ap—z...AAg) = X - 2071 4.
Now we have

N==(..AuA_1AL—2... A1A0)>
= (. ALAL_1)2- 2T+ (Ap—a. .. At A2
=(.. A A, 1)2- 2"t X204y
= ((.- AvAD2+ X) - 2714 Y
= (...ByB,_10...0Y),.
Note that the addition. .. A, A,_1)> + X is carried out using Fact 4.4. But this new representatioN of

contradicts the fact thdt.. A, A; Ap) is colexicographically minimal because it has lower colexicographic
rank. O

Lemma 4.9. Every vector Ne Z9*1 (with N > 0if ¢ = 0) has a minimal weight representation with digits
restricted to D , where each nonzero column is immediately preceded by atdeas? zero columns.

Proof. The statement can be proved in essentially the same way as Lemma 4.8. The only difference is that
we use the weight bound of Fact 4.4 to conclude that the newly constructed representation also has minimal
weight. O

In the next section, we show that there is an even stronger connection between colexicographically
minimal representations and minimal weight representation with digits restrict®d o any colexico-
graphically minimal representation is a minimal weight representation.

5 Minimality

We now return to the second task described in 83: proving that the outputs of Algorithm 3 have minimal
weight. To accomplish this, we apply some of the results in 84. We also show that the outputs of the
algorithm are colexicographically minimal.

Theorem 1. For any input Ne Z9*1 (with N > 0if £ = 0), the representation constructed by Algorithm 3
has minimal weight.
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Proof. Suppose the resultis false. Then Algorithm 3 produces a representation which does not have minimal
weight for some inpulN e Z9%*. Of all suchN, choose one such that the number of columns returned by
Algorithm 3 is minimal.

Let A = Ag_1...A1Aq be the columns returned by Algorithm 3 and I&t= B;_;... BBy be the
columns of a minimal weight representationdf We have

(A)2 =N = (B),, and wt(A) > wt(B).

By Lemma 4.6 and Lemma 4.9, we can cho#isso that each nonzero column contains an odd digit and
each nonzero column is preceded by at least 2 zero columns. We will show how to construct a new
input, N’, for which the output of Algorithm 3 is shorter and does not have minimal weight. This contradicts
our choice ofN and thereby establishes the result.

SupposeAy = By. The output of Algorithm 3 on inpulN’ = (N — Ag)/2 is As_1...A;. Now,
(As—1...A1)2 = N = (B_1...Bp)2 andwt(As_1... A1) > wt(Bi_1...B;). But this contradicts our
choice ofN. Thus it must be thaf\y # Bo.

fN=0 (mod 2, then bothAy = 0 (by the definition of Algorithm 3) andy = 0 (because each
nonzero column of8 contains an odd digit). Bubg # By, so it must be thalN = 0 (mod 2. Hence both
Ag and By are nonzero columns.

So far, we have the following picture:

zero columns zero columns

—_— —_——
A= AS—l cee Au) Aw—l Aw—Z cee Al AO, B = Bt—l o an Bm—l Bm—Z cee Bl BO-

Thus, Ao = By (mod 2°~1) but Ay # Bo. However, if #D,, = 2¢~1, thenAg = By (mod 2°~1) implies
Ao = By. So for the special caseDy,, = 2°~1, we are done. We will continue under the assumption that
#D,.y # 2°~1 (this implies thanonunique(Dy,,) is nonempty).

We denote the digits of columns — 1 and 0 of4 andB like so:

A(w-1) alo b1(w-1) b1o
A (w—1) ano Bo(w-1) boo
w—1 — . ) AO - . Bu)—l - . 5 BO - . -
ad(w-1) ado Bd(w-1) Bdo

We argue that bottd,,_; andB,,_; must be nonzero columns.

If By_1 = 5, then we have thdll = By (mod 2°). But then Algorithm 3 would have s&y = By. So
it must be thaB,,_; # 0. This implies that columnB,,,_3... B, are all zero.

Suppose thaf\,_1 = 0. We haveB,,_12°"1+ By = Ay (mod 2°), which implies thaB/, :== B,,_1/2+

(Bo — Ao)/2" is an integer vector. Observe that every effryof B/ is an element oD, ,, since
0—1<¢/2-1<big-1/2+ (bo—a)/2" <u/2+1<u;

note that the strict inequalities follow becalsg—ao = +2°~1. We setB, , = 0, By = Ao, andB; := B;
for j ¢ {O,w -1, w}. ForB' :=...B/ B, _,...Bjwe have thatB'), = (B), = N. Thus we can replace
B by B’ and proceed as above. Hence, we can assumdéthat# O.
Consider the vectofN — Ag)/2°~1. We have
N AO zero columns B AO
— — —
T (Bt-1... Bow—2Bay—3... By By—1)2 + Zw—_l

= (As—1... Aoz Agyy—3... Ay, Ay_1)2.
N —)

zero columns
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Each coordinate of the vectoBy — Ag)/2*~tis in {0, +1}. We will show that we can perform the addition

(Bt—1...By-1)2+ Bzol;’io by changing only columiB,,_; (thus no new nonzero columns are created).
Considerb; ,—1), theith coordinate ofB,,_1. We must either add 1 tiy (,,—1), subtract 1 fromb; -1

or leaveb;,_1y as it is. The only difficulty in computindp; ,—1) + 1 occurs wherb;,—1y = u (because

u+1¢ Dgy). Inthis case, we haviee Znonunique Sincea;o # bip and

bi (w-1) +1= ai(u;—l) (mOd 20—1)
— uU+1l= i (w-1) (mOd 2)_1)
= -1 =U— 20141,
But this cannot happen: At line 25 of Algorithm 3, the valueagfwas set to avoid;,—1) = U — 2v-141
(i.e., Algorithm 3 would have s&f, = bjp). So the problem of computing+ 1 does not occur.
The only difficulty in computingo; ,,—1) — 1 occurs wheb;,—1) = ¢ (becaus€ — 1 & D). In this
case, we have
Biw-1 —1=aw-1 (mMod 2"
— (—1= & (w-1) (mod 20_1)
= Q- =+ 2v-l_ 1
However, because we are subtracting 1, it must begbat bjo +2~1; so we have, € upper(D, ). But
Algorithm 3, by default, selects digits frolawer(D, y); it would only do otherwise if it could makAw_;
a zero column or increase the redundancy at @igjt_1). But neither of those conditions occuk(_, # 0
andaj,—1 = € +2°71 — 1 # u — 2*~1). Thus, we never need to compute- 1.
So we can carry out the addition by replaciBg-; with a new columrB; _; with digits from D, . Let
N’ = (N — Ag)/2~1. We have
(Asm1...A,A,-1)2=N = (B-1...B,B,_;)2 and
Wt(As_1... AL AL 1) > W'[(Bt_l ... By BZ’D_l) . (6)

But thenN’ contradicts our choice dfl and we are done. O

Theorem 2. For any input Ne Z9*1 (with N > 0if £ = 0), the representation constructed by Algorithm 3
is colexicographically minimal.

Proof. This can be established using essentially the same proof as Theorem 1. The only difference comes at
(6): we obtain the desired contradiction by noting thaty ... A, A,_1 > Bi_1... B, B, _; (i.e., the newly
constructed representation has lower colexicographic rank). O

Corollary 3. Any colexicographically minimal representation of a vectoreNZ** with digits restricted
to D, has minimal weight.

Proof. By Theorems 1 and 2, we know that at least one colexicographically minimal representabion of
has minimal weight. However, all colexicographically minimal representatioms ldive the same number
of honzero columns, so the result follows. O

6 Analysis

We now analyze the weight of the outputs of Algorithm 3. We do so by defining a probability distribution
on a setM of infinite sequences OV@[,udXJ'. Each sequence it satisfies the same syntax as the outputs

16



of Algorithm 3 (e.g., each nonzero column contains an odd digit). An explicit description of this syntax is
presented in 86.1. By considering the number of nonzero columns out of the do8imns of a sequence
drawn fromM, we obtain a random variabléy,. The expected value and the varianc&\gfare computed

in 86.2.

6.1 Combinatorial Characterization

Here we provide a precise combinatorial description of the outputs of Algorithm 3.

Theorem 4. Let N € Z9*1 (with N > 0if £ = 0). Then there is exactly one representati@a_; . .. A1 Ag)2
(up to leading zeros) of N, such that the following conditions are satisfied:

1. Each column Ais zero or contains an odd digit.

2. If A # 0 for some j, then Ap2=-=Aj11= 0.

3. IfA; # 0and A1 # 0 for some j, then
(a) thereis anie {1, ..., d} such that &;,-1) is odd and g € unique(Dg ),
(b) if &; e nonunique(Dy.y), then &j4,-1) Z U+ 1 (mod 2°71),
(c) if & € upper(D¢,y) N nonunique(Dy.y), then aj,-1y = U (mod 2°71).

Furthermore, A_1... A1 Agis the output of Algorithm 3 on input N.

Proof. It is easily seen that iAs_; ... A;Ag is the output of Algorithm 3 on inpuN e Z%%%, then the
conditions above are satisfied because of the decisions made in the Algorithm.

To complete the argument, assume now tRat Z*! admits two different (not only up to leading
zeros) representatior(sd), and (B), that satisfy the conditions stated in the Theorem. Without loss of
generality, we choose the trip(#\, A4, B) so that the minimum of the lengths dfandf is minimum. This
ensures thaf # By.

We haveN = Ay = By (mod 2. If Ay = 6, then Condition 1 implies thdd, = 6, which contradicts
Ao # Bp. Thus, Ag and By are both nonzero. By Condition 2, we conclude thgt ; = --- = A; =
By2=---=B; = 0. Therefore, we havé, = By (mod 2°~1). This implies that for all indices such
thatao € unique(Dy ), we havebp = ajo.

If A,—1 = By_1 = 6, we haveAy = By (mod 2°), which contradictsAy # By. Consequently,
we haveA,_1 # 6, say. For the indek described in Condition 3a, we habgyy = ag and therefore
Bi(w-1) = @w-1 = 1 (Mod 2. Thus we haveB,,_; # 0, too. This yieldsAy,_3=+-- = A, = By 3 =
.= B, = 0 and therefore

Bu-1= Ay_1+ (Ao — Bp)/2°% (mod 2°7%). )

SinceAq # By, there is an indek € nonunique(Dy ) such that;o € upper(D, ) "nonunique(D, )
andbjg = ajp — 2*~* (we swapA andB, if necessary). From Condition 3¢ we conclude that-y = u
(mod 2°~1), thus (7) yieldsi,—1y = u+ 1 (mod 2°~1). But this contradicts Condition 3b. O

Note that the well-known syntaxes of the nonadjacent form and widtienadjacent form and the
simple joint sparse form are special cases of the syntax above.
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6.2 Weight

We set up a probabilistic model as follows. Consider the space
M :={...AAA: forallj >0,A € D&uXm andA;_1 ... A1 Ag satisfies the conditions of Thm}.4

The elements ofM are infinite sequences ov@rg,ud“. We define random variables. X, X; Xq to be the
corresponding columns of a sequenceA,A; Ao drawn fromM. The probability measure, Pr, we utilize

is defined by the following property: for any nonnegative intagand vectorA € {0, ..., 2" — 1}9x1,
n-1 _ 1
Prl > X;2 mod 2' = A = g

j=0

Note that this measure is simply the image of the Haar measure on the space of infinite sequences over
{0, 1}9%% (which can be identified witll-tuples of 2-adic integers) via the map given by Algorithm 3. In
fact, Algorithm 3 describes a continuous map from the spacktaples of 2-adic integers td1.
We are interested in the random variable
n-1 R
Wh = > [X; #0];
j=0
note that here, we have used Iverson’s notatierpfessiohequals 1 ifexpressions true and 0 otherwise.
Thus, we see that/, equals the number of nonzero columns among therfigtlumns of a sequence in
M. The X;’s are not independent random variables; the valuX pfs influenced by the value of some
of Xj_1...Xo (e.g., see Condition 2 of Theorem 4). We determine the expected value and variatice of
by carrying out an analysis similar to the one done by Grabner, Heuberger, Prodinger and Thuswaldner [5]
which combines techniques from the analysis of Markov processes with generating functions.
We begin by deriving a number of transition probabilities. The following notation facilitates this:

Definition 6.1. For a vectorA = (a,, ..., aq)' € Z%! and a seR C Z, we define
Ir(A) :={ie{1,2,...,d}:g =r (mod 2°~1) for somer € R}.
Observe thaTg(A) equals some subset of the index $&1.2, ..., d}, of A. We also define

Togd(A) :={i €{1,2,...,d}: g is odd,
Z.unique(A) = Z.unique(Dg,u)(A):
Inonunique(A) = Inonunique(Dp,u)(A)-

Now, let A be a vector from(0, ..., 2°~1 — 1}9%1 containing at least one odd element. We compute
conditional probabilities foiXj,,—1 under the assumption tha; mod 2>-1 — A. We have

1

pPaE == PI‘(XH_w_l = 6 | Xj mod 271 = A) = m; (8)

here, the indexE in pag stands for “even”. pag is the probability that we transition from the state
X; mod 27t = Ato Xjp-1 = 0. Let B also be a vector fronfo, ..., 2v~1 — 1}9x1 containing at
least one odd element. Assuming thgdq(B) N Zynique (A) # ¥ andZnonunique (B) N Zju+1;(A) = @ (so that
Conditions 3a and 3b of Theorem 4 are satisfied), we have

2#(I{u) ( B)mznonunique(A))

Pag = Pr(Xj;1,—1 mod 27 = B | X; mod 271 = A) = T . (9)
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This can be seen as follows. For edcle Zy,;(B) N Znonunique (A), Algorithm 3 can make;(j+,-1 =

u (mod 2°~1) in two ways: either lines 26-27 are executed, wherain= u + 1 is changed so that
m; = u, or they are not executed because = u already. Now, if eitheZyqq(B) N Zunique(A) # @ or
Znonunique (B) N Zyy4+1; (A) = @ does not hold, theiX;,,_1 mod 2>~1is never equal td@; so we have

pas = 0.
Observe,
> 1
PeB = Pr(Xj;1 mod 2~ =B | Xj=Xjs1==Xj_p42=0) = Sw-Dd’
2(w-1)d
) (10)
PeE ‘= Pr(Xj+1 =0 | Xj = Xj_1 == Xj_w+2 = O) = ?
WesetX_; = -+ = X_py1 = 0, so that (10) holdsforal] > —1 (X1 = -+ = X_py1 = 0 can be
viewed as an initial state). Finally, it is clear that
Pr(Xj1w-2= Xjtu-3=---=Xj31=0] X; mod 2"t = A) = 1.

The transition probabilities calculated so far are more detailed than necessary (and useful). They can be
aggregated into similar cases. FoxG < d, we set

S ={Aec{0,..., vl 1}dX1 : Zodd(A) # 0 and #nonunique (A) = S}
Fix somes andA € S;. We compute

Pat := Pr(Xj1p_1 mod 22"t e § | X; mod 27t = A)

fort =0,...,d. We do this by considering the generating function
d
FA(Z) = Z pAtZt = Z pABZ#Inonunique(B)_
t=0 Be{0,..., 2w—1_l}dx1
Zodd (B)#£0

One way to compute the coefficientsief(2) is to use (9) directly; however, it is less cumbersome to
take a different route. Writ® = (by, ..., by)". For each e {1,...,d}, we choose which of the four
(disjoint) sets

I{u}(B), Inonunique(B) \I{u}(B), I{u+1}(B)> z-unique(B) \I{U+l}(B)a

the indexi will belong to. Each choice has a certain number of valuds eksociated to it, carries proba-
bilities, and possibly contributions to the exponenZofthe product of these quantitieE[{L1 ...) gives us
> 5 PagZnonuniaue(®) for a subset of values @. If we omit the requirement th&ga(B) N Zunique (A) # @
for the moment, then each factor in the prodIiét, . . . can be extracted from the table below:

i e I{u}(B) i e Inonunique(B) i e I{u+1}(B) S z—unique(B)

i ¢ Zyy(B) i ¢ Ty (B)
1-52 -z (#nonunique/2—1)- 525 -2z  1-0-Z°  (Hunique —1)- 32 - Z°
1.5 -z (#nonunique/2—1)- 525 - Z* 1.4 -Z° (Hunique —1)- 52 - Z°

ie Inonunique(A)
I e Zunique(A)

Note that #ionunique is short for #ronunique(Dy ), and similarly for #inique. All possible products are
generated by the following polynomial:

2-=Dd (#ynique — 1 + (#nonunique/2 + 1) Z)*ronuniawe (A (#ynique + (#nonunique/2) Z)* uniaweA)
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Recall thatA € S;; thus we have Fonunique (A) = S and #ynique(A) =d —s.

In order to correct the error made by omitting the conditi®ay(B) N Zunique(A) # @, we have to
subtract the contribution of thos8 where all components with indices € Zynique(A) are even. Let
even(nonunique) be the set of even digits inonunique(D; ), and leteven(unique) be similarly de-
fined. Thus we obtain

Fa(Z) = 27~Y4 (#unique — 1 + (#nonunique/2 + 1)Z)® -
((#unique + #nonunique/2 - )4 — (#even(unique) + #even(nonunique)/2 - Z)d‘s) . (1)

Note that #honunique/2 and #&ven(nonunique)/2 are integers becausee nonunique(D, ) implies
that eithera + 2°~ ora — 2¢~! is also innonunique(Dy ;). From (11), it is clear thaEa(Z) (and hence
the probabilitiespa;) does not really depend ok, but only ons = #Znonunique (A) (i.€., Fa(Z) is the same
for all A € §). Thus, we define

Fs(Z) := Fa(Z) where A€ S.

It follows that
Pst = Pr(Xj,,—1 mod 2"t € § | X; mod 2°~! € S,) = Coefficient ofZ" in F5(Z).

We remark tbat setting = d in (11) yieldsF4(Z) = 0 which coincides with Condition 3a of Theorem 4
(i.e., if X; # 0 and each of its digits is inonunique(D, ), thenX;,,,—1 must be a zero column).
Example 6.2. ConsiderD_; 3 = {—1,0, 1, 2, 3}. For eachd € {1, 2, 3} ands € {0, ..., d}, we giveFs(Z).
d=1 s=0, 1+3Z|d=2 s=0 2+3Z+L72|d=3, s=0 2+Z7+272+47°
s=1, 0 s=1 :1+3Z+317° , st HZ+ 577+ % 23
s=2 0 A4+374+372+ L 23
, 0.

For this digit set, we have = 3. Consider the castt = 2 and suppos&Xo # 6 and #nonunique (Xo) = 1.
Then from the corresponding polynomlal we see that the probablllt)m]ai 0 and H nonunique (X2) = O
|s <. Similarly, the probability thaX, # 0 and Hnonunique(X2) =1 |s =. Note that the probabllltle§

do not sum to 1. This is because we have not accounted for the p055|b|I|t),¢2that0. This must happen
with probability 1— F1(1) = 3. O

The transition probabilitypae computed in (8) also depends 0B #que(A) = d — s only. Thus, we

have 1
pse := Pr(Xj;1,-1=0] X; mod 2leg)= 2d-s

And the final transition probability we require is

Pet i= Pr(Xj41 mod 2"t e § | X = Xj_1 =+ = Xj_yps2 = 0) = Coefficient ofZ' in Fe(Z2),
where
Fe(Z) = 27D ((#unique + #nonunique/2 - Z)® — (#even(unique) + #even(nonunique)/2 - Z)%).

Now we are able to describe the distribution of &gs using a(d + 2) x (d + 2) probability transition
matrix

PeEe Peo Pe1 -+ Ped

Poe Poo Por - Pod
P=1 .

Pde Pdo Pd1 -:- Pdd
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Note, however, that the step size (i.e., the number of columns output between states) is not constant: the
transition probabilities in all but the first row & describe the state i — 1 steps (because all intermediate
columns ard), whereas the probabilities in the first row describe the state in the next step.

Example 6.3. Here are the transition matrices for the didits; 3 = {—1,0, 1, 2, 3} whend € {1, 2, 3}:

1019 27 9 1
1 5 3 1 8 64 64 64 64

1011 i 16 8 16 1 10 27 9 1
2 4 4 1 5 3 1 8 64 64 64 64
101 1 i 16 8 16 105 1 07 1
2 4 4917 |1 1 1 1] |4 32 3R 32 32
10 0 2 8 4 8 11 3 3 1
1 0 0 O 2 16 16 16 16

1 0 0 0 O

Notice that the probabilities in row sum to 1, as they should. Remark also that the first two rows in each
matrix are identical; this is true in general sinée(Z) = Fo(Z) andpege = poe = 1/29. However, when

we enter stat& or 0 from any other state, the number of columns output as a result is differentwieh

(1 column is output in stat&, andw — 1 columns in state 0). Because of this difference, the two states
cannot (in general) be identified. O

We describe the distribution &%}, using a bivariate generating function:

G(Y,Z) == > Pr(W, = k)Y*Z".
n,k>0
Observe that

G(@1, Z) = L and M

1-7 oY = 2 EWZ".

Y=1 n>0

To evaluate the coefficients & (Y, Z), we note that our sequeneg,_; . .. Xo of random variables can be
described by the regular expression

(8 + (6(11)—3) + 6(11)—4) 4.4 6(1) + S)A)(a + 6(11)—2) A)*,

here, A stands for a nonzero colum@! for r consecutive zero columns for the empty word, and. . .)*
for Kleene’s star (finite repetition). The sequences generated by this expression will satisfy Conditions 1 and
2 of Theorem 4; of course, Condition 3 must also be satisfied, but this has already been taken into account
in the derivation of the matri¥.

We use the regular expression (read right-to-left) to obtain an expressi@(YoZ). This gives us

G(Y, Z) = (Pee Peo Pe1 -+ Pea) - (I —diagz, YZ*~L, ..., Y Z°"HP) .

T zv?-1 T
11...1 +Yzﬁ(01 L. D). (12)
In the product above, each column of the sequence generated by the regular expression is marked with
the variableZ, and nonzero columns are additionally marked with the varigbl&he dimensions of the

vectors/matrices in the product are, from left-to-right 1d + 2), (d + 2) x (d + 2) and(d + 2) x 1.

Example 6.4. Using (12), we can give a general expression@gly, Z) for any givend in terms ofw,
#unique, #nonunique, #even(unique) and #ven(nonunique). If desired, the latter four constants can be
replaced with functions of, u, w. For the case = 1, we get

2Z2-YZ-24YZNZA—-1—-Z+2)
C(1-2)(Z2-24YZ0NZA—2—-Z+2)

G(Y, 2)
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wherel = #odd(Dg,u)/Z‘“—z; note that 1< 1 < 2. To verify this expression, the fact thatdt (D, ) =
1/4- (2(u—¢+1) — (-1 — (-1)") can be utilized. O

Example 6.5. Ford = 2, we giveG(Y, Z) for the special case when the digils; 3 = {—1,0, 1, 2, 3} are
used:

(Y. 7) = Y2Z4+6YZ2+24YZ+ 32
P Y275 4Y2Z4—6YZB-18YZ2-8Z 4+ 32
1 3 1 15 1 9 27
=14+ (+2Y)Z+(=+2Y )22+ =+ Y+ Y2) 23+
+(4+4) +(16+16) +(64+16 64 ) *
The general expression f@&(Y, Z) whend = 2 is too long to display here. %

Write G(Y, Z2) = (Y, Z)/g(Y, Z) where f andg are polynomials. Because(l, Z) = 1/(1— Z), we
have thag(l, Z) = (1 - 2) - f(1, Z). From the properties of derivatives, it follows that

of(v.2) 9(Y,.2)
oY |y—1 CAG (V)

oG(Y, Z) B
ver (1-2)-1(L2) (1-22 112

oY

Using a partial fraction expansion, we obtain

oG (Y, 2)
oY

ef,u,d C€,u,d

= ower series ifl — Z
v @-zpT1-z TP -2

for suitable constanty , ¢ andc, 4. Extracting the coefficient aZ" yields the expectation iV, as

E(Wh) =€ ua(N+1) 4+ Cruag+ O()
=€ udn + O().

The constang; , 4 is theasymptotic densitgf the representations; observe thatlim, E(W,/n) = €, 4.
A general formula fore, , 1 (listed below) can be obtained from the generating function listed in Exam-
ple 6.4.

To determine VaiW,), the variance of\,, we compute BA?) — E(W;,)2. Observe that

82G(Y, 2)

oG (Y, 2)
aY?2 +

= > EWHZ".

Y=1 n>0
Extracting the coefficient aZ" and subtracting 8V,)? = (eu.a(nN + 1) + C;.u.a + O(1))? gives
Var(Wh) = veuan + O(1)

for a suitable constant, , 4. A general formula fop, 1 (listed below) can be deduced. For other values of
d, general formulae foe, , ¢ ando, , 4 are quite long; however, Table 2 displays valuesgqrq ando, g
in a number of special cases.

In summary, our analysis can be taken as proof of the following theorem:

Theorem 5. There are constants; g4 and v, 4 such that the expectation and variance of the random
variable W, defined to be the weight of the n least significant columns of a colexicographically minimal
dimension-d joint representation with digits from [ are given by

E(Wh) = e uan+ O(1) and Var(W,) = vguan + O(D).
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£ ul|d w | €,ud V¢.u.d
-111|1|2 z Z
—111|2|2 : i
-1/1|3|2| Z 220
5/1(3]| 2 12
5123 & | zmasor
-3|7|1|4| &2 z
-3|7|2|4| 2 o
—3 |73 | 4| 553 | soss0035%s

TaBLE 2: Coefficients of the dominant term in the asymptotic mean and variangg.of

£ u €r,u,2
3+327"(25-3)
even even But+0?—3+2 " (30(20—3)+ 32— 10+9)
even odd 23229

Bw+02—3+2-" (3w(25—3)+352—105+9)

3+2_“’+1(25—3)—2_2w+3
3w+02—3+2- v+ (w(20—3)+02—45+3) — 2 20+2(2w 1 20— 3)+2 30 +3

3+2—w+2(26_3)+2—2u)+4
odd  odd Bw+82—3+2-0+2 ((20—3)+62—35+3) +2-20+2 (4w+4—7)+2-3w+4

odd even

TABLE 3: General formula foe, , » whereu — £ + 1 = §2¢"twith 1 < § < 2.

Ford = 1, we have
B=-MDHA

and = =
Y= ) 14 )3

R R

where
. #odd(Dy ) _2u—-Ct+1) - (=1f = (=1pV

- 2w—2 - 2w
General formulae for g, 4 for d = 2 are given in Table 3. For & {1, 2, 3, 4}, general formulae for g, q
ando, g are given on the accompanying web page [8].
Furthermore, the random variable V¢atisfies the central limit law

. 1 X g2
nI|_>moo Pr(Wn < EW,) + x\/Var(Wn)) = E/_Ooe 7 dt.

Remark 6.6. The central limit law follows from Hwang'’s quasi-power theorem [9]. Also, the same expres-
sion fore, , 1 was obtained by Phillips and Burgess using a steady-state analysis of a Markov chain [15, see
equation (13)].

7 Remarks

Ford = 1, it is easily seen that every integer has at most one colexicographically minimal representation
with digits from D, ,. The fact that every integer has a unique nonadjacent form and widthradjacent
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form can be viewed as special cases of this result. Howeved, forl, colexicographically minimal joint
representations are not necessarily unique.

Example 7.1. For the digit seD_35 = {—3, -2, —-1,0, 1, 2, 3, 4, 5}, we have

(5) _ (0005) _ (10(B
9 1001/, 1001/,
It is easily seen that these two representations are both colexicographically minimal. O

Some authors [3] [10] have sought an algorithm which constructs minimal weight joint representations
with digits restricted to the sdD, 1, 3} or {0, +1, +3}. It seems natural that since Solinas was able to
generalize thd0, +1}-nonadjacent form to joint representations that there would also be a generalization
of the {0, 1, 3}-nonadjacent form, which is also known to have minimal weight (cf. [7, see Lemma 19]).
But building minimal weight representations (for= 1) with digits from{0, 1, 3} is actually equivalent to
building minimal weight representations with digits fro@ 1, 2, 3} (recall Lemma 4.6). So perhaps the
appropriate generalization is from tf@, 1, 3}-nonadjacent form to joint representations with digits from
{0,1, 2,3}

Nevertheless, it is possible that there may be a simple strategy for building minimal \W&igih8}-joint
representations. However, all we can say for certain about such a strategy is that it is not the one that builds
a colexicographically minimal representation.

Example 7.2. Suppose(... A,A; Ag)» is a colexicographically minimal representation Mf = (5, 9)"
which uses the digit0, 1, 3}. If we were trying to construct this representation, we would first try to make
Ao a zero column. However, since both 5 and 9 are odd, this is not possible. So, we try té&\akero
column. This can only be done by settidgto (1, 1)" = (5,9)" mod 4. If we continue in this manner, we

arrive at the following representation:
0101y (5
1001, \9)°

This is a colexicographically minimal representation®f9)" and it has weight 3. However,

0013\ (5

0033/, \9/°
and this representation has weight 2. So, for the d{@it&, 3}, the strategy of building a colexicographically
minimal representation does not necessarily give a minimal weight representation. %

Although the new family of minimal weight joint representations we have introduced (i.e., the outputs
of Algorithm 3) can be viewed as generalizations of Solinas’ Joint Sparse Form (JSF), Algorithm 3 cannot
(in general) be used to build the JSF. When the paramdtets2, £ = —1,u = 1 are used, the output
of Algorithm 3 may contain 1 or 11 which are not allowed in the JSF (e.g., this happens with the input
N = (1,2)"). For these parameters, the outputs of Algorithm 3 are exactly the dimension-2 Simple Joint
Sparse Forms (SJSF) [6]. The SISF and JSF have their zero columns in the same positions [6]; thus, because
the SJSF is colexicographically minimal, so is the JSF.
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A Straus’ Algorithm

The general form of Straus’ algorithm is presented as Algorithm 4. Note that the multiplication indicated at
line 2 (i.e.,P - A) is a matrix multiplication. The matrix (row vectoB has dimension ¥ d, and the matrix
(column vector)A has dimension x 1.

Algorithm 4 Straus’ algorithm
Input: N = (ny, Ny, ...,Ne)", P=(Py, P, ...Py), ke Z*
Output: Q=3 nPR
forall Ae{0,1,...,2k—1)9%1\ {0} do
: Ra— P A
: As_1... A1 Ay < the cols. of the dimensiod+adix-X joint rep. ofN with digits from{0, 1, ..., 2<—1}

1

2

3

4: Q « RAs—l

5. for j=s—2...0do
6

7

8

9

for i :{...kderZQ
if Aj # Othen

. Q%Q+RAJ

s return Q
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