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Abstract

Redundant number systems (e.g., signed binary representations) have been utilized to efficiently
implement algebraic operations required by public-key cryptosystems, especially those based on elliptic
curves. Several families of integer representations have been proposed that have a minimal number of
nonzero digits (so-calledminimal weightrepresentations). We observe that many of the constructions for
minimal weight representations actually work by building representations which are minimal in another
sense. For a given set of digits, these constructions buildcolexicographically minimalrepresentations;
that is, they build representations where each nonzero digit is positioned as far left (toward the most
significant digit) as possible. We utilize this strategy in a new algorithm which constructs a very general
family of minimal weight dimension-d joint representations for anyd ≥ 1. The digits we use are from
the set{a ∈ Z : ` ≤ a ≤ u} where` ≤ 0 andu ≥ 1 are integers. By selecting particular values
of ` andu, it is easily seen that our algorithm generalizes many of the minimal weight representations
previously described in the literature. From our algorithm, we obtain a syntactical description of a
particular family of dimension-d joint representations; any representation which obeys this syntax must
be both colexicographically minimal and have minimal weight; moreover, every vector of integers has
exactly one representation that satisfies this syntax. We utilize this syntax in a combinatorial analysis of
the weight of the representations.

Key words. redundant number systems, signed digits, integer representations, joint representations,
minimal weight, colexicographic order, Joint Sparse Form.

AMS classification. Primary 11A63; Secondary 94A60, 68W40.

1 Introduction and Background

In this paper, we deal with a class of integer representations known asjoint representations.

Definition 1.1. Let d ≥ 1 andr ≥ 2 be integers. Adimension-d radix-r joint representationis a sum of the
form

∑s−1
j=0 A j r j where eachA j ∈ Zd×1.

∗C. Heuberger is supported by the Austrian Science Foundation FWF, project S9606, that is part of the Austrian National
Research Network “Analytic Combinatorics and Probabilistic Number Theory.”

†J.A. Muir is supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship.
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Joint representations are representations ofvectorsof integers. We are particularly interested in the case
when the radixr is equal to 2. IfN ∈ Zd×1 is a vector such thatN =

∑s−1
j=0 A j 2 j , then we say that∑s−1

j=0 A j 2 j is a radix-2 joint representation of N. To denote radix-2 joint representations, we use the
following notation:

(As−1 . . . A1A0)2 := As−12
s−1
+ · · · + A12

1
+ A0.

EachA j is a column vector and the entries in these column vectors are calleddigits. Note that a dimension-1
joint representation is an ordinary integer representation.

Example 1.2. Here is a dimension-4 radix-2 joint representation with digits from the set{0, 1}:
0111
1011
1101
1110


2

=


0
1
1
1

 23
+


1
0
1
1

 22
+


1
1
0
1

 21
+


1
1
1
0

 20
=


7
11
13
14

 .

The values ofA3, A2, A1, A0 are as listed above. ♦

Example 1.3. Here is a dimension-4 radix-2 joint representation with digits from the set{0, 1, 2, 3}:
103
203
301
302


2

=


1
2
3
3

 22
+


0
0
0
0

 21
+


3
3
1
2

 20
=


7
11
13
14

 .

The column vectorN = (7, 11, 13, 14)T has several other joint representations which use the digits
{0, 1, 2, 3}. Notice that the representation above has just two nonzero columns, namelyA2 and A0. The
representation in Example 1.2 has four nonzero columns. ♦

Joint representations were introduced by Solinas [18] when he considered how to compute a linear
combination of two elliptic curve points efficiently; i.e., he considered the computation ofn1P1 + n2P2,
wheren1, n2 ∈ Z and P1, P2 are elements of an elliptic curve group. What motivated Solinas to consider
this particular algebraic operation was its use in the Elliptic Curve Digital Signature Algorithm’s signature
verification operation [4].

The algorithm for computingn1P1 + n2P2 Solinas investigated is a special case of an algorithm due to
Straus [19, see the proof at the bottom of page 807].1 The general form of Straus’ algorithm is presented in
Appendix A and the special case is presented as Algorithm 1. The general algorithm computes

∑d
i=1 ni Pi

using a dimension-d radix-2k joint representation ofN = (n1, n2, . . . , nd)
T with digits in {0, 1, . . . , 2k

−1}.
Setting the parametersd = 2 andk = 1, we get an algorithm that computesn1P1+n2P2 using a dimension-
2 joint representation with digits in{0, 1}; i.e., the rows of the joint representation are just ordinarybinary
representations. For each nonzero column of this joint representation (not countingAs−1), an elliptic curve
addition operation is performed (see lines 6–9). These addition operations are computationally expensive,
so it is desirable to do only as few of them as necessary.

For a given value ofN, we could reduce the number of addition operations in Algorithm 1 by utilizing
a joint representation ofN with fewer nonzero columns. However, when restricted to the digits{0, 1}, this
observation is of little consequence; every vectorN of nonnegative integers has exactly one radix-2 joint
representation with digits in{0, 1}. But if we instead consider joint representations which use the digits
{0,±1}, the situation changes.
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Algorithm 1 Straus’ algorithm ford = 2, k = 1

Input: N = (n1, n2)
T, P = (P1, P2)

Output: Q = n1P1+ n2P2

1: R← P1+ P2

2: As−1 . . . A1A0← the columns of the dimension-2 radix-2 joint rep. ofN with digits from{0, 1}
3: based on the value ofAs−1, initialize Q to one ofP1, P2, R
4: for j = s− 2 . . . 0 do
5: Q← 2Q
6: if A j 6= E0 then
7: if A j = (1, 0)T then Q← Q+ P1

8: else if A j = (0, 1)T then Q← Q+ P2

9: else if A j = (1, 1)T then Q← Q+ R
10: return Q

It is possible to modify Algorithm 1 so that it processes a radix-2 joint representation ofN with digits
in {0,±1}.2 This is done in Algorithm 2. Notice now that for every nonzero column inAs−1 . . . A1A0 (not
countingAs−1) an addition orsubtractionoperation is carried out. In elliptic curve groups, point subtraction
can be done just as efficiently as point addition, so utilizing this operation does not carry any extra cost.
Every nonzero vectorN ∈ Z2×1 has infinitely many radix-2 joint representation with digits from{0,±1},
and any one of these can be used in Algorithm 2. This led Solinas to the following problem:

Problem 1.4. Given N∈ Z2×1, construct a radix-2 joint representation of N using the digits{0,±1} that
has a minimal number of nonzero columns.

The number of nonzero columns in a joint representation is often referred to as itsweight.
Solinas solved Problem 1.4 by presenting an algorithm that constructs a canonical joint representation for

any pair of integers called thejoint sparse form(JSF). The JSF was developed as a generalization of the well-
known nonadjacent form(NAF) due to Reitwiesner [17]. The NAF is a family of radix-2 representations
with digits in {0,±1} that have the property thatof any two consecutive digits, at most one is nonzero(i.e.,
their nonzero digits are nonadjacent). Reitwiesner showed that every integer has exactly one NAF, and
that this representation has a minimal number of nonzero digits. Solinas showed every pair of integers has
exactly one JSF, and that this representation has a minimal number of nonzero columns.

Example 1.5. Here are two radix-2 joint representations of(602, 1365)T with digits from{0,±1}:(
001010101010
101010101011

)
2

,

(
01010101010
10101010101

)
2

.

Note that we use “1” to denote “−1”. The first representation is composed of 12 columns, 7 of which
are nonzero. The second representation has 11 columns and all 11 are nonzero. Each row of the second
representation is a NAF. This demonstrates that taking each row of a joint representation to be a NAF does
not necessarily give a minimal number of nonzero columns. ♦

Solinas suggested some additional research problems involving joint representations. The ones most
relevant to the work presented here are the following:

1This special case of Straus’ algorithm is often incorrectly attributed to Shamir. Bernstein explains this and a number of other
misconceptions regarding exponentiation algorithms in a manuscript [2].

2The benefits of using radix-2 representations with digits{0,±1} in elliptic curve arithmetic were first demonstrated by Morain
and Olivos [12].
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Algorithm 2 Straus’ algorithm ford = 2, k = 1 modified to use the digits{0,±1}

Input: N = (n1, n2)
T, P = (P1, P2)

Output: Q = n1P1+ n2P2

1: R← P1+ P2, S← P1− P2

2: As−1 . . . A1A0← the columns of a dimension-2 radix-2 joint rep. ofN with digits from{0,±1}
3: based on the value ofAs−1, initialize Q to one of±P1,±P2,±R,±S
4: for j = s− 2 . . . 0 do
5: Q← 2Q
6: if A j 6= E0 then
7: if A j = (1, 0)T then Q← Q+ P1

8: else if A j = (1, 0)T then Q← Q− P1

9: else if A j = (0, 1)T then Q← Q+ P2

10: else if A j = (0, 1)T then Q← Q− P2

11: else if A j = (1, 1)T then Q← Q+ R
12: else if A j = (1, 1)T then Q← Q− R
13: else if A j = (1, 1)T then Q← Q+ S
14: else if A j = (1, 1)T then Q← Q− S
15: return Q

Problem 1.6. Generalize the JSF to dimension d where d≥ 3.

Problem 1.7. Give an analogue of the JSF which uses digits other than{0,±1}.

Problem 1.6 was solved independently by Proos [16] and by Grabner, Heuberger and Prodinger [6]. Both
works demonstrate how to build arbitrary dimension-d radix-2 joint representations using the digits{0,±1}
that have minimal weight. To date, there has been little progress made on Problem 1.7.

Our contributions. We consider the problem of constructing minimal weight dimension-d radix-2 joint
representations, for arbitraryd ≥ 1, which use the digits{a ∈ Z : ` ≤ a ≤ u}, where` ≤ 0 andu ≥ 1 are
integers. We provide an efficient algorithm which constructs such representations. By selecting particular
values ofd, `, u, it can be seen that our construction generalizes a number of previously known minimal
weight representations (see Table 1). One unusual property of the digit sets we consider is that they are not
necessarily symmetric about zero; i.e., they can contain an unequal number of negative and positive digits.

minimal weight representation d ` u

nonadjacent form [17] 1 −1 1
width-w nonadjacent form [15] [1] [14] 1 −(2w−1

− 1) 2w−1
− 1

signed fractional window representation [15] [11] 1 −m m
simple joint sparse form [6] ≥ 1 −1 1

TABLE 1: Families of minimal weight integer representations (citations are given to minimality proofs).

An important concept we emphasize is the commonality between minimal weight representations and
colexicographicallyminimal representations.3 For a fixed set of digits, the set of all joint representations
of a vectorN ∈ Z can be ordered by comparing thepositionsof their nonzero columns, as read right-to-
left. Representations which are minimal with respect to this (colexicographic) ordering share a number of

3Common properties of minimal weight and colexicographically minimal integer representations were described in Muir’s Ph.D.
thesis [13, see Ch.4].
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properties with those that have minimal weight. Thus, for a given set of digits, it is natural to ask whether
a colexicographically minimal representation has minimal weight. For the digit sets we consider, this is
indeed true, and the design of our algorithm exploits this fact.

The main results presented herein can be summarized as follows:

• the outputs of our algorithm are minimal weight representations (Theorem 1).

• the outputs of our algorithm are colexicographically minimal representations (Theorem 2).

• any representation with digits restricted to{a ∈ Z : ` ≤ a ≤ u} that is colexicographically minimal
must also have minimal weight (Corollary 3).

• any representation with digits restricted to{a ∈ Z : ` ≤ a ≤ u} which satisfies three syntactic
properties must be colexicographically minimal and have minimal weight. Every integer vector admits
exactly one representation satisfying these three syntactic properties (Theorem 4).

• the probability distribution of the weight of then least significant columns of a colexicographically
minimal representation ofN can be explicitly determined; from this, asymptotic formulae for its
expected value and variance follow (Theorem 5).

Related Work. Integer representations using digit sets of the form{a ∈ Z : ` ≤ a ≤ u} where` ≤ 0 and
u ≥ 1 have been proposed previously in the literature. Phillips and Burgess [15] introduced a “generalized
sliding window” transformation which is applied to an integer’s standard radix-r representation wherer ≥ 2.
If the parameters̀ andu satisfy` = 0 or ` ≡ 1 (mod r ) andu ≡ −1 (mod r ), then they are able to prove
that their transformation produces a minimal weight representation. In the case wherer = 2, which is
the only radix value considered in our work, these two conditions can always be satisfied because of the
fact that only the odd digits from{a ∈ Z : ` ≤ a ≤ u} are utilized (e.g., ifu is even, it can be replaced
with u − 1 and then their proof will go through). Although Phillips and Burgess consider only integer
representations (not joint representations), our technique for proving minimality is similar to theirs (both
works use induction and the properties of addition) with the exception that we do not require any extra
conditions oǹ andu; this is important since our joint representations, in general, utilize both even and odd
digits from{a ∈ Z : ` ≤ a ≤ u}.

The connection between colexicographically minimal representations and minimal weight representa-
tions is unique to our work. This observation provides some perspective on sliding window transformations,
including the one proposed by Phillips and Burgess. Sliding window transformations tend to produce colex-
icographically minimal representations, and this is why they often give minimal weight representations.

Outline. We begin by presenting some preliminary concepts and notations in §2. In §3 we explain the
design of our algorithm. A number of properties common to both minimal weight and colexicographically
minimal representations are presented in §4. That the outputs of our algorithm are minimal is established in
§5. A syntax which characterizes the outputs, along with an analysis of their weight, is given in §6. We end
with some remarks in §7.

2 Preliminaries

2.1 Column-strings

Let D ⊂ Z be a finite set of digits with 0∈ D. Dd×1 denotes the set of all dimension-d column vectors with
entries (digits) fromD. We useE0 to denote the all-zero column vector. Column vectors can be concatenated
together to form strings of column vectors.
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Given N ∈ Zd×1, when looking for a column-stringA = As−1 . . . A1A0 such that(A)2 = N, leading
zeros do not matter since we obviously have(A)2 = N if and only if (E0A)2 = N. We denote the number of
nonzero columns in the stringA by wt(A). This value is often referred to as thejoint Hamming weight, or
simply, theweight, ofA.

To denote the columns of a joint representation, we use capital letters; e.g.,As−1 . . . A1A0 where each
A j ∈ Dd×1. To denote the digits of an integer representation, rather than a joint representation, we use lower
case letters; e.g.,as−1 . . . a1a0 where eacha j ∈ D.

2.2 Colexicographic Order

For a vectorN ∈ Zd×1 and a digit setD ⊂ Z, consider the set of all dimension-d radix-2 joint represen-
tations of N with digits restricted toD. We can order the representations in this set by considering the
positions of their nonzero columns.

Suppose(As−1 . . . A1A0)2 = N. FromA = As−1 . . . A1A0, we derive a binary stringchar(A) defined
as follows: char(A) = as−1 . . . a2a1a0 where

ai :=

{
0 if Ai is a zero column

1 otherwise.

Now, if B = Bs−1 . . . B1B0 and(B)2 = N, we writeA � B if char(A) is less than or equal tochar(B)

when they are comparedcolexicographically. Colexicographic order is similar to lexicographic order except
that strings are compared by reading their symbolsright-to-left rather than left-to-right. Here is an example
to illustrate:

column string
digit minimal
minimal column
radix representation
representation weight
string digit
weight radix

The strings in the left column are ordered lexicographically, and the strings in the right column are ordered
colexicographically.

Comparing integer representations using colexicographic order has been utilized previously in the lit-
erature. Grabner, Heuberger and Prodinger [6, see p. 330] used colexicographic order to prove that their
Simple Joint Sparse Form has minimal weight. Muir and Stinson [14] showed that the width-w nonadjacent
form of an integer is uniquely determined as its colexicographically minimal representation.

2.3 The Digit SetD`,u

For integers̀ ≤ 0 andu ≥ 1, we define the digit set

D`,u := {a ∈ Z : ` ≤ a ≤ u}.

Notice that because of the bounds on` andu, D`,u always contains the digits 0, 1. Also, if D`,u contains
negative digits, then−1 ∈ D`,u. On the other hand, if̀ = 0, then the digits inD0,u can certainly only be
used to represent nonnegative numbers. Observe that #D`,u = u− `+ 1.

Given a set of digitsD`,u, we definew to be the unique positive integer that satisfies

2w−1
≤ #D`,u < 2w.
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This implies thatD`,u contains a complete system of residues modulo 2w−1. Two such systems are

lower(D`,u) := {a ∈ D`,u : ` ≤ a < `+ 2w−1
},

upper(D`,u) := {a ∈ D`,u : u− 2w−1 < a ≤ u}.

Depending on the values of̀ and u, these two sets might coincide. Note thatD`,u doesnot contain a
complete system of residues modulo 2w because #D`,u < 2w. Since{0, 1} ⊆ D`,u, it is always the case that
2≤ #D`,u; from this, we see thatw ≥ 2.

Example 2.1. For` = −3 andu = 7, we have

D−3,7 = {−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7},

and 23 ≤ #D−3,7 < 24 (i.e.,w = 4). Each of the eight congruence classes modulo 23 has either one or two
representatives inD−3,7:

0 1 2 3 4 5 6 7

3 2 1
0 1 2 3 4 5 6 7.

Each of the sixteen congruence classes modulo 24 has either zero or one representative inD−3,7:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 3 2 1 . ♦

We say that a digita ∈ D`,u is unique modulo2w−1 if there is no other digita′ ∈ D`,u such that
a ≡ a′ (mod 2w−1) anda′ 6= a. The set of digits ofD`,u which are unique modulo 2w−1 is denoted by
unique(D`,u). It is easily seen that

unique(D`,u) = lower(D`,u) ∩ upper(D`,u) = {a ∈ D`,u : u− 2w−1 < a < `+ 2w−1
}. (1)

The set of digitsD`,u \ unique(D`,u) is denoted bynonunique(D`,u). We have

nonunique(D`,u) = lower(D`,u)4 upper(D`,u) = {a ∈ D`,u : a ≤ u− 2w−1 or `+ 2w−1
≤ a}; (2)

here,4 denotes the symmetric difference of two sets. From Example 2.1, we see that

unique(D−3,7) = lower(D−3,7) ∩ upper(D−3,7) = {0, 1, 2, 3, 4},

nonunique(D−3,7) = lower(D−3,7)4 upper(D−3,7) = {−3,−2,−1, 5, 6, 7}.

Givenn ∈ Z, to compute a digita ∈ D`,u such thatn ≡ a (mod 2w−1), we can take either

a← `+ ((n− `) mod 2w−1), or (3)

a← u− ((u− n) mod 2w−1). (4)

Since 0≤ x mod 2w−1 < 2w−1 for anyx ∈ Z, it is easily seen that both assignments yield a digit inD`,u.
Moreover, for the first assignment we havea ∈ lower(D`,u), and for the second we havea ∈ upper(D`,u).
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3 The Algorithm

There are two main tasks ahead of us:

1. give an algorithm which builds minimal weight radix-2 joint representations where digits are restricted
to the setD`,u.

2. prove that the outputs of this algorithm do in fact have minimal weight.

In this section, we concentrate on task 1. Our strategy, which may initially seem misguided, will be to
develop an algorithm which buildscolexicographicallyminimal joint representations. We will see later
on that colexicographically minimal representations and minimal weight representations have a number of
common properties. This fact will hopefully postpone any misgivings about our approach until, with the
completion of task 2, they can be laid to rest completely.

3.1 Building Colexicographically Minimal Representations

Given N ∈ Zd×1 and a set of digitsD`,u (if ` = 0, we require all components ofN to be nonnegative),
we will construct a joint representation,(As−1 . . . A1A0)2, of N by setting the value of each column in turn
from least- to most-significant (i.e., right-to-left). If we can correctly set the digits of the least significant
column, then this leads to an algorithm of the following form:

s← 0
while N 6= E0 do

select digits fromD`,u to form A, the least significant column of a representation ofN
As← A
N ← (N − A)/2
s← s+ 1

return As−1 . . . A1A0

We start with the columnA0. So thatAs−1 . . . A1A0 has low colexicographic rank, we try to apply the
following rule: If possible, make A0 a zero column; otherwise, choose the digits of A0 so that the number of
zero columns which follow A0 is maximized.

If N = (As−1 . . . A1A0)2, thenN ≡ A0 (mod 2). Thus, a condition under which it is not possible to
makeA0 a zero column isN 6≡ E0 (mod 2). If this condition does not hold (i.e., ifN ≡ E0 (mod 2)), then
we will set A0← E0. But suppose it is the case thatN 6≡ E0 (mod 2). SinceD`,u contains a complete system
of residues modulo 2w−1, we can chooseA0 so thatN ≡ A0 (mod 2w−1). Setting the digits ofA0 in this
manner allowsat leastw − 2 zero columns to followA0. But, depending on the values ofu, ` andN, there
can be more than one possibility forA0; our choice can influence the number of zero columns followingA0.

Using the expression in (3), we initially setA0← L + ((N − L) mod 2w−1) whereL = (`, `, . . . , `)T.
Each digit of A0 is either unique modulo 2w−1 (in D`,u) or not. The next possible nonzero column will
occur no sooner thanAw−1. By computingM ← (N − A0)/2w−1 and checking ifM ≡ E0 (mod 2), we can
determine if the initial value ofA0 causesAw−1 to be nonzero. However, it is only the digits ofA0 which
are unique modulo 2w−1 which determine whether or notAw−1 must be nonzero. This is because a digit of
A0 = (a1, a2, . . . , ad)

T which is not unique can be replaced withai +2w−1, and this changes the parity ofmi

whereM = (m1, m2, . . . , md)
T. These replacements can sometimes be used to makeAw−1 a zero column.

Using the setsunique(D`,u), nonunique(D`,u) introduced in (1) and (2), our observations so far on
how to computeA0 are incorporated in the method below:

if N ≡ E0 (mod 2) then
A← E0

else
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A← L + ((N − L) mod 2w−1)

Iunique← {i ∈ {1, 2, . . . , d} : ai ∈ unique(D`,u)}

Inonunique← {i ∈ {1, 2, . . . , d} : ai ∈ nonunique(D`,u)}

M ← (N − A)/2w−1

if mi ≡ 0 (mod 2) for all i ∈ Iunique then
for i ∈ Inonunique such thatmi ≡ 1 (mod 2) do

ai ← ai + 2w−1

mi ← mi − 1
A0← A

However, as the following example shows, we are not done yet.

Example 3.1. Consider the vectorN = (3, 5)T and the digit setD−3,1 = {−3,−2,−1, 0, 1}. We have
unique(D−3,1) = {−2,−1, 0} and nonunique(D−3,1) = {−3, 1}. By iterating the method above, we
obtain the following representation: (

10301
10203

)
2

=

(
3
5

)
.

However, this representation is not colexicographically minimal because(
101
101

)
2

=

(
3
5

)
.

has lower colexicographic rank. Our method sets the least significant column to(−1,−3)T. The digit 1
could be used in place of−3, but our method does not recognize the advantage of doing so. ♦

If it is true that bothA0 and Aw−1 must be nonzero columns (i.e., ifN 6≡ E0 (mod 2) and mi ≡ 1
(mod 2) for somei ∈ Iunique), then our current method does not make any changes to the initial value of
A0. But there is another reason to change the initial value ofA0, aside from makingAw−1 a zero column.
Doing so may result in more choices for the digits of columnAw−1; this in turn may allow us to prevent a
nonzero column when choosing digits forA2w−2.

The vectorM above determines which digits can be used in columnAw−1. By computing` + ((mi −

`) mod 2w−1) and checking if this digit is inunique(D`,u) or nonunique(D`,u), we can determine whether
or not we have a choice for the digit at coordinatei of Aw−1. By replacingmi with mi − 1 (after updating
A0), it is sometimes possible to move coordinatei of Aw−1 from unique(D`,u) into nonunique(D`,u). From
(1), we see that the minimum digit ofunique(D`,u) is u−2w−1

+1. It is easily seen that ifnonunique(D`,u)

is nonempty, then the following implication holds formi :

`+ ((mi − `) mod 2w−1) = u− 2w−1
+ 1 ∈ unique(D`,u)

H⇒ `+ ((mi − 1− `) mod 2w−1) = u− 2w−1
∈ nonunique(D`,u).

We will test for the conditioǹ + ((mi − `) mod 2w−1) = u− 2w−1
+ 1 and make the changes necessary to

allow two choices for digiti of Aw−1.4 We do this by adding an “else” clause to the second “if” statement
in the previous pseudocode listing. This is the only condition under which replacingmi with mi − 1 moves
us fromunique(D`,u) into nonunique(D`,u).

Here is the modified “if” statement:

if mi ≡ 0 (mod 2) for all i ∈ Iunique then
for i ∈ Inonunique such thatmi ≡ 1 (mod 2) do

4The test condition can be simplified (e.g., it is equivalent tomi ≡ u+ 1 (mod 2w−1) ), but, for the sake of clarity, we leave it
as is.
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ai ← ai + 2w−1

mi ← mi − 1
else

for i ∈ Inonunique such that̀ + ((mi − `) mod 2w−1) = u− 2w−1
+ 1 do

ai ← ai + 2w−1

mi ← mi − 1

This change completes our algorithm.

Example 3.2.Repeating Example 3.1 with our modified pseudocode results in the following representation:(
101
101

)
2

=

(
3
5

)
.

It is easily seen that this representation is colexicographically minimal. ♦

3.2 The Final Algorithm

Our final algorithm is listed as Algorithm 3. The claim made in the caption there (i.e., that the outputs are
colexicographically minimal and have minimal weight) will be justified later on. Here, we show only that
Algorithm 3 terminates for all its inputs (i.e., we show that it really is an algorithm).

Lemma 3.3. For any valid input N∈ Zd×1, Algorithm 3 terminates.

By “valid input”, we mean that if̀ = 0, then all components ofN must be nonnegative; if̀ < 0, then any
N ∈ Zd×1 is valid.

Proof. We first consider the case that` < 0 (i.e., we also have negative digits). Then we obviously have
max{|u|, |`|} ≤ u − ` − 1 < 2w

− 2. We note that ifA 6= E0 in some step of the algorithm, we have
N ≡ A (mod 2w−1). This implies that in the subsequentw − 2 steps of the algorithm, we will haveA = E0.
We temporarily call thesew − 2 steps “insignificant steps” as opposed to the other steps, which we call
“significant steps”.

We claim that‖N‖∞ strictly decreases from one significant step to the next significant step. Here,
‖N‖∞ denotes the infinity norm ofN, i.e., maxi {|ni |}. If A = E0 in some step of the algorithm, it is clear
that‖(N − A)/2‖∞ = ‖N/2‖∞ < ‖N‖∞. If A 6= E0, we have to consider the next significant step, i.e., the
next number will be(N − A)/2w−1. If ‖N‖∞ ≥ 2, we have

‖(N − A)/2w−1
‖∞ ≤ (‖N‖∞ +max{|u|, |`|})/2w−1 < (‖N‖∞ + 2(2w−1

− 1))/2w−1
≤ ‖N‖∞,

as claimed. We still have to consider the case that‖N‖∞ = 1. The algorithm will chooseA = N in this
case, since all entries ofN belong to the digit set. Thus the algorithm terminates in this case.

We now turn to the casè= 0. Here, we have to show that during the execution of the algorithm, no
component ofN ever becomes negative. This could only happen ifni−u < 0 for somei . This means thatni

itself is a digit. The situation can only be dangerous ifni + 2w−1 is also a digit, thusni ∈ nonunique(D0,u)

with ni ∈ lower(D0,u). Thus, at line 16, the quantitymi equals 0. Butni + 2w−1 will neither be taken to
makemi even (at line 19) nor will it happen that 0= mi mod 2w−1

= u − 2w−1
+ 1 (at line 25) because

u ≥ 2w−1 (since we have a digit innonunique(D0,u)). Thusai = ni in this case.
This means that in the case` = 0, all intermediate numbersN will be nonnegative and the components

of N will strictly decrease until they reach 0, where they remain.

When Algorithm 3 terminates for an inputN ∈ Zd×1, from line 30 it is clear that the columns returned
form a joint representation ofN.
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Algorithm 3 Computation of a colexicographically minimal & minimal weight joint representation

Input: N = (n1, n2, . . . , nd)
T
∈ Zd×1, ` ≤ 0, u ≥ 1 (with all components ofN nonnegative if̀ = 0).

Output: As−1 . . . A1A0, a colexicographically minimal & minimal weight representation ofN.

1: D`,u← {a ∈ Z : ` ≤ a ≤ u}
2: w← the integer such that 2w−1

≤ #D`,u < 2w

3: unique(D`,u)← {a ∈ D`,u : u− 2w−1 < a < `+ 2w−1
}

4: nonunique(D`,u)← {a ∈ D`,u : a ≤ u− 2w−1 or `+ 2w−1
≤ a}

5: {these sets respectively consist of the digits which are unique and nonunique modulo 2w−1.}
6: s← 0, L ← (`, `, . . . , `)T

7: while N 6= E0 do
8: if N ≡ E0 (mod 2) then
9: {We can make column s zero, so we do this.}

10: A← E0
11: else
12: {We cannot make column s zero, thus it will be nonzero.}
13: A← L + ((N − L) mod 2w−1)

14: Iunique← {i ∈ {1, 2, . . . , d} : ai ∈ unique(D`,u)}

15: Inonunique← {i ∈ {1, 2, . . . , d} : ai ∈ nonunique(D`,u)}

16: M ← (N − A)/2w−1

17: if mi ≡ 0 (mod 2) for all i ∈ Iunique then
18: {We can make column s+ w − 1 zero.}
19: for i ∈ Inonunique such thatmi is odddo
20: ai ← ai + 2w−1

21: mi ← mi − 1
22: else
23: {Column s+ w − 1 will be nonzero.}
24: {Use redundancy at column s to increase redundancy at column s+w−1.}
25: for i ∈ Inonunique such that̀ + ((mi − `) mod 2w−1) = u− 2w−1

+ 1 do
26: ai ← ai + 2w−1

27: mi ← mi − 1
28: {We have N ≡ A (mod 2w−1) and M = (N − A)/2w−1.}
29: As← A
30: N ← (N − A)/2
31: s← s+ 1
32: return As−1 . . . A1A0

4 Common Properties

Here, we describe some common properties of colexicographically minimal representations and minimal
weight representations. The properties are presented as a sequence of lemmas. We first show that both kinds
of representations are recursive.

Lemma 4.1. If (. . . A2A1A0)2 is a colexicographically minimal representation of a vector N∈ Zd×1, then
(. . . A2A1)2 is a colexicographically minimal representation of(N − A0)/2.

Proof. LetA = . . . A2A1A0 andA′ = . . . A2A1. Let B′ be the columns of a colexicographically minimal
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representation of(N − A0)/2. Supposechar
(
B′

)
is strictly less thanchar

(
A′

)
, colexicographically. Then

B′ ≺ A′

H⇒ B′A0 ≺ A′A0

H⇒ B′A0 ≺ A.

Since(B′A0)2 = N, we see thatA is not a colexicographically minimal representation ofN.

The same recursive property is true for minimal weight representations.

Lemma 4.2. If (. . . A2A1A0)2 is a minimal weight representation of a vector N∈ Zd×1, then(. . . A2A1)2

is a minimal weight representation of(N − A0)/2.

Proof. LetA = . . . A2A1A0 andA′ = . . . A2A1. LetB′ be the columns of a representation of(N − A0)/2
that has fewer nonzero columns thanA′. Then

wt
(
B′

)
< wt

(
A′

)
H⇒ wt

(
B′A0

)
< wt

(
A′A0

)
H⇒ wt

(
B′A0

)
< wt(A) .

Since(B′A0)2 = N, we see thatA is not a minimal weight representation ofN.

Notice that the above lemmas are true foranydigit setD ⊂ Z. For the digit setD`,u, other commonalities
can be demonstrated. Before we get to those, we establish two short facts.

Fact 4.3. For any representation(aw−2 . . . a1a0)2 where each aj ∈ D`,u, the Diophantine equation

(aw−2 . . . a1a0)2 = x · 2w−1
+ y (5)

has a solution,(x, y), with x, y ∈ D`,u.

Proof. Observe that all integers in the range

` · 2w−1
+ `, . . . , u · 2w−1

+ u

can be expressed asx · 2w−1
+ y with x, y ∈ D`,u. Now, sincè ≤ 0 andu ≥ 1, we have

` · 2w−1
+ ` ≤ ` · 2w−1

− ` ≤ (aw−2 . . . a1a0)2 ≤ u · 2w−1
− u ≤ u · 2w−1

+ u,

and so(aw−2 . . . a1a0)2 is an integer in this range.

Fact 4.4. For any representation(0as−1 . . . a1a0)2, with each aj ∈ D`,u, and integer a, with a∈ D`,u, there
exists a representation(bsbs−1 . . . b1b0)2, with each bj ∈ D`,u, such that

(bsbs−1 . . . b1b0)2 = (0as−1 . . . a1a0)2+ a,

and
wt(bsbs−1 . . . b1b0) ≤ wt(0as−1 . . . a1a0)+ 1.

Proof. Use the classical addition algorithm to adda to (0as−1 . . . a1a0)2. This may trigger a carry, however,
carries stop when reaching the first zero column from the right, at the latest. Therefore, the Hamming weight
will be increased by at most one.
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Fact 4.4 extends to joint representations as well; that is, we can carry out the addition(0As−1 . . . A1A0)2+ A
with only increasing the number of nonzero columns by at most one. We use this to establish additional
common properties.

Lemma 4.5. If (. . . A2A1A0)2 is a colexicographically minimal representation of a vector N∈ Zd×1 with
digits restricted to D̀,u, then every nonzero column of(. . . A2A1A0)2 must contain an odd digit.

Proof. LetA = . . . A2A1A0 and supposeA contains a nonzero column consisting of only even digits. By
Lemma 4.1, we can assume thatA0 is such a nonzero column. LetAt be the first zero column that precedes
A0. Then we have

A = . . . E0 At−1 . . . A1A0︸ ︷︷ ︸
nonzero columns

.

By Fact 4.4, we can replace the columnsE0At−1 . . . A1A0 with Bt Bt−1 . . . B1E0 where

(Bt Bt−1 . . . B1)2 = (E0At−1 . . . A1)2+ A0/2.

Thus, we have

N = (. . . At+2At+1E0At−1 . . . A1A0)2 = (. . . At+2At+1Bt Bt−1 . . . B1E0)2;

but this new representation contradicts the fact that(A)2 is colexicographically minimal (it has lower colex-
icographic rank becauseA0 6= E0).

Lemma 4.6. Every vector N∈ Zd×1 (with N ≥ E0 if ` = 0) has a minimal weight representation with digits
restricted to D̀,u where each nonzero column contains an odd digit.

Proof. Suppose(. . . A2A1A0)2 is a minimal weight representation ofN that has a nonzero column consist-
ing of only even digits. LetA = . . . A2A1A0. By Lemma 4.2, we can assume thatA0 is such a nonzero
column. We describe how to modifyA so thatA0 becomes a zero column while the joint weight does not
change.

Let At be the first zero column that precedesA0. Then we have

A = . . . E0 At−1 . . . A1A0︸ ︷︷ ︸
nonzero columns

.

By Fact 4.4, we can replace the columnsE0At−1 . . . A1A0 with Bt Bt−1 . . . B1E0 where

(Bt Bt−1 . . . B1)2 = (E0At−1 . . . A1)2+ A0/2,

and

wt(Bt Bt−1 . . . B1) ≤ wt(E0At−1 . . . A1)+ 1

H⇒ wt(Bt Bt−1 . . . B1E0) ≤ wt(E0At−1 . . . A1A0) .

Because of the bound above, this replacement cannot increase the number of nonzero columns; thus, we
maintain the minimal weight property.

Example 4.7. A dimension-d joint representation withd = 1 is just a radix-2 representation of an integer.
Suppose we want to build minimal weight integer representations using the digit set

D−7,7 = {0,±1,±2,±3,±4,±5,±6,±7}.
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According to Lemma 4.6, if we restrict ourselves to the smaller digit set

{0,±1,±3,±5,±7}

we will still be able to construct minimal weight representations. This is because any minimal weight
representation with digits inD−7,7 can be transformed into one with digits in{0,±1,±3,±5,±7} which
has the same weight. This property underlies the construction of the width-w nonadjacent forms. The digits
{0,±1,±3,±5,±7} are the width-4 nonadjacent form digits. Note however, that all this is only true in
dimension 1. ♦

Lemma 4.8. Let(. . . A2A1A0)2 be a colexicographically minimal representation of a vector N∈ Zd×1 with
digits restricted to D̀,u. If A j 6= E0, then Aj+w−2 = · · · = A j+1 = E0 (i.e., immediately preceding any
nonzero column, there must be at leastw − 2 zero columns).

Proof. Suppose the result is false. LetA = . . . A2A1A0. By Lemma 4.2, we can assume thatA0 is nonzero
and one ofAw−2 . . . A1 is also nonzero. By Fact 4.3, there existX, Y ∈ D`,u

d×1 such that

(Aw−2 . . . A1A0)2 = X · 2w−1
+ Y.

Now we have

N = (. . . Aw Aw−1Aw−2 . . . A1A0)2

= (. . . Aw Aw−1)2 · 2
w−1
+ (Aw−2 . . . A1A0)2

= (. . . Aw Aw−1)2 · 2
w−1
+ X · 2w−1

+ Y

=
(
(. . . Aw Aw−1)2+ X

)
· 2w−1

+ Y

= (. . . Bw Bw−1E0 . . . E0Y)2.

Note that the addition(. . . Aw Aw−1)2 + X is carried out using Fact 4.4. But this new representation ofN
contradicts the fact that(. . . A2A1A0)2 is colexicographically minimal because it has lower colexicographic
rank.

Lemma 4.9. Every vector N∈ Zd×1 (with N ≥ E0 if ` = 0) has a minimal weight representation with digits
restricted to D̀,u where each nonzero column is immediately preceded by at leastw − 2 zero columns.

Proof. The statement can be proved in essentially the same way as Lemma 4.8. The only difference is that
we use the weight bound of Fact 4.4 to conclude that the newly constructed representation also has minimal
weight.

In the next section, we show that there is an even stronger connection between colexicographically
minimal representations and minimal weight representation with digits restricted toD`,u: any colexico-
graphically minimal representation is a minimal weight representation.

5 Minimality

We now return to the second task described in §3: proving that the outputs of Algorithm 3 have minimal
weight. To accomplish this, we apply some of the results in §4. We also show that the outputs of the
algorithm are colexicographically minimal.

Theorem 1. For any input N∈ Zd×1 (with N ≥ E0 if ` = 0), the representation constructed by Algorithm 3
has minimal weight.
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Proof. Suppose the result is false. Then Algorithm 3 produces a representation which does not have minimal
weight for some inputN ∈ Zd×1. Of all suchN, choose one such that the number of columns returned by
Algorithm 3 is minimal.

Let A = As−1 . . . A1A0 be the columns returned by Algorithm 3 and letB = Bt−1 . . . B1B0 be the
columns of a minimal weight representation ofN. We have

(A)2 = N = (B)2, and wt(A) > wt(B) .

By Lemma 4.6 and Lemma 4.9, we can chooseB so that each nonzero column contains an odd digit and
each nonzero column is preceded by at leastw − 2 zero columns. We will show how to construct a new
input, N ′, for which the output of Algorithm 3 is shorter and does not have minimal weight. This contradicts
our choice ofN and thereby establishes the result.

SupposeA0 = B0. The output of Algorithm 3 on inputN ′ = (N − A0)/2 is As−1 . . . A1. Now,
(As−1 . . . A1)2 = N ′ = (Bt−1 . . . B1)2 andwt(As−1 . . . A1) > wt(Bt−1 . . . B1). But this contradicts our
choice ofN. Thus it must be thatA0 6= B0.

If N ≡ E0 (mod 2), then bothA0 = E0 (by the definition of Algorithm 3) andB0 = E0 (because each
nonzero column ofB contains an odd digit). ButA0 6= B0, so it must be thatN 6≡ E0 (mod 2). Hence both
A0 andB0 are nonzero columns.

So far, we have the following picture:

A = As−1 . . . Aw Aw−1

zero columns︷ ︸︸ ︷
Aw−2 . . . A1 A0, B = Bt−1 . . . Bw Bw−1

zero columns︷ ︸︸ ︷
Bw−2 . . . B1 B0.

Thus,A0 ≡ B0 (mod 2w−1) but A0 6= B0. However, if #D`,u = 2w−1, thenA0 ≡ B0 (mod 2w−1) implies
A0 = B0. So for the special case #D`,u = 2w−1, we are done. We will continue under the assumption that
#D`,u 6= 2w−1 (this implies thatnonunique(D`,u) is nonempty).

We denote the digits of columnsw − 1 and 0 ofA andB like so:

Aw−1 =

a1(w−1)

a2(w−1)

...

ad(w−1)

, A0 =

a10

a20
...

ad0

, Bw−1 =

b1(w−1)

b2(w−1)

...

bd(w−1)

, B0 =

b10

b20
...

bd0

.

We argue that bothAw−1 andBw−1 must be nonzero columns.
If Bw−1 = E0, then we have thatN ≡ B0 (mod 2w). But then Algorithm 3 would have setA0 = B0. So

it must be thatBw−1 6= E0. This implies that columnsB2w−3 . . . Bw are all zero.
Suppose thatAw−1 = E0. We haveBw−12w−1

+B0 ≡ A0 (mod 2w), which implies thatB′w := Bw−1/2+
(B0− A0)/2w is an integer vector. Observe that every entryb′i w of B′w is an element ofD`,u, since

`− 1≤ `/2− 1 < bi (w−1)/2+ (bi 0− ai 0)/2w < u/2+ 1≤ u;

note that the strict inequalities follow becausebi 0−ai 0 = ±2w−1. We setB′w−1 =
E0, B′0 = A0, andB′j := B j

for j /∈ {0, w − 1, w}. ForB′ := . . . B′w B′w−1 . . . B′0 we have that(B′)2 = (B)2 = N. Thus we can replace
B byB′ and proceed as above. Hence, we can assume thatAw−1 6= E0.

Consider the vector(N − A0)/2w−1. We have

N − A0

2w−1
= (Bt−1 . . . B2w−2

zero columns︷ ︸︸ ︷
B2w−3 . . . Bw Bw−1)2+

B0− A0

2w−1

= (As−1 . . . A2w−2 A2w−3 . . . Aw︸ ︷︷ ︸
zero columns

Aw−1)2.
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Each coordinate of the vector(B0− A0)/2w−1 is in {0,±1}. We will show that we can perform the addition
(Bt−1 . . . Bw−1)2+

B0−A0
2w−1 by changing only columnBw−1 (thus no new nonzero columns are created).

Considerbi (w−1), the i th coordinate ofBw−1. We must either add 1 tobi (w−1), subtract 1 frombi (w−1)

or leavebi (w−1) as it is. The only difficulty in computingbi (w−1) + 1 occurs whenbi (w−1) = u (because
u+ 1 6∈ D`,u). In this case, we havei ∈ Inonunique sinceai 0 6= bi 0 and

bi (w−1) + 1≡ ai (w−1) (mod 2w−1)

H⇒ u+ 1≡ ai (w−1) (mod 2w−1)

H⇒ ai (w−1) = u− 2w−1
+ 1.

But this cannot happen: At line 25 of Algorithm 3, the value ofai 0 was set to avoidai (w−1) = u− 2w−1
+ 1

(i.e., Algorithm 3 would have setai 0 = bi 0). So the problem of computingu+ 1 does not occur.
The only difficulty in computingbi (w−1) − 1 occurs whenbi (w−1) = ` (becausè − 1 6∈ D`,u). In this

case, we have

bi (w−1) − 1≡ ai (w−1) (mod 2w−1)

H⇒ `− 1≡ ai (w−1) (mod 2w−1)

H⇒ ai (w−1) = `+ 2w−1
− 1.

However, because we are subtracting 1, it must be thatai 0 = bi 0+2w−1; so we haveai 0 ∈ upper(D`,u). But
Algorithm 3, by default, selects digits fromlower(D`,u); it would only do otherwise if it could makeAw−1

a zero column or increase the redundancy at digitai (w−1). But neither of those conditions occur (Aw−1 6= E0
andai (w−1) = `+ 2w−1

− 1 6= u− 2w−1). Thus, we never need to compute`− 1.
So we can carry out the addition by replacingBw−1 with a new columnB′w−1 with digits from D`,u. Let

N ′ = (N − A0)/2w−1. We have

(As−1 . . . Aw Aw−1)2 = N ′ = (Bt−1 . . . Bw B′w−1)2 and

wt(As−1 . . . Aw Aw−1) > wt
(
Bt−1 . . . Bw B′w−1

)
. (6)

But thenN ′ contradicts our choice ofN and we are done.

Theorem 2. For any input N∈ Zd×1 (with N ≥ E0 if ` = 0), the representation constructed by Algorithm 3
is colexicographically minimal.

Proof. This can be established using essentially the same proof as Theorem 1. The only difference comes at
(6): we obtain the desired contradiction by noting thatAs−1 . . . Aw Aw−1 � Bt−1 . . . Bw B′w−1 (i.e., the newly
constructed representation has lower colexicographic rank).

Corollary 3. Any colexicographically minimal representation of a vector N∈ Zd×1 with digits restricted
to D`,u has minimal weight.

Proof. By Theorems 1 and 2, we know that at least one colexicographically minimal representation ofN
has minimal weight. However, all colexicographically minimal representations ofN have the same number
of nonzero columns, so the result follows.

6 Analysis

We now analyze the weight of the outputs of Algorithm 3. We do so by defining a probability distribution
on a setM of infinite sequences overD`,u

d×1. Each sequence inM satisfies the same syntax as the outputs
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of Algorithm 3 (e.g., each nonzero column contains an odd digit). An explicit description of this syntax is
presented in §6.1. By considering the number of nonzero columns out of the firstn columns of a sequence
drawn fromM, we obtain a random variable,Wn. The expected value and the variance ofWn are computed
in §6.2.

6.1 Combinatorial Characterization

Here we provide a precise combinatorial description of the outputs of Algorithm 3.

Theorem 4. Let N ∈ Zd×1 (with N ≥ E0 if ` = 0). Then there is exactly one representation(As−1 . . . A1A0)2

(up to leading zeros) of N, such that the following conditions are satisfied:

1. Each column Aj is zero or contains an odd digit.

2. If A j 6= E0 for some j, then Aj+w−2 = · · · = A j+1 = E0.

3. If A j 6= E0 and Aj+w−1 6= E0 for some j, then

(a) there is an i∈ {1, . . . , d} such that ai ( j+w−1) is odd and ai j ∈ unique(D`,u),

(b) if ai j ∈ nonunique(D`,u), then ai ( j+w−1) 6≡ u+ 1 (mod 2w−1),

(c) if ai j ∈ upper(D`,u) ∩ nonunique(D`,u), then ai ( j+w−1) ≡ u (mod 2w−1).

Furthermore, As−1 . . . A1A0 is the output of Algorithm 3 on input N.

Proof. It is easily seen that ifAs−1 . . . A1A0 is the output of Algorithm 3 on inputN ∈ Zd×1, then the
conditions above are satisfied because of the decisions made in the Algorithm.

To complete the argument, assume now thatN ∈ Zd×1 admits two different (not only up to leading
zeros) representations(A)2 and (B)2 that satisfy the conditions stated in the Theorem. Without loss of
generality, we choose the triple(N,A,B) so that the minimum of the lengths ofA andB is minimum. This
ensures thatA0 6= B0.

We haveN ≡ A0 ≡ B0 (mod 2). If A0 = E0, then Condition 1 implies thatB0 = E0, which contradicts
A0 6= B0. Thus, A0 and B0 are both nonzero. By Condition 2, we conclude thatAw−2 = · · · = A1 =

Bw−2 = · · · = B1 = E0. Therefore, we haveA0 ≡ B0 (mod 2w−1). This implies that for all indicesi such
thatai 0 ∈ unique(D`,u), we havebi 0 = ai 0.

If Aw−1 = Bw−1 = E0, we haveA0 ≡ B0 (mod 2w), which contradictsA0 6= B0. Consequently,
we haveAw−1 6= E0, say. For the indexi described in Condition 3a, we havebi 0 = ai 0 and therefore
bi (w−1) ≡ ai (w−1) ≡ 1 (mod 2). Thus we haveBw−1 6= E0, too. This yieldsA2w−3 = · · · = Aw = B2w−3 =

· · · = Bw =
E0 and therefore

Bw−1 ≡ Aw−1+ (A0− B0)/2w−1 (mod 2w−1). (7)

SinceA0 6= B0, there is an indexi ∈ nonunique(D`,u) such thatai 0 ∈ upper(D`,u)∩nonunique(D`,u)

andbi 0 = ai 0 − 2w−1 (we swapA andB, if necessary). From Condition 3c we conclude thatai (w−1) ≡ u
(mod 2w−1), thus (7) yieldsbi (w−1) ≡ u+ 1 (mod 2w−1). But this contradicts Condition 3b.

Note that the well-known syntaxes of the nonadjacent form and width-w nonadjacent form and the
simple joint sparse form are special cases of the syntax above.
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6.2 Weight

We set up a probabilistic model as follows. Consider the space

M := {. . . A2A1A0 : for all j ≥ 0, A j ∈ D`,u
d×1 andA j−1 . . . A1A0 satisfies the conditions of Thm. 4}.

The elements ofM are infinite sequences overD`,u
d×1. We define random variables. . . X2X1X0 to be the

corresponding columns of a sequence. . . A2A1A0 drawn fromM. The probability measure, Pr, we utilize
is defined by the following property: for any nonnegative integern and vectorA ∈ {0, . . . , 2n

− 1}d×1,

Pr

n−1∑
j=0

X j 2
j mod 2n

= A

 = 1

2nd
.

Note that this measure is simply the image of the Haar measure on the space of infinite sequences over
{0, 1}d×1 (which can be identified withd-tuples of 2-adic integers) via the map given by Algorithm 3. In
fact, Algorithm 3 describes a continuous map from the space ofd-tuples of 2-adic integers toM.

We are interested in the random variable

Wn :=
n−1∑
j=0

[X j 6= E0];

note that here, we have used Iverson’s notation: [expression] equals 1 ifexpressionis true and 0 otherwise.
Thus, we see thatWn equals the number of nonzero columns among the firstn columns of a sequence in
M. The X j ’s are not independent random variables; the value ofX j is influenced by the value of some
of X j−1 . . . X0 (e.g., see Condition 2 of Theorem 4). We determine the expected value and variance ofWn

by carrying out an analysis similar to the one done by Grabner, Heuberger, Prodinger and Thuswaldner [5]
which combines techniques from the analysis of Markov processes with generating functions.

We begin by deriving a number of transition probabilities. The following notation facilitates this:

Definition 6.1. For a vectorA = (a1, . . . , ad)
T
∈ Zd×1 and a setR⊆ Z, we define

IR(A) := {i ∈ {1, 2, . . . , d} : ai ≡ r (mod 2w−1) for somer ∈ R}.

Observe thatIR(A) equals some subset of the index set,{1, 2, . . . , d}, of A. We also define

Iodd(A) := {i ∈ {1, 2, . . . , d} : ai is odd},

Iunique(A) := Iunique(D`,u)(A),

Inonunique(A) := Inonunique(D`,u)(A).

Now, let A be a vector from{0, . . . , 2w−1
− 1}d×1 containing at least one odd element. We compute

conditional probabilities forX j+w−1 under the assumption thatX j mod 2w−1
= A. We have

pAE := Pr(X j+w−1 = E0 | X j mod 2w−1
= A) =

1

2#Iunique(A)
; (8)

here, the indexE in pAE stands for “even”. pAE is the probability that we transition from the state
X j mod 2w−1

= A to X j+w−1 = E0. Let B also be a vector from{0, . . . , 2w−1
− 1}d×1 containing at

least one odd element. Assuming thatIodd(B)∩ Iunique(A) 6= ∅ andInonunique(B)∩ I{u+1}(A) = ∅ (so that
Conditions 3a and 3b of Theorem 4 are satisfied), we have

pAB := Pr(X j+w−1 mod 2w−1
= B | X j mod 2w−1

= A) =
2#(I{u}(B)∩Inonunique(A))

2(w−1)d
. (9)
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This can be seen as follows. For eachi ∈ I{u}(B) ∩ Inonunique(A), Algorithm 3 can makexi ( j+w−1) ≡

u (mod 2w−1) in two ways: either lines 26–27 are executed, whereinmi ≡ u + 1 is changed so that
mi ≡ u, or they are not executed becausemi ≡ u already. Now, if eitherIodd(B) ∩ Iunique(A) 6= ∅ or
Inonunique(B) ∩ I{u+1}(A) = ∅ does not hold, thenX j+w−1 mod 2w−1 is never equal toB; so we have

pAB = 0.

Observe,

pE B := Pr(X j+1 mod 2w−1
= B | X j = X j−1 = · · · = X j−w+2 = E0) =

1

2(w−1)d
,

pE E := Pr(X j+1 = E0 | X j = X j−1 = · · · = X j−w+2 = E0) =
1

2d
.

(10)

We setX−1 = · · · = X−w+1 = E0, so that (10) holds for allj ≥ −1 ( X−1 = · · · = X−w+1 = E0 can be
viewed as an initial state). Finally, it is clear that

Pr(X j+w−2 = X j+w−3 = · · · = X j+1 = E0 | X j mod 2w−1
= A) = 1.

The transition probabilities calculated so far are more detailed than necessary (and useful). They can be
aggregated into similar cases. For 0≤ s ≤ d, we set

Ss := {A ∈ {0, . . . , 2w−1
− 1}d×1 : Iodd(A) 6= ∅ and #Inonunique(A) = s}.

Fix somes andA ∈ Ss. We compute

pAt := Pr(X j+w−1 mod 2w−1
∈ St | X j mod 2w−1

= A)

for t = 0, . . . , d. We do this by considering the generating function

FA(Z) :=
d∑

t=0

pAt Z
t
=

∑
B∈{0,...,2w−1

−1}d×1

Iodd(B) 6=∅

pABZ#Inonunique(B).

One way to compute the coefficients ofFA(Z) is to use (9) directly; however, it is less cumbersome to
take a different route. WriteB = (b1, . . . , bd)

T. For eachi ∈ {1, . . . , d}, we choose which of the four
(disjoint) sets

I{u}(B), Inonunique(B) \ I{u}(B), I{u+1}(B), Iunique(B) \ I{u+1}(B),

the indexi will belong to. Each choice has a certain number of values ofbi associated to it, carries proba-
bilities, and possibly contributions to the exponent ofZ; the product of these quantities (5d

i=1 . . .) gives us∑
B pABZ#Inonunique(B) for a subset of values ofB. If we omit the requirement thatIodd(B)∩ Iunique(A) 6= ∅

for the moment, then each factor in the product5d
i=1 . . . can be extracted from the table below:

i ∈ I{u}(B) i ∈ Inonunique(B) i ∈ I{u+1}(B) i ∈ Iunique(B)

i /∈ I{u}(B) i /∈ I{u+1}(B)

i ∈ Inonunique(A) 1 · 2
2w−1 · Z

1 (#nonunique/2− 1) · 1
2w−1 · Z

1 1 · 0 · Z0 (#unique− 1) · 1
2w−1 · Z

0

i ∈ Iunique(A) 1 · 1
2w−1 · Z

1 (#nonunique/2− 1) · 1
2w−1 · Z

1 1 · 1
2w−1 · Z

0 (#unique− 1) · 1
2w−1 · Z

0

Note that #nonunique is short for #nonunique(D`,u), and similarly for #unique. All possible products are
generated by the following polynomial:

2−(w−1)d (#unique− 1+ (#nonunique/2+ 1)Z)#Inonunique(A) (#unique+ (#nonunique/2)Z)#Iunique(A) .
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Recall thatA ∈ Ss; thus we have #Inonunique(A) = s and #Iunique(A) = d − s.
In order to correct the error made by omitting the conditionIodd(B) ∩ Iunique(A) 6= ∅, we have to

subtract the contribution of thoseB where all components with indicesi ∈ Iunique(A) are even. Let
even(nonunique) be the set of even digits innonunique(D`,u), and leteven(unique) be similarly de-
fined. Thus we obtain

FA(Z) = 2−(w−1)d (#unique− 1+ (#nonunique/2+ 1)Z)s
·(

(#unique+ #nonunique/2 · Z)d−s
− (#even(unique)+ #even(nonunique)/2 · Z)d−s

)
. (11)

Note that #nonunique/2 and #even(nonunique)/2 are integers becausea ∈ nonunique(D`,u) implies
that eithera+ 2w−1 or a− 2w−1 is also innonunique(D`,u). From (11), it is clear thatFA(Z) (and hence
the probabilitiespAt) does not really depend onA, but only ons = #Inonunique(A) (i.e., FA(Z) is the same
for all A ∈ Ss). Thus, we define

Fs(Z) := FA(Z) where A ∈ Ss.

It follows that

pst := Pr(X j+w−1 mod 2w−1
∈ St | X j mod 2w−1

∈ Ss) = Coefficient ofZt in Fs(Z).

We remark that settings = d in (11) yieldsFd(Z) = 0 which coincides with Condition 3a of Theorem 4
(i.e., if X j 6= E0 and each of its digits is innonunique(D`,u), thenX j+w−1 must be a zero column).

Example 6.2. ConsiderD−1,3 = {−1, 0, 1, 2, 3}. For eachd ∈ {1, 2, 3} ands ∈ {0, . . . , d}, we giveFs(Z).

d = 1, s= 0, 1
4 +

1
4 Z

s= 1, 0

d = 2, s= 0, 5
16 +

3
8 Z + 1

16Z2

s= 1, 1
8 +

1
4 Z + 1

8 Z2

s= 2, 0

d = 3, s= 0, 19
64 +

27
64Z + 9

64Z2
+

1
64Z3

s= 1, 5
32 +

11
32Z + 7

32Z2
+

1
32Z3

s= 2, 1
16 +

3
16Z + 3

16Z2
+

1
16Z3

s= 3, 0.

For this digit set, we havew = 3. Consider the cased = 2 and supposeX0 6= E0 and #Inonunique(X0) = 1.
Then, from the corresponding polynomial, we see that the probability thatX2 6= E0 and #Inonunique(X2) = 0
is 1

8. Similarly, the probability thatX2 6= E0 and #Inonunique(X2) = 1 is 1
4. Note that the probabilities18,

1
4,

1
8

do not sum to 1. This is because we have not accounted for the possibility thatX2 = E0. This must happen
with probability 1− F1(1) = 1

2. ♦

The transition probabilitypAE computed in (8) also depends on #Iunique(A) = d − s only. Thus, we
have

psE := Pr(X j+w−1 = E0 | X j mod 2w−1
∈ Ss) =

1

2d−s
.

And the final transition probability we require is

pEt := Pr(X j+1 mod 2w−1
∈ St | X j = X j−1 = · · · = X j−w+2 = E0) = Coefficient ofZt in FE(Z),

where

FE(Z) = 2−(w−1)d
(
(#unique+ #nonunique/2 · Z)d

− (#even(unique)+ #even(nonunique)/2 · Z)d
)
.

Now we are able to describe the distribution of theX j ’s using a(d+ 2)× (d+ 2) probability transition
matrix

P :=


pE E pE0 pE1 · · · pEd

p0E p00 p01 · · · p0d
...

pd E pd0 pd1 · · · pdd
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Note, however, that the step size (i.e., the number of columns output between states) is not constant: the
transition probabilities in all but the first row ofP describe the state inw−1 steps (because all intermediate
columns areE0), whereas the probabilities in the first row describe the state in the next step.

Example 6.3. Here are the transition matrices for the digitsD−1,3 = {−1, 0, 1, 2, 3} whend ∈ {1, 2, 3}:


1
2

1
4

1
4

1
2

1
4

1
4

1 0 0

 ,


1
4

5
16

3
8

1
16

1
4

5
16

3
8

1
16

1
2

1
8

1
4

1
8

1 0 0 0

 ,



1
8

19
64

27
64

9
64

1
64

1
8

19
64

27
64

9
64

1
64

1
4

5
32

11
32

7
32

1
32

1
2

1
16

3
16

3
16

1
16

1 0 0 0 0

 .

Notice that the probabilities in row sum to 1, as they should. Remark also that the first two rows in each
matrix are identical; this is true in general sinceFE(Z) = F0(Z) and pE E = p0E = 1/2d. However, when
we enter stateE or 0 from any other state, the number of columns output as a result is different whenw 6= 2
(1 column is output in stateE, andw − 1 columns in state 0). Because of this difference, the two states
cannot (in general) be identified. ♦

We describe the distribution ofWn using a bivariate generating function:

G(Y, Z) :=
∑

n,k≥0

Pr(Wn = k)Yk Zn.

Observe that

G(1, Z) =
1

1− Z
and

∂G(Y, Z)

∂Y

∣∣∣∣
Y=1

=

∑
n≥0

E(Wn)Zn.

To evaluate the coefficients ofG(Y, Z), we note that our sequenceXn−1 . . . X0 of random variables can be
described by the regular expression

(ε + (E0(w−3)
+ E0(w−4)

+ · · · + E0(1)
+ ε)A)(E0+ E0(w−2) A)∗;

here,A stands for a nonzero column,E0(r ) for r consecutive zero columns,ε for the empty word, and(. . .)∗

for Kleene’s star (finite repetition). The sequences generated by this expression will satisfy Conditions 1 and
2 of Theorem 4; of course, Condition 3 must also be satisfied, but this has already been taken into account
in the derivation of the matrixP.

We use the regular expression (read right-to-left) to obtain an expression forG(Y, Z). This gives us

G(Y, Z) = (pE E pE0 pE1 · · · pEd) ·
(
I − diag(Z, Y Zw−1, . . . , Y Zw−1)P

)−1
·(

(1 1 . . . 1)T
+ Y Z

Zw−2
− 1

Z − 1
(0 1 . . . 1)T

)
. (12)

In the product above, each column of the sequence generated by the regular expression is marked with
the variableZ, and nonzero columns are additionally marked with the variableY. The dimensions of the
vectors/matrices in the product are, from left-to-right, 1× (d + 2), (d + 2)× (d + 2) and(d + 2)× 1.

Example 6.4. Using (12), we can give a general expression forG(Y, Z) for any givend in terms ofw,
#unique, #nonunique, #even(unique) and #even(nonunique). If desired, the latter four constants can be
replaced with functions of̀, u, w. For the cased = 1, we get

G(Y, Z) =
2Z − Y Z− 2+ Y Zw−1(Zλ− λ− Z + 2)

(1− Z)
(
Z − 2+ Y Zw−1(Zλ− λ− Z + 2)

) ,
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whereλ = #odd(D`,u)/2w−2; note that 1≤ λ ≤ 2. To verify this expression, the fact that #odd(D`,u) =

1/4 ·
(
2(u− `+ 1)− (−1)`

− (−1)u
)

can be utilized. ♦

Example 6.5. For d = 2, we giveG(Y, Z) for the special case when the digitsD−1,3 = {−1, 0, 1, 2, 3} are
used:

G(Y, Z) =
Y2Z4

+ 6Y Z2
+ 24Y Z+ 32

−Y2Z5+ Y2Z4− 6Y Z3− 18Y Z2− 8 Z + 32

= 1+

(
1

4
+

3

4
Y

)
Z +

(
1

16
+

15

16
Y

)
Z2
+

(
1

64
+

9

16
Y +

27

64
Y2

)
Z3
+ · · · .

The general expression forG(Y, Z) whend = 2 is too long to display here. ♦

Write G(Y, Z) = f (Y, Z)/g(Y, Z) where f andg are polynomials. BecauseG(1, Z) = 1/(1− Z), we
have thatg(1, Z) = (1− Z) · f (1, Z). From the properties of derivatives, it follows that

∂G(Y, Z)

∂Y

∣∣∣∣
Y=1

=

∂ f (Y,Z)
∂Y

∣∣∣
Y=1

(1− Z) · f (1, Z)
−

∂g(Y,Z)
∂Y

∣∣∣
Y=1

(1− Z)2 · f (1, Z)
.

Using a partial fraction expansion, we obtain

∂G(Y, Z)

∂Y

∣∣∣∣
Y=1

=
è ,u,d

(1− Z)2
+

c`,u,d

1− Z
+ power series in(1− Z)

for suitable constantsè ,u,d andc`,u,d. Extracting the coefficient ofZn yields the expectation ofWn as

E(Wn) = è ,u,d(n+ 1)+ c`,u,d + O(1)

= è ,u,dn+ O(1).

The constantè ,u,d is theasymptotic densityof the representations; observe that limn→∞ E(Wn/n) = è ,u,d.
A general formula forè ,u,1 (listed below) can be obtained from the generating function listed in Exam-
ple 6.4.

To determine Var(Wn), the variance ofWn, we compute E(W2
n )− E(Wn)

2. Observe that

∂2G(Y, Z)

∂Y2

∣∣∣∣
Y=1

+
∂G(Y, Z)

∂Y

∣∣∣∣
Y=1

=

∑
n≥0

E(W2
n )Zn.

Extracting the coefficient ofZn and subtracting E(Wn)
2
= (è ,u,d(n+ 1)+ c`,u,d + O(1))2 gives

Var(Wn) = v`,u,dn+ O(1)

for a suitable constantv`,u,d. A general formula forv`,u,1 (listed below) can be deduced. For other values of
d, general formulae forè ,u,d andv`,u,d are quite long; however, Table 2 displays values forè ,u,d andv`,u,d

in a number of special cases.
In summary, our analysis can be taken as proof of the following theorem:

Theorem 5. There are constants e`,u,d and v`,u,d such that the expectation and variance of the random
variable Wn, defined to be the weight of the n least significant columns of a colexicographically minimal
dimension-d joint representation with digits from D`,u, are given by

E(Wn) = è ,u,dn+ O(1) and Var(Wn) = v`,u,dn+ O(1).
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` u d w è ,u,d v`,u,d

−1 1 1 2 1
3

2
27

−1 1 2 2 1
2

1
16

−1 1 3 2 23
39

2800
59319

0 5 1 3 2
7

18
343

0 5 2 3 32
89

63200
2114907

0 5 3 3 586
1487

68928570
3288008303

−3 7 1 4 2
9

2
81

−3 7 2 4 16
59

2640
205379

−3 7 3 4 13942
47595

354835806
42033603575

TABLE 2: Coefficients of the dominant term in the asymptotic mean and variance ofWn.

` u è ,u,2

even even 3+3·2−w(2δ−3)

3w+δ2−3+2−w(3w(2δ−3)+3δ2−10δ+9)

even odd 3+3·2−w(2δ−3)

3w+δ2−3+2−w(3w(2δ−3)+3δ2−10δ+9)

odd even 3+2−w+1(2δ−3)−2−2w+3

3w+δ2−3+2−w+1(w(2δ−3)+δ2−4δ+3)−2−2w+2(2w+2δ−3)+2−3w+3

odd odd 3+2−w+2(2δ−3)+2−2w+4

3w+δ2−3+2−w+2(w(2δ−3)+δ2−3δ+3)+2−2w+2(4w+4δ−7)+2−3w+4

TABLE 3: General formula forè ,u,2 whereu− `+ 1= δ2w−1 with 1≤ δ < 2.

For d = 1, we have

è ,u,1 =
1

w − 1+ λ
and v`,u,1 =

(3− λ)λ

(w − 1+ λ)3
,

where

λ =
#odd(D`,u)

2w−2
=

2(u− `+ 1)− (−1)`
− (−1)u

2w
.

General formulae for è,u,d for d = 2 are given in Table 3. For d∈ {1, 2, 3, 4}, general formulae for è,u,d

andv`,u,d are given on the accompanying web page [8].
Furthermore, the random variable Wn satisfies the central limit law

lim
n→∞

Pr
(

Wn ≤ E(Wn)+ x
√

Var(Wn)
)
=

1
√

2π

∫ x

−∞

e−
t2
2 dt.

Remark 6.6. The central limit law follows from Hwang’s quasi-power theorem [9]. Also, the same expres-
sion forè ,u,1 was obtained by Phillips and Burgess using a steady-state analysis of a Markov chain [15, see
equation (13)].

7 Remarks

For d = 1, it is easily seen that every integer has at most one colexicographically minimal representation
with digits from D`,u. The fact that every integer has a unique nonadjacent form and width-w nonadjacent
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form can be viewed as special cases of this result. However, ford > 1, colexicographically minimal joint
representations are not necessarily unique.

Example 7.1. For the digit setD−3,5 = {−3,−2,−1, 0, 1, 2, 3, 4, 5}, we have(
5
9

)
=

(
0005
1001

)
2

=

(
1003
1001

)
2

.

It is easily seen that these two representations are both colexicographically minimal. ♦

Some authors [3] [10] have sought an algorithm which constructs minimal weight joint representations
with digits restricted to the set{0, 1, 3} or {0,±1,±3}. It seems natural that since Solinas was able to
generalize the{0,±1}-nonadjacent form to joint representations that there would also be a generalization
of the {0, 1, 3}-nonadjacent form, which is also known to have minimal weight (cf. [7, see Lemma 19]).
But building minimal weight representations (ford = 1) with digits from{0, 1, 3} is actually equivalent to
building minimal weight representations with digits from{0, 1, 2, 3} (recall Lemma 4.6). So perhaps the
appropriate generalization is from the{0, 1, 3}-nonadjacent form to joint representations with digits from
{0, 1, 2, 3}.

Nevertheless, it is possible that there may be a simple strategy for building minimal weight{0, 1, 3}-joint
representations. However, all we can say for certain about such a strategy is that it is not the one that builds
a colexicographically minimal representation.

Example 7.2. Suppose(. . . A2A1A0)2 is a colexicographically minimal representation ofN = (5, 9)T

which uses the digits{0, 1, 3}. If we were trying to construct this representation, we would first try to make
A0 a zero column. However, since both 5 and 9 are odd, this is not possible. So, we try to makeA1 a zero
column. This can only be done by settingA0 to (1, 1)T

= (5, 9)T mod 4. If we continue in this manner, we
arrive at the following representation: (

0101
1001

)
2

=

(
5
9

)
.

This is a colexicographically minimal representation of(5, 9)T and it has weight 3. However,(
0013
0033

)
2

=

(
5
9

)
.

and this representation has weight 2. So, for the digits{0, 1, 3}, the strategy of building a colexicographically
minimal representation does not necessarily give a minimal weight representation. ♦

Although the new family of minimal weight joint representations we have introduced (i.e., the outputs
of Algorithm 3) can be viewed as generalizations of Solinas’ Joint Sparse Form (JSF), Algorithm 3 cannot
(in general) be used to build the JSF. When the parametersd = 2, ` = −1, u = 1 are used, the output
of Algorithm 3 may contain 11 or 11 which are not allowed in the JSF (e.g., this happens with the input
N = (1, 2)T). For these parameters, the outputs of Algorithm 3 are exactly the dimension-2 Simple Joint
Sparse Forms (SJSF) [6]. The SJSF and JSF have their zero columns in the same positions [6]; thus, because
the SJSF is colexicographically minimal, so is the JSF.
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[11] B. MÖLLER. Fractional windows revisited: improved signed-digit representations for efficient ex-
ponentiation, in “Information Security and Cryptology – ICISC 2004”,Lecture Notes in Computer
Science3506(2004), 137–153.

[12] F. MORAIN AND J. OLIVOS. Speeding up the computations on an elliptic curve using addition-
subtraction chains,RAIRO Theoretical Informatics and Applications24 (1990), 531–543.

[13] J. MUIR. Efficient Integer Representations for Cryptographic Operations, Ph.D. thesis, University of
Waterloo, 2004.
http://etd.uwaterloo.ca/etd/jamuir2004.pdf

[14] J. MUIR AND D. STINSON. Minimality and other properties of the width-w nonadjacent form.Math-
ematics of Computation75 (2006), 369–384.

[15] B. PHILLIPS AND N. BURGESS. Minimal weight digit set conversions.IEEE Transactions on Com-
puters53 (2004), 666–667.

[16] J. PROOS. Joint sparse forms and generating zero columns when combing. Technical Report CORR
2003-23, Centre for Applied Cryptographic Research, 2003.
http://www.cacr.math.uwaterloo.ca/techreports/2003/tech_
reports2003.html

[17] G. REITWIESNER. Binary arithmetic, inAdvances in Computers, Vol. 1, Academic Press, 1960, pp.
231–308.

[18] J. SOLINAS. Low-weight binary representations for pairs of integers. Technical Report CORR
2001-41, Centre for Applied Cryptographic Research, 2001.

25



http://www.cacr.math.uwaterloo.ca/techreports/2001/tech_
reports2001.html

[19] E. STRAUS. Addition chains of vectors (problem 5125).American Mathematical Monthly71 (1964),
806–808.

A Straus’ Algorithm

The general form of Straus’ algorithm is presented as Algorithm 4. Note that the multiplication indicated at
line 2 (i.e.,P · A) is a matrix multiplication. The matrix (row vector)P has dimension 1×d, and the matrix
(column vector)A has dimensiond × 1.

Algorithm 4 Straus’ algorithm

Input: N = (n1, n2, . . . , nd)
T, P = (P1, P2, . . . Pd), k ∈ Z+

Output: Q =
∑d

i=1 ni Pi

1: for all A ∈ {0, 1, . . . , 2k
− 1}d×1

\ {E0} do
2: RA← P · A
3: As−1 . . . A1A0← the cols. of the dimension-d radix-2k joint rep. ofN with digits from{0, 1, . . . , 2k

−1}
4: Q← RAs−1

5: for j = s− 2 . . . 0 do
6: for i = 1 . . . k do Q← 2Q
7: if A j 6= E0 then
8: Q← Q+ RA j

9: return Q
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