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Abstract

We introduce new entropy concepts measuring the size of a given class of increas-
ing sequences of positive integers. Under the assumption that the entropy function
of A is not too large, many strong limit theorems will continue to hold uniformly
over all sequences in A. We demonstrate this fact by extending the Chung-Smirnov
law of the iterated logarithm on empirical distribution functions for independent
identically distributed random variables as well as for stationary strongly mixing
sequences to hold uniformly over all sequences in A. We prove a similar result for se-
quences (nkω) mod 1 where the sequence (nk) of real numbers satisfies a Hadamard
gap condition.

1 Introduction

Let X1, X2, . . . be a sequence of random variables and A a class of increasing sequences
of positive integers. The purpose of our paper is to investigate under what conditions the
sequence (Xn) satisfies the strong law of large numbers uniformly over A in the sense that

lim
N→∞

1

N
sup

(pk)∈A

∣∣∣∣∣∑
pk≤N

Xpk

∣∣∣∣∣ = 0 a.s. (1.1)

When relation (1.1) is valid, we will also be interested in the speed of convergence; in
particular we will investigate when the uniform law of the iterated logarithm

lim sup
N→∞

1√
N log logN

sup
(pk)∈A

∣∣∣∣∣∑
pk≤N

Xpk

∣∣∣∣∣ <∞ a.s. (1.2)

holds.

∗Research supported by FWF grant S9603-N13 and OTKA grants K 61052 and K 67961.
†Research supported by FWF grants S9603-N13 and S9611-N13.
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Our work was motivated by recent results of Mauduit and Sárközy on pseudorandom
behavior. Given independent random variables X1, X2, . . . taking the values ±1 with
probability 1/2− 1/2, it is not hard to prove that

lim
N→∞

1

N
max

a≥1,b≥0

∣∣∣∣∣∣∣
∑
k≥1

ak+b≤N

Xak+b

∣∣∣∣∣∣∣ = 0 a.s.

Thus if (xn) is a ’truly’ random ±1 sequence, then the quantity

KN := max
a≥1,b≥0

∣∣∣∣∣∣∣
∑
k≥1

ak+b≤N

xak+b

∣∣∣∣∣∣∣ (1.3)

is o(N). Hence for a computer generated ±1 sequence (x1, . . . , xN) the quantity (1.3),
introduced by Mauduit and Sárközy in [14] (see Knuth [10], p. 148 for a related ’serial
test’), can be used as a measure of pseudorandomness. More generally, for a sequence
(x1, . . . , xN) in [0, 1), Mauduit and Sárközy introduced the quantity

WN(x1, . . . , xN) := max
a≥1,b≥0

∣∣∣∣∣∣∣
∑
k≥1

ak+b≤N

(1(xak+b ≤ 1/2)− 1/2)

∣∣∣∣∣∣∣ (1.4)

which they called the well-distribution measure of the sequence. In a long series of papers
(see e.g. [15], [16], [4], [13] and the references therein), they investigated the quantities KN

and WN for several interesting sequences (xn) defined by number-theoretic algorithms. A
good estimate for KN and WN means a high degree of pseudorandomness, but to assess
how this is related to ”true” random behavior, one needs a probabilistic analysis of the
well-distribution measure, i.e. to study the behavior of KN and WN for typical classes of
random sequences. The purpose of our paper is to provide such an analysis.

In addition to the well-distribution measure WN , several related quantities (e.g. the
corresponding correlation measures) are of considerable interest in pseudorandomness
studies (see e.g. [14], [13], [1], [4]), but in the present paper we will not deal with such
quantities.

Note that in (1.1) we use the norming N−1 for all sums
∑

pk≤N Xpk
, although many

of them consist of less than N elements. This choice is the natural one for our arithmetic
applications, and changing (1.1) to

lim
N→∞

sup
(pk)∈A

1

#{k : pk ≤ N}

∣∣∣∣∣∑
pk≤N

Xpk

∣∣∣∣∣ = 0 a.s. (1.5)

would actually result in a useless concept. If, for example, A consists of all increasing
arithmetic progressions in N, then there are many sets in A having exactly one element
under N and thus (1.5) is false even if Xn are i.i.d. binomial variables.
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Given a sequence (xn) and a class A of subsequences of N, we define a generalization
of the well-distribution measure of Mauduit and Sárközy by

W
(A)
N (x1, . . . , xN) := sup

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∑
pk≤N

(
1(xpk

≤ t)− t
)∣∣∣∣∣ . (1.6)

When (x1, . . . , xN) is understood, we shall simply writeWN(A) instead ofW
(A)
N (x1, . . . , xN).

Note that, in contrast to (1.4), definition (1.6) involves a sup in t as well. This is quite
natural, since the value 1/2 in (1.4) was arbitrary. Note that in the case when the class A
consists of the single sequence N, the quantity in (1.6) reduces to NDN(x1, x2, . . . , xN),
where

DN = DN(x1, . . . , xN) := sup
0≤t≤1

∣∣∣∣ 1

N
card (k ≤ N : xk ≤ t)− t

∣∣∣∣
is the discrepancy of (x1, . . . , xN). Clearly, the sup in t makes the estimation of WN(A)
more difficult, but our results will be easy to compare with known discrepancy estimates
in the literature.

Let η1, η2, . . . be a sequence of random variables in [0, 1). Analogously to (1.1), we will
say that (ηn) satisfies the Glivenko-Cantelli theorem uniformly over A if

lim
N→∞

1

N
sup

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∑
pk≤N

(1(ηpk
≤ t)− t)

∣∣∣∣∣ = 0 a.s., (1.7)

where 1(A) denotes the indicator function of the set A. Relation (1.7) expresses a certain
uniformity in the behavior of empirical distribution functions of subsequences of (ηk), a
requirement tailored for the specific needs of pseudorandom behavior. It seems this kind
of subsequential uniformity has not been studied in the probabilistic literature so far.
On the other hand, uniform convergence of empirical processes with respect to sets in
Euclidean spaces has a wide literature going back to the 1970’s. Let (ηn) be a sequence
of i.i.d. random variables, uniformly distributed over the unit cube Kd of Rd, and let C be
a class of Borel sets ⊆ Kd. Put

ZN(C) =
∑
k≤N

(1(ηk ∈ C)− µ(C)), C ∈ C

where µ is the Lebesgue measure. It is known that the validity of the uniform strong law
and LIL, i.e.

lim
N→∞

sup
C∈C

1

N
|ZN(C)| = 0 a.s. (1.8)

and

lim sup
N→∞

supC∈C |ZN(C)|√
N log logN

<∞ a.s. (1.9)

are closely connected with the geometry of the class C, namely how many sufficiently sep-
arated elements of the class C exist, or how closely the elements of C can be approximated
by ”special” sets. For example, let NI(δ, C) denote the smallest number r of measurable
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sets A1, . . . , Ar in Kd such that for every C ∈ C there exist Ai, Aj, 1 ≤ i < j ≤ r such that
Ai ⊂ C ⊂ Aj and µ(Aj \ Ai) < δ (”metric entropy with inclusion”). Then the validity of
the uniform LIL and CLT is closely related to the finiteness of the entropy integral∫ 1

0

(logNI(x
2, C))1/2dx.

(See e.g. Dudley [6], [7], Dudley and Philipp [8].) Another important geometric property
relevant for the uniform strong law (1.8), discovered by Vapnik and Červonenkis, is how
finite sets {x1, . . . , xN} in Rd can be ”shattered” by elements of C, i.e. how many different
sets of the form {x1, . . . , xN}∩C, C ∈ C exist. In fact, a necessary and sufficient condition
for (1.8) can be given in terms of this quantity; see e.g. Pollard [21], p. 22.

In this paper, we will develop entropy concepts for classes of subsequences of N and
use them to study uniform subsequential limit theorems of the type (1.1), (1.2) and (1.7).
Quite naturally, the behavior of the quantities in (1.1), (1.2), (1.7) is connected with
the size of the class A and we will see that various ”sequential” analogues of entropy
measures in Rd will lead to substantial information on empirical processes. Beside the
simplest case of i.i.d. variables ηn, we will study some classes of dependent sequences as
well, in particular mixing and lacunary sequences.

Throughout our paper, we will assume that the class A contains the sequence N. This
assumption implies that WN is bounded below by N times the discrepancy of the same
sequence and this will permit us to compare our results with classical discrepancy bounds
in the literature. Apart from the lower bounds in the LIL in Theorems 1, 2, 6, all our
results remain valid without this assumption.

Given a class A of subsequences of N, for each N ≥ 1 let AN denote the collection of
the restrictions of these subsequences to the segment [1, 2, . . . , N ] of the first N positive
integers, i.e.

AN := {A ∩ [1, 2, . . . , N ] : A ∈ A}.

Clearly

AN =
⋃
r≥1

AN(r)

where AN(r) denotes the class of sets A ∈ AN for which N2−r < card A ≤ N2−(r−1). We
call

ψ(A;N, r) := cardAN(r) (1.10)

the entropy function of the class A.

Next, let (ηk) be a sequence of random variables in [0, 1). In the simplest case of
Theorem 1, the ηk will be independent, with each ηk having uniform distribution over
[0, 1), i.e.

P (ηk ≤ t) = t , 0 ≤ t ≤ 1, k ≥ 1 . (1.11)

In Theorems 2 and 4 we permit ηk to have asymptotically uniform distribution over [0, 1).
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Theorem 1 Let (ηk) be a sequence of independent random variables with uniform distri-
bution (1.11) over [0,1). Let A be a class of subsequences of N with entropy function ψ
satisfying

ψ(A;N, r) ≤ exp (B · 2r/2 log logN), r ≥ 0, N ≥ 10 (1.12)

for some constant B > 0. Then with probability 1

1/4 ≤ lim sup
N→∞

(N log logN)−1/2WN(A) ≤ C

for some constant C, depending only on the constant B in (1.12).

Theorem 1 gives the precise growth speed of WN(A) in the almost everywhere sense
under the entropy condition (1.12). It is worth mentioning that in the case when A is
the class of arithmetic progressions, the recent paper of Alon et. al. [1] (for a preliminary
study see Cassaigne, Mauduit and Sárközy [4]) shows that the precise order of magnitude
of WN(A) in probability (”typical value”) is O(

√
N). They also determine the typical

value of the corresponding correlations.

As Theorem 6 below will show, Theorem 1 remains valid, under a more stringent
entropy condition, for a large class of mixing sequences (ηk) of random variables. Ap-
plications include, e.g., continued fraction digits and digits in other classical expansions.
Before, however, stating this general result, we will consider a particularly simple and
arithmetically interesting dependent sequence, namely the sequence ηk = ηk(ω) = nkω
mod 1 for rapidly increasing sequences (nk) of integers. This is not covered by the mixing
theory, but it will exemplify the methods applied in this field.

It is easy to see that the classA0 of arithmetic progressions satisfies ψ(A0;N, r) ≤ C22r

and thus Theorem 1 applies for this class. A0 is, however, a fairly small class and we will
show now that condition (1.12) permits much larger classes A than A0. To see this
we first construct, for each integer r ≥ 1, a class A(r) of sequences of positive integers
such that each sequence in A(r), intersected with [2n, 2n+1), has 2n−r elements, the so

obtained finite sequences are all different and for n ≥ n0(r) their number is 22[r/2]
. To

this end, choose 22[r/2]
subsets H

(n)
1 , . . . , H

(n)

22[r/2] of {2n, . . . , 2n+1−1} with cardinality 2n−r.

Since
(

2n

2n−r

)
→ ∞, this is possible for n ≥ n0(r); for 1 ≤ n < n0(r) we choose a single

subset H
(n)
0 of {2n, . . . , 2n+1 − 1} with 2n−r elements. Let A(r) consist of the sequences

∪n<n0(r)H
(n)
0 ∪n≥n0(r)H

(n)
j , j = 1, 2, . . . , 22[r/2]

; this class obviously has the above properties.

Let now A = ∪∞r=1A(r). Clearly, all sequences in A(r) have between N2−r−1 and N2−r+1

elements in [1, . . . , N ] for any N ≥ 1 and thus if a sequence (nk) ∈ A has between N2−r

and N2−(r−1) elements in [1, N ] then (nk) belongs to Ar or Ar−1. Hence

ψ(A;N, r) ≤ 22(r−1)/2

+ 22r/2 ≤ 22r/2+1 ≤ exp(2 · 2r/2).

In the construction of the sequences in A(r) above, we chose their finite segments
in [2n, 2n+1) separately and the number of choices for the finite segment in [2n, 2n+1)

was 22[r/2]
(actually we can have a little more by (1.12)), which is much more than the
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number O(22r) of arithmetic progressions in [2n, 2n+1) having between 2n−r and 2n−r+1

elements. This shows that Theorem 1 permits much larger classes A than arithmetic
progressions. Note that once the 22[r/2]

sequences in each interval [2n, 2n+1) were chosen,
we combined them to infinite sequences by ”patching together” the first, second, . . . ,
22[r/2]

-th sequence in the intervals. If, alternatively, we combine each finite sequence in an
individual interval with all other finite sequences in other intervals, we get a class A(r)

satisfying ψ(A(r); 2n+1, r) ≥ 22[r/2]n and thus (1.12) fails by a large margin. Similarly, the
class A of all sequences (nk) which are linear in each interval [2n, 2n+1) fails (1.12) by a
large margin.

By a result of Finkelstein [9], the sequence

fN(t) = (N log logN)−1/2
∑
k≤N

(1(ηk ≤ t)− t) (1.13)

of normalized empirical distribution functions is, with probability 1, relatively compact
with respect to the uniform topology and the class of its limit points is the class C0 of
absolute continuous functions x(t), t ∈ [0, 1] satisfying

x(0) = x(1) = 0,

∫ 1

0

x′(t)2dt ≤ 1.

It is easily seen that all functions in C0 belong to the Lip (1/2) class, and thus for any
ε > 0 there exists with probability 1 a random index N0 = N0(ε) such that

|fN(t)− fN(s)| ≤ C|t− s|1/2 + ε (1.14)

for all 0 ≤ s, t ≤ 1, and all N ≥ N0(ε), where C is an absolute constant. The last relation
is a substantial sharpening of the ordinary LIL

lim sup
N→∞

sup
0≤t<1

|fN(t)| <∞ a.s.

As we will prove, a similar sharpening of Theorem 1 holds. Define, for a fixed sequence
p = (pk) ∈ A and 0 ≤ t ≤ 1,

fN,p(t) := (N log logN)−1/2
∑

pk≤N

(1(ηpk
≤ t)− t). (1.15)

Then under the hypotheses of Theorem 1 the following result holds. For each 0 < α < 1/2
and ε > 0 there is with probability 1 a random index N0 = N0(ε) such that

|fN,p(t)− fN,p(s)| ≤ C|t− s|α + ε (1.16)

for all 0 ≤ s, t ≤ 1, all (pk) ∈ A and all N ≥ N0, where the constant C depend only on
B in (1.12).

Our next theorem concerns lacunary sequences {nkω}, where {·} denotes fractional
part. By a classical result of Weyl (see e.g. [11], pp. 32-33), for any increasing sequence
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(nk) of integers, {nkω} is uniformly distributed for almost every ω in the sense that its
discrepancy DN tends to 0 as N →∞. This fact and the simplicity of its definition make
{nkω} a natural object for a pseudorandomness study, and in fact a number of results
in our paper will deal with this sequence. Very few sharp results on the discrepancy of
{nkω} exist in the literature; precise asymptotics are known only for nk = k and rapidly
increasing (nk). Philipp [19] proved that if (nk) satisfies the Hadamard gap condition

nk+1/nk ≥ q > 1, k = 1, 2, . . . . (1.17)

then the discrepancy of {nkω} satisfies the law of the iterated logarithm, i.e. for almost
all ω ∈ [0, 1) we have

1

4
≤ lim sup

N→∞

NDN({nkω})√
N log logN

≤ C(q), (1.18)

where C(q) � 1/(q−1). Our next theorem proves an LIL for the well distribution measure
WN(A) of this sequence, extending substantially Philipp’s result.

Theorem 2 Let (nk) be a sequence of real numbers satisfying a Hadamard gap condition
(1.17) and let ηk = ηk(ω) = {nkω}. Let the class A be a class of subsequences of N with
entropy function satisfying

ψ(A;N, r) ≤ B · 2rβ (1.19)

for some constants B > 0 and β > 0. Then with probability 1

1/4 ≤ lim sup
N→∞

(N log logN)−1/2WN(A) ≤ C

for some constant C <∞, depending only on B, β and q.

As we noted earlier, the class A of arithmetic progressions satisfies (1.19) with β = 2.
A construction similar to that discussed after Theorem 1 shows that for large β, (1.19)
permits considerably larger classes than the class of arithmetic progressions.

Again we shall prove an estimate of the modulus of continuity of the empirical process.
Define fN,p as in (1.15). In analogy with (1.16) we shall obtain under the hypotheses of
Theorem 2 that for each ε > 0 there is with probability 1 a random index N0(ε) such that

|fN,p(t)− fN,p(s)| ≤ C|t− s|1/32 + ε (1.20)

for all 0 ≤ s, t ≤ 1 all (pk) ∈ A and all N ≥ N0(ε).

The second entropy concept is based on the Hamming distance of sequences of integers.
For N ≥ 1 we define the (normalized) distance of two sequences A and B of integers by

d(A,B;N) =
1

N

∑
n≤N

|1(n ∈ A)− 1(n ∈ B)|.

Given a class A of increasing sequences of positive integers, we define the entropy function
κ by

κ(A; δ,N) := sup{m : there exist A1, . . . , Am ∈ AN

such that d (Ai, Aj;N) > δ for all i 6= j}. (1.21)

Clearly κ is a non-increasing function of δ ≥ 0.
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Theorem 3 Let (ηk) be a sequence of independent random variables with the uniform
distribution (1.11) over [0, 1). Let A be a class of increasing sequences of positive integers
with entropy function κ(A; δ,N) growing not faster than a polynomial in 1/δ (depending
only on A). Then with probability 1

WN(A) �
√
N
(
log κ

(
A;N−α, N

)
+ (log logN)1/2

)
for any α > 1/2.

The same result holds if ηk = {nkω}, where (nk) is a sequence of real numbers satisfying
the Hadamard gap condition (1.17).

As an example, consider a Vapnik-Červonenkis (VC) class A in the set N of positive
integers. For any finite set F ⊂ N, let ∆A(F ) be the number of different subsets F∩A,A ∈
A. For n = 1, 2, . . . let

mA(n) := max (∆A(F ) : card F = n)

Clearly mA(n) ≤ 2n. Let

v = V (A) :=

{
inf{n : mA(n) < 2n}
+∞ if mA(n) = 2n for all n.

If V (A) < +∞, then A is called a VC class in N. We recall a result of Dudley [6,
Lemma 7.13] or Dudley [7, p. 105] measuring the size of VC classes. Let Γ be the set of
all laws on N of the form

n−1

N∑
j=1

δx(j)

for unit point masses δx(j) on x(j) ∈ N, j = 1, 2, . . . , n; n = 1, 2, . . . where the x(j) need
not be distinct. For δ > 0 and γ ∈ Γ let

κ∗(A; γ, δ) := sup {m : there exist A1, . . . , Am ∈ A such that γ(Ai∆Aj) > δ for i 6= j}

and put
κ∗(A; δ) := sup{κ∗(A; γ, δ) : γ ∈ Γ}.

Lemma 1 [6, 7]. If A is a VC class in N with V (A) = v then there is a constant K
depending only on v such that

κ∗(A; δ) ≤ Kδ−v| log δ|v for all δ > 0.

Hence if A is a VC class in N, the entropy function κ defined in (1.21) does not grow
faster than a polynomial in 1/δ.

Corollary 1 Let (ηk) be a sequence of independent random variables with uniform dis-
tribution (1.11) over [0, 1) or ηk = {nkω} with a Hadamard lacunary (nk). Then if A is
a VC class in N, with probability 1 we have

WN(A) �
√
N logN.
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Theorem 4 Let (nk) be an increasing sequence of integers and let ηk = ηk(ω) = {nkω}.
Let A be a class of subsequences of N with entropy function satisfying (1.19) for some
positive constants β and B. Then with probability 1

WN(A) � N
β

1+β (logN)
3

1+β
+ε if β > 1

� N
1
2 (logN)2+ε if β = 1

� N
1
2 (logN)

3
2
+ε if β < 1

Note that we do not make here any growth or arithmetic condition on the (nk). In
the case when A = L is the class of arithmetic progressions in N, Mauduit and Sárközy
[15], [16] proved that for almost every ω

WN({kω}) � N1/2(logN)1+ε a.e.

WN({k2ω}) � N3/5(logN)2/5+ε a.e.

and for k = 3, 4, . . .
WN({krω}) � N1−αr a.e.

with some (explicitly given) constant αr > 0. They also proved that the above relations,
with a slightly smaller exponent of the log, hold for any irrational ω whose partial quotients
in the continued fraction expansion remain bounded. For the case A = L Philipp and
Tichy [20] proved that for any increasing sequence (nk) of integers we have

WN({nkω}) � N2/3(logN)1+ε a.e. (1.22)

Note that
ψ(L, N, r) ≤ C · 22r (1.23)

and thus the case β = 2 in Theorem 4 and (1.23) yield the result of Philipp and Tichy.

Theorem 5 Let (nk) be an increasing sequence of integers and let ηk = ηk(ω) = {nkω}.
Let A be a class of increasing sequences of N with entropy function κ(A; δ,N) ≤ Cδ−v for
some v ≥ 0, where C depends only on A. Then with probability 1

WN(A) � N
v+1
v+2 (logN)

3
v+2

+ε, ε > 0.

Finally, we formulate a theorem which extends our results for mixing sequences of
random variables. Let (ξn) be a strictly stationary sequence of random variables satisfying
a strong mixing condition

|P (AB)− P (A)P (B)| ≤ α(n) ↓ 0 (1.24)

for all A ∈ Fk
1 and B ∈ F∞

k+n. Here F b
a denotes the σ-field generated by {ξn, a ≤ n ≤ b}.

Let f be a measurable mapping from the space of infinite sequences (α1, α2, . . .) of real
numbers into the real line. Define

ηn = f(ξn, ξn+1, . . .), n ≥ 1 (1.25)
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and
ηmn = E(ηn|Fn+m

n ), m, n ≥ 1.

We assume that ηn can be closely approximated by ηmn in the form

E|ηn − ηmn| ≤ φ(m) ↓ 0 (1.26)

for allm,n ≥ 1. This means that the functions f(ξn, ξn+1, . . .) can be closely approximated
by functions of finitely many variables.

Sequences of the above type appear in many arithmetic applications. For example, the
partial quotients in the continued fraction expansion of a number ξ chosen at random in
(0, 1) according to the Gaussian measure P (C) = (log 2)−1

∫
C
(1 + x)−1dx are stationary

and satisfy the strong mixing condition (1.24) with an exponentially decreasing α(n).
(See e.g. [12], Chapter 9). Similar results hold for the digits in several other expansions.
Condition (1.24) also holds, with exponentially decreasing α(n), for a large class of Markov
processes; for example, for ξn defined by a stochastic recurrence relation ξn = g(ξn−1, εn),
where εn is an i.i.d. sequence.

Theorem 6 Let (ξn) be a strictly stationary sequence of random variables satisfying the
strong mixing condition (1.24) with

α(n) � n−p, p ≥ 8. (1.27)

Suppose that the random variables ηn defined by (1.25) are uniformly distributed over [0, 1)
and that they satisfy (1.26) with

φ(m) � m−q, q ≥ 12. (1.28)

Let A be a class of increasing subsequences of N with entropy function satisfying

ψ(A;N, r) ≤ B · 2rβ (1.29)

for some constants B > 0 and

0 ≤ β ≤ min (p/5− 1, q/5− 3) . (1.30)

Then with probability 1

1/4 ≤ lim sup
N→∞

(N log logN)−1/2WN(A) ≤ C

for some constant C < +∞.

Again we have a stronger result, expressing the Lipschitz property of the normalized
empirical distribution functions fN,p. Specifically, for each ε > 0 there is with probability
1 a random index N0 = N0(ε) such that

|fN,p(t)− fN,p(s)| ≤ C1|t− s|1/100 + ε (1.31)
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for all 0 ≤ s < 1 ≤ 1, all (pk) ∈ A and all N ≥ N0. The constant C1 only depends on the
constants implied by � in (1.27), (1.28) and the constant B in (1.29).

The paper is organized as follows. Theorem 2 is proved in complete detail in Section 2.
The proofs of Theorem 1 and Theorem 6 are considerably simpler and are given in Section
4. Theorem 3 is proved in Section 3 in the lacunary case; since the i.i.d. can be proved in
the same way, we will omit it. Finally, Theorems 4 and 5 are proven in Section 5.

2 Proof of Theorem 2

Clearly, sequences (pk) ∈ A having at most
√
N elements in [1, N ] contribute to the

supremum in (1.7) by at most
√
N and thus in the proof of Theorem 2 (and in fact all

proofs in our paper) we can restrict the definition of WN to sequences (pk) ∈ A having
more than

√
N elements in [1, N ].

Let (nk) be a sequence of real numbers satisfying the Hadamard gap condition (1.17)
and let ηk = ηk(ω) = {nkω}. For 0 ≤ s < t ≤ 1 we set

xn(s, t) := 1(s ≤ ηn < t)− (t− s). (2.1)

Finally, let β be the constant in the entropy condition (1.19). The key of the proof of
Theorem 2 is the following exponential inequality, which is a sharpening of [19, Proposition
4.2.1].

Proposition 1 Let N ≥ 1 be an integer and let R ≥ 1. Suppose that ` := t− s ≥ N−3/2.
Then for some constant A ≥ 1 we have as N →∞

P

(
max
Q≤N

∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ AR`1/32(N log logN)1/2

)
� exp(−16R`−1/32 log logN) +R−8βN−2β

where A and the constant implied by � depend only on q and β.

Proof. We follow the proof of [19, Proposition 4.2.1]. First, we note that by the
argument in [19, p. 338] we can assume without loss of generality that q ≥ 16. Next, for
each k = 1, 2, . . . , define rk to be the largest integer r such that

2r ≤ nk4
k1/4

. (2.2)

Let Fk denote the σ-field generated by the dyadic intervals

Uνk =
[
ν2−rk , (ν + 1)2−rk

)
ν = 0, 1, 2, . . . , 2rk − 1.

Then, as in the proof of [19, Lemma 4.2.2] we have for k ≥ 0 and j ≥ 1

E(xj+k|Fj) � ` · 4j1/4

16−k a.s. (2.3)

11



where the constant implied by � is absolute.

As in [19], we define blocks H1, I1, H2, I2, . . . of consecutive integers inductively: both
Hj and Ij consist of 2[j1/2] consecutive integers and there are no gaps between the blocks.
Thus H1 = {1, 2}, I1 = {3, 4}, . . ., H4 = {13, 14, 15, 16}, I4 = {17, 18, 19, 20}, . . . Let hj

be the largest member of Hj. For N ≥ 1 let M = MN be defined by

hM−1 < N ≤ hM , (2.4)

then
hM − hM−1 = 4

[
M1/2

]
� N1/3. (2.5)

As in [19, (4.2.5)] we discretize the xν , ν ∈ Hj by setting

ξν := E(xν |Fhj
) ν ∈ Hj. (2.6)

We introduce the blocks sums

wj =
∑
ν∈Hj

xν , yj =
∑
ν∈Hj

ξν = E(wj|Fhj
). (2.7)

Then as in [19, Lemma 4.2.3]

||xk − ξk||2 � 2−k1/4

.

The proof of [19, Lemma 4.2.4] with (8β)-th instead of sixth moments yields �

Lemma 2 As N →∞

P

(∑
j≤M

|yj − wj| ≥ R`1/32N1/2

)
� R−8βN−2β.

Relation [19, (4.2.8)] continues to hold with 2j1/8
on the right side and thus the proof

of [19, Lemma 4.2.5] yields

E(w2
j |Fhj−1

) � `j1/2 a.s. (2.8)

where the constant implied by � is absolute. Also Lemmas 4.2.6, 4.2.7 and 4.2.8 in [19]
remain valid as they stand, yielding

hM∑
n=N+1

xn � `1/8N1/2 (2.9)

and
yj = Yj + vj (2.10)

where (Yj,Lj) is a martingale difference sequence with Lj = σ(y1, . . . , yj), satisfying

vj = E(yj|Lj−1) � ` · 16−j1/4

a.s. (2.11)

and ∑
j≤M

E(Y 2
j |Lj−1) ≤ D`N a.s. (2.12)

where the constant D and the constants implied by � are absolute.
Finally we replace [19, Lemma 4.2.9] by the following lemma.

12



Lemma 3 As N →∞

P

(
max
k≤M

∣∣∣∣∣∑
j≤k

Yj

∣∣∣∣∣ > 8RD`1/32(N log logN)
1
2

)
� exp(−16R`−1/32 log logN).

For the proof we choose in the proof of [19, Lemma 4.2.9] the parameters c, λ and K
as follows:

c = 2M
1
2 , λ = 2`−1/16(log logM)

1
2M−3/4 , K = 4RD`3/8M3/2.

�
Treating the block sums

zj :=
∑
ν∈Ij

ξν

in the same way, and taking (2.9), (2.11) and Lemma 2 into account we finally obtain the
estimate as claimed in Proposition 1.

Proposition 2 Let (pk) ∈ A and let N ≥ 1, R ≥ 1. Let φ(N) denote the largest k such
that pk ≤ N and assume that φ(N) ≥ N1/2. Finally, suppose that t− s ≥ N−3/4. Then

P

(
max
Q≤N

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR(t− s)1/32(φ(N) log logN)1/2

)
� exp(−14R(t− s)−1/32 log logN) +R−8βφ(N)−2β

where both A ≥ 1 and the constant implied by � depend only on q and β.

Proof. Since there are φ(N) terms with pk ≤ N , Proposition 1 implies

P

(
max
Q≤N

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR(t− s)1/32(φ(N) log log φ(N))1/2

)
� exp(−16R(t− s)−1/32 log log φ(N)) +R−8βφ(N)−2β.

Here we used the fact that
t− s ≥ N−3/4 ≥ φ(N)−3/2

by the assumptions of Proposition 2. Next observe that byN1/2 ≤ φ(N) ≤ N , log log φ(N)
differs from log logN by not more than 1 and thus their ratio is between 14/16 and 1 for
N ≥ N0. Hence the probability in question does not exceed

exp(−14R(t− s)−1/32 log logN) +R−8βφ(N)−2β.

�
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Proposition 3 Let N ≥ 1, R ≥ 1 and suppose that t− s ≥ N−3/4. Then

P

(
max
Q≤N

max
(pk)∈AN

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR(t− s)1/32(N log logN)1/2

)
� exp(−12R(t− s)−1/32 log logN) +R−8βN−2β

where both A ≥ 1 and the constant implied by � depend only on q and β.

Proof. We partition AN into

AN =
⋃
r≥0

AN(r). (2.13)

As we noted at the beginning of this section, it suffices to consider those r’s such that
2r ≤

√
N and thus using the entropy condition (1.19) and applying Proposition 2 with R

replaced by R2r/2 and φ(N) = N2−r we get

P

(
max
Q≤N

max
(pk)∈AN (r)

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR2r/2(t− s)1/32(N2−r log logN)1/2

)
� 2βr

(
exp(−14R2r/2(t− s)−1/32 log logN) + (R2r/2)−8β(N2−r)−2β

)
. (2.14)

Summing (2.14) over all considered r in (2.13) we obtain the result.

We now can finish the proof of Theorem 2 using the familiar chaining argument. For
N ≥ 10 let m and M be defined by

m = m(N) =
[
(log logN)1/2

]
,M = M(N) =

[
logN

2 log 2

]
+ 4. (2.15)

�
We write s and t in binary form and obtain

s = a2−m +
M∑

i=m+1

σi2
−i + θ12

−M

and

t = b2−m +
M∑

i=m+1

τi2
−i + θ22

−M

where σi = 0, 1 and τi = 0, 1 and a and b are integers with 0 ≤ a, b ≤ 2m and 0 ≤ θ1, θ2 ≤ 1.
Given a sequence p = (pk) of positive integers, we also write

Z(s, t) := Z(p)(Q; s, t) :=

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ .
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We observe that for s < r < t

Z(s, t) ≤ Z(s, r) + Z(r, t), (2.16)

Z(r, t) ≤ Z(s, t) + Z(s, r). (2.17)

Thus

Z(s, t) ≤ Z(a2−m, b2−m) +
M∑

i=m+1

Z(ai2
−i, (ai + 1)2−i)

+
M∑

i=m+1

Z(bi2
−i, (bi + 1)2−i) + Z(aM+12

−M , (aM+1 + 1)2−M)

+ Z(bM+12
−M , (bM+1 + 1)2−M) + 2Q2−M . (2.18)

where ai, bi (m < i ≤M + 1) are integers with 0 ≤ ai, bi < 2i. The last term is explained
by the fact that for 0 ≤ h < 2M and 0 ≤ θ ≤ 1

Z(h2−M , (h+ θ)2−M) ≤ Z(h2−M , (h+ 1)2−M) + 2−M

by an application of (2.16), (2.17). We define the following events:

EN(a, b) =

{
max
Q≤N

(pk)∈AN

Z(p)(Q; a2−m, b2−m) ≥ A((b− a)2−m)1/32(N log logN)1/2

)
(2.19)

EN =
⋃

0≤a,b≤2m

EN(a, b)

FN(i, a) =

{
max
Q≤N

(pk)∈AN

Z(p)(Q; a2−i, (a+ 1)2−i) ≥ A2−i/32(N log logN)1/2

)
(2.20)

and
FN =

⋃
m<i≤M

⋃
0≤a<2i

FN(i, a).

Here A is the constant from Proposition 3. Using Proposition 3 with R = 1 we obtain

P (EN(a, b)) � exp(−12 log logN)

and so

P (EN) � 22m exp(−12 log logN) � exp(−10 log logN) = (logN)−10.

Similarly, with R = 1 and t− s = 2−i

P (FN(i, a)) � exp(−12 · 2i/32 log logN) +N−2β

15



and so

P (FN) �
∑

m<i≤M

2i exp(−12 · 2i/32 log logN) + 2MN−2β

� exp(−10 log logN) = (logN)−10.

(Note that in the applications of Proposition 3 above the condition t − s ≥ N−3/4 is
satisfied.) Consequently,

∞∑
p=1

P (E2p ∪ F2p) <∞.

Hence the Borel-Cantelli lemma implies that with probability 1 only finitely many of the
events E2p of F2p occur. Let N be sufficiently large and let p be such that 2p−1 < N ≤ 2p.
Then by (2.18) we have with probability 1 for all 0 ≤ s < t ≤ 1, N ≥ N0(ε)

max
Q≤N

max
(pk)∈A

Z(p)(Q; s, t) ≤ A
(
(b− a)2−m(2p)

)1/32
(2p log log 2p)1/2

+ 4A
∑

m(2p)<i≤M(2p)

2−i/32 (2p log log 2p)1/2 + 2p+12−M(2p)

≤ 4A[(t− s)1/32 + ε](N log logN)1/2 + 4N1/2

≤ 8A[(t− s)1/32 + ε](N log logN)1/2.

This proves (1.20) and thus Theorem 2.

3 Proof of Theorem 3

We prove the theorem first in the lacunary case, i.e. for the sequence ηk = {nkω}. Fix
1/2 < α < 1 and 0 ≤ s < t ≤ 1. By the hypotheses of the theorem, we can choose β > 0
such that

κ(A; δ,N) � δ−β/2 (3.1)

where the constant implied by � depends only on A. For simplicity we set

κ(δ) := κ(A; δα, [1/δ]). (3.2)

By Proposition 1 we have for any sequence (pk) of positive integers and any R ≥ 1,
0 < ε ≤ 1/32 and t− s ≥ 2−3r/2 as r →∞

P

(
max
Q≤2r

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR2
1
2
r(t− s)ε(log κ(2−r) + (log r)

1
2 )

)

�

{
exp(−16R(t− s)−ε log κ(2−r) log

1
2 r) +R−8β2−2rβ if log κ(2−r) > log

1
2 r

exp(−16R(t− s)−ε log r) +R−8β2−2rβ if log κ(2−r) ≤ log
1
2 r

(3.3)
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for some constant A ≥ 1. (In the case of the first line of (3.3) we apply Proposition 1
with R replaced by R log κ(2−r)(log r)−1/2.) Let

δ := AR(t− s)ε2−r/2 (3.4)

and B = {(p(1)
k ), . . . , (p

(M)
k )} a maximal set of sequences in A with pairwise distance > δ

with respect to the normalized Hamming distance d(·, ·, 2r). Then

M = κ(A, δ, 2r) ≤ κ(A; 2−αr, 2r) = κ(2−r)

since
δ ≥ (t− s)ε2−r/2 ≥ 2−r(3ε/2+1/2) ≥ 2−αr

provided we choose ε > 0 so small that 3ε/2 + 1/2 < α. Clearly, for any (qk) ∈ A there
is a (pk) ∈ B with d((pk), (qk), 2

r) ≤ δ, which implies that for any Q ≤ 2r the sums∑
pk≤Q xpk

(s, t) and
∑

qk≤Q xqk
(s, t) differ at most by δ2r = AR(t − s)ε2r/2. Hence using

(3.3) we get

P

(
max
(qk)∈A

max
Q≤2r

∣∣∣∣∣∑
qk≤Q

xqk
(s, t)

∣∣∣∣∣ ≥ 2AR2
1
2
r(t− s)ε(log κ(2−r) + log

1
2 r)

)
� exp

(
−8R(t− s)−ε(log κ(2−r) + log

1
2 r) log

1
2 r + log κ(2−r)

)
+R−8βκ(2−r)2−2rβ

� exp(−4R(t− s)−ε log r) +R−8β2−3rβ/2 (3.5)

by distinguishing the cases log κ(2−r) > log
1
2 r and log κ(2−r) ≤ log

1
2 r and by using (3.1)

in the last step.
Relation (3.5) is analogous to Proposition 3 and the proof of Theorem 3 in the lacunary

case can now be completed by the same chaining argument that was used the proof of
Theorem 2. The proof for i.i.d. uniform random variables ηk is the same, except that
instead of Proposition 1 we use the analogous exponential bound given by Lemma 4
below.

4 Proof of Theorems 1 and 6

The proof of Theorem 1 follows the pattern of the proof of Theorem 2. Let (ηn) be an
i.i.d. sequence with the uniform distribution (1.11) and define xn(s, t) by (2.1). We replace
Proposition 1 by the following lemma which is an immediate consequence of Bernstein’s
inequality and Skorokhod’s maximal inequality.

Lemma 4 Let N ≥ 1, R ≥ 1, 0 < α < 1/2. There exist γ = γ(α) > 1, ρ = ρ(α) > 0
such that for ` = t− s ≥ N−γ we have

P

(
max
Q≤N

∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ 6R`α(N log logN)1/2

)
� exp(−2R`−(1−2α) log logN) + exp(−RNρ)

where the constant implied by � depends on α.
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Proof. Clearly, the xk(s, t) are independent random variables with mean 0 and variance
`(1 − `) ≤ `. Hence Bernstein’s inequality (see e.g. Petrov [18], pp. 57-58) implies that
the probability

P

(∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ x

)
can be bounded by 2 exp(−x2/4Q`) if 0 ≤ x ≤ Q`(1 − `) and by 2 exp(−x/4) if x >
Q`(1− `). Thus for any x ≥ 0 we have

P

(∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ x

)
≤ 2 exp(−x2/4Q`) + 2 exp(−x/4).

Choose γ so that 1 < γ < 1/(2α). Then for any 1 ≤ Q ≤ N , ` ≥ N−γ we have

P

(∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ 3R`α(N log logN)1/2

)
≤ 2 exp(−9R2`2αN log logN/4Q`) + 2 exp(−3R`α(N log logN)1/2/4)

≤ 2 exp(−2R`−(1−2α) log logN) + 2 exp(−RN1/2−γα).

Using Skorokhod’s inequality (see e.g. Breiman [3], p. 45) completes the proof.

Lemma 5 Let (pk) ∈ A and let N ≥ 1, R ≥ 1, 0 < α < 1/2. Let φ(N) denote the largest
k such that pk ≤ N and assume that φ(N) ≥ N1/2. Finally, suppose that ` = t − s ≥
N−γ/2, where γ = γ(α) > 1 is the constant in Lemma 4. Then

P

(
max
Q≤N

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ 6R`α(φ(N) log logN)1/2

)
� exp(−R · `−(1−2α) log logN) + exp(−RNρ/2)

where ρ = ρ(α) > 0 is the constant in Lemma 4.

The proof is an easy modification of the proof of Proposition 2.

Lemma 6 Let N ≥ 1, R ≥ 1, 0 < α < 1/2 and suppose that ` = t − s ≥ N−γ/2, where
γ = γ(α) > 1 is the constant in Lemma 4. Let B denote the constant in (1.12). Then we
have

P

(
max
Q≤N

max
(pk)∈AN

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ 12BR`α(N log logN)1/2

)
� exp(−R · `−(1−2α) log logN) + exp(−RNρ/2)

where ρ = ρ(α) > 0 is the constant in Lemma 4.
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Proof. We follow the proof of Proposition 3. We partition AN as in (2.13), and,
similarly as in the proof of Proposition 3, it suffices to consider those r’s for which N2−r ≥√
N . Applying Lemma 5 with R replaced by 2BR2r/2 and φ(N) = N2−r and using (1.12)

it follows that the probability in the statement of Lemma 6 does not exceed

∑
r≥0, 2r≤

√
N

P

(
max
Q≤N

max
(pk)∈AN (r)

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ 12BR2r/2 · `α(N2−r log logN)1/2

)
�
∑
r≥0

exp(−2BR2r/2`−(1−2α) log logN +B2r/2 · log logN)

+
∑
r≥0

exp(−2BR2r/2Nρ/2 +B2r/2 · log logN)

� exp(−R`−(1−2α) log logN) + exp(−RNρ/2).

�
The remainder of the proof of Theorem 1 can now be completed as in Section 2.

The proof of Theorem 6 also follows the pattern of the proof of Theorem 2. We will
need the following exponential bound.

Proposition 4 Assume the conditions of Theorem 6 and let xn(s, t) be defined by (2.1).
Let N ≥ 1 and R ≥ 1 and suppose that ` := t− s ≥ N−2. Then for some constant A ≥ 1
depending only on p and q we have as N →∞

P

(
max
Q≤N

∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ AR`1/120(N log logN)1/2

)
� exp(−6R`−1/120 log logN) +R−p/4N−p/10 +R−3N2−q/5.

Proposition 4 is similar to [19, Proposition 3.3.1], but the term R−2N−1.03 there is
replaced by a term depending on p, q, which improves if p and q are increasing. The
proof follows the proof of [19, Proposition 3.3.1] with minor changes. Since the changes
are routine, we will leave the details to the reader.

Proposition 5 Let N ≥ 1 and suppose that ` ≥ N−1. Then as N → ∞ we have for
some δ = δ(p, q) > 1/2

P

(
max
Q≤N

max
(pk)∈AN

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR`1/120(N log logN)1/2

)
� exp(−4R`−1/120 log logN) +R−2N−δ.
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Proof. We fix first (pk) ∈ A and let φ(N) denote the largest k with pk ≤ N . Since
the sequence (xpk

) is mixing with an even better mixing rate, under the assumptions
φ(N) ≥

√
N , ` = t− s ≥ N−1 Proposition 4 implies

P

(
max
Q≤N

∣∣∣∣∣∑
pk≤Q

xpk
(s, t)

∣∣∣∣∣ ≥ AR`1/120(φ(N) log logN)1/2

)
� exp(−5R`−1/120 log logN) +R−p/4φ(N)−p/10 +R−3φ(N)2−q/5. (4.1)

We now partition AN as in (2.13) and apply (4.1) with R replaced by R2r/2 and φ(N) =
N2−r. As in our earlier proofs, it suffices to consider the case N2−r ≥

√
N . Letting β

denote the constant in the entropy condition (1.29), an upper bound for the probability
in Proposition 5 is obtained by multiplying the bound in (4.1) by 2rβ and sum over the
indicated r’s. The sum over the first terms is

�
∑

r

2rβ exp(−5R · 2r/2`−1/120 log logN) � exp(−4R`−1/120 log logN).

The sum over the second terms is

� (R2r/2)−p/4
∑

2r≤
√

N

(N2−r)−p/10 · 2rβ ≤ R−p/4N−p/10
∑

2r≤
√

N

2rβ � R−p/4N−p/10+β/2

� R−p/4N−δ

for some δ > 1/2. We used here the fact that β < p/5 − 1 by (1.30). Finally, the sum
over the third terms is

� R−3
∑

2r≤
√

N

(N2−r)2−q/52rβ = R−3N2−q/5
∑

2r≤
√

N

2r(β+q/5−2)

� R−3N2−q/5
√
N

β+q/5−2
= R−3N1−q/10+β/2 � R−3N−δ

for some δ > 1/2, using the fact that β < q/5− 3 by (1.30). This completes the proof of
Proposition 4. �

The proof of Theorem 6 can now be completed by using the chaining argument in
Theorem 2.

5 Proof of Theorems 4 and 5

Assume the conditions of Theorem 4. Fix N ≥ 1, r ≥ 1 and let (pk) be a fixed sequence
in [1, N ] such that (pk) ∈ AN(r). By the Erdős-Turán inequality (see e.g. [5], p. 15 or
[11], p. 114) we have for any 1 ≤ Q ≤ N

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

(ω) ≤ t)− t
)∣∣∣∣∣ ≤ 6R

H
+ 6

∑
1≤h≤H

1

h

∣∣∣∣∣∑
pk≤Q

e(hnpk
ω)

∣∣∣∣∣ .
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Here R = #{k : pk ≤ Q}, e(x) = exp(2πix) and H ≥ 1 is arbitrary. Clearly R ≤ N and
thus

max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

(ω) ≤ t)− t
)∣∣∣∣∣

2

≤ 72N2

H2
+ 72

( ∑
1≤h≤H

1

h
max
Q≤N

∣∣∣∣∣∑
pk≤Q

e(hnpk
ω)

∣∣∣∣∣
)2

.

By Hunt’s inequality (see e.g. [17]) we have

E

max
Q≤N

∣∣∣∣∣∑
pk≤Q

e(hnpk
ω)

∣∣∣∣∣
2
 ≤ C

∑
pk≤N

1 ≤ CN2−(r−1)

and thus choosing H = N and using Minkowski’s inequality we get

E

max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣

2
� N2−r log2N + 1 � N2−r log2N. (5.1)

(To justify the last step, we note that without loss of generality we can assume that
N2−(r−1) ≥ 1, since otherwise AN(r) is empty.) Since the number of sequences (pk) ∈
AN(r) is at most B · 2rβ by the assumptions of Theorem 4, we have for any α > 0, τ > 0
(to be chosen suitably later),

P

(
max

(pk)∈AN (r)
max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣ ≥ 2Nα(logN)τ

)
(5.2)

� N1−2α(logN)2−2τ · 2r(β−1).

Without loss of generality we can assume that N2−(r−1) ≥ Nα(logN)τ , i.e.

2r ≤ 2N1−α(logN)−τ (5.3)

since otherwise the absolute value of the sum in (5.2) would be less than Nα(logN)τ .
Summing the probability bounds in (5.2) over all r subject to (5.3) and choosing α and
τ according to the following table

β α τ
> 1 β/(1 + β) (3 + ε)/(1 + β)

= 1 1
2

2 + ε

< 1 1
2

3
2

+ ε

we obtain letting N = 2m+1, m = 1, 2, . . .

P

(
max

2m<Q≤2m+1
max

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣ ≥ C∗2mαmτ

)
� (log 2m)−(1+ε′) � m−(1+ε′)
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for some C∗ > 0, ε′ > 0. We apply the convergence part of the Borel-Cantelli lemma and
obtain the conclusion of Theorem 4.

Turning to the proof of Theorem 5, let (pk) ∈ A. From (5.1) it follows that

E

max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣

2
� N log2N. (5.4)

Let
δ := N− 1

v+2 (logN)
3+ε
v+2

and let B = {(p(1)
k ), . . . , (p

(M)
k )} be a maximal set of sequences in A with pairwise distance

> δ with respect to the normalized Hamming distance d(·, ·, N). By the assumptions of
Theorem 5 we have

M = κ(A, δ, N) ≤ Cδ−v = CN
v

v+2 (logN)−v 3+ε
v+2 .

Clearly, for any (qk) ∈ A there is a (pk) ∈ B with d((pk), (qk), N) ≤ δ, which implies that
for any Q ≤ N the sums

∑
pk≤Q xpk

(s, t) and
∑

qk≤Q xqk
(s, t) differ at most by

δN = N
v+1
v+2 (logN)

3+ε
v+2 .

Hence using (5.4) we get

P

(
max
Q≤N

max
(pk)∈A

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣ ≥ 2N

v+1
v+2 (logN)

3+ε
v+2

)

≤ P

(
max
Q≤N

max
(pk)∈B

sup
0≤t≤1

∣∣∣∣∣∑
pk≤Q

(
1(ηpk

≤ t)− t
)∣∣∣∣∣ ≥ N

v+1
v+2 (logN)

3+ε
v+2

)
≤M ·N log2N ·N−2 v+1

v+2 (logN)−2 3+ε
v+2 = (logN)−(1+ε).

We let N = 2m,m = 1, 2, . . . , apply the Borel-Cantelli lemma and obtain the conclusion
of Theorem 5.

Note added in proof. With great sadness, we inform the reader that Walter Philipp
passed away on July 19, 2006, at the age of 69, near Graz, Austria. — I. Berkes and R.F.
Tichy.
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