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Discrete Surfaces for Architectural Design

Helmut Pottmann, Sigrid Brell-Cokcan,

and Johannes Wallner

Abstract. Geometric problems originating in architecture can lead
to interesting research and results in geometry processing, computer
aided geometric design, and discrete differential geometry. In this ar-
ticle we survey this development and consider an important problem
of this kind: Discrete surfaces (meshes) which admit a multi-layered
geometric support structure. It turns out that such meshes can be el-
egantly studied via the concept of parallel mesh. Discrete versions of
the network of principal curvature lines turn out to be parallel to ap-
proximately spherical meshes. Both circular meshes and the conical
meshes considered only recently are instances of this meta-theorem.
We dicuss properties and interrelations of circular and conical meshes,
and also their connections to meshes in static equilibrium and dis-
crete minimal surfaces. We conclude with a list of research problems
in geometry which are related to architectural design.

§1. Introduction

Computer-Aided Geometric Design has been initiated by practical needs
in the aeronautic and car manufacturing industries. Questions such as the
digital storage of a surface design or the communication of freeform geom-
etry to CNC machines served as motivation for the development of a solid
theoretical basis and a huge number of specific methods and algorithms
for freeform curve and surface design [18].

Another, related stream of research on surfaces in geometric model-
ing has been motivated by the animation and game industry. This area,
nowadays often called ‘Geometry Processing’, focuses on discrete represen-
tations such as triangle meshes. By the nature of its main applications, it
is driven by efficiency and visual appearance in animation and rendered
scenes. Yet another topic is the construction of surfaces from 3D volu-
metric medical data like CT or MRI scans. The methods used there are
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a blend of ideas from classical CAGD, Geometry Processing and Image
Processing.

Certainly CAGD and Geometry Processing have common problems,
such as the reconstruction of surfaces from 3D measurement data. But
even there the expectations on the final surface, and also the data rep-
resentation and algorithms may be quite different. This is only natural,
given the different areas of applications.

New applications pose new problems and may stimulate interesting
and rewarding mathematical research. It is the purpose of this paper to
demonstrate this by means of architectural design. Architects use the best
available CAD tools, but these systems do not optimally support their
work. Just as an example, Frank O’Gehry employs developable surfaces,
but CAD systems do not support this class of surfaces well. The reasons
for using nearly developable surfaces are rooted in manufacturing and
fabrication. In view of the large scale on which surfaces in architecture
have to be built, it is obvious that the choice of the fabrication technique
has an influence on the surface representation and on the design principle.

In the present survey we focus on architectural design with discrete
surface representations. The basic surface representation is a mesh, but
the fabrication poses constraints on the meshes to be used: These include
planarity of faces, vertices of low valence, constraints on the arrangements
of supporting beams and static properties, to name just a few. We will
thus see that triangle meshes are hard to deal with, whereas quadrilateral
or hexagonal meshes can fulfill these requirements more easily.

It turns out that important constraints have an elegant geometric ex-
pression in terms of discrete differential geometry [7, 14]. This field is
currently emerging at the boundary of differential and discrete geometry
and aims at discrete counterparts of geometric notions and methods which
occur in the classical smooth theory. The latter then appears as a limit
case, as discretization gets finer. In fact, some of the practical require-
ments in architecture already led to the development of new results in
discrete differential geometry [22].

In this article we aim to demonstrate that discrete surfaces for ar-
chitecture is a promising direction of research, situated at the meeting
point of discrete and computational differential geometry, geometry pro-
cessing, and architectural design. For our own work in that direction, see
[9, 22, 28, 36]. For further geometric problems arising in architecture, we
refer to our forthcoming book [30].

This paper is organized as follows: After a historical account on sur-
faces in architecture in Section 2, Section 3 formulates basic architec-
tural requirements on discrete surfaces. We show why triangle meshes are
harder to realize in an architectural design than quadrilateral or hexag-
onal meshes with planar faces. We also discuss the important fact that
quadrilateral meshes with planar faces (called PQ meshes henceforth) are
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Fig. 1. Left: A PQ mesh in the Berlin zoo, by Schlaich Bergermann and
Partners (Photo: Anna Bobenko). Right: Triangle mesh at the Milan trade
fair, by M. Fuksas.

a discrete counterpart of so-called conjugate curve networks, and we pro-
vide an algorithm for computing PQ meshes. Section 4 discusses two types
of PQ meshes, which discretize the network of principal curvature lines.
These are the circular and conical meshes, which have an elegant theo-
retical basis in Möbius and Laguerre geometry, respectively. Section 5
deals with aspects of statics and functionality, and reports on some recent
progress on PQ meshes in static equilibrium and on discrete minimal sur-
faces; these two topics turn out be very closely related. Finally, Section 6
points to a number of open problems and indicates our plans for future
research.

§2. History of Multi-layered Freeform Surfaces in Architecture

Complex geometries and freeform surfaces appear very early in architec-
ture – they date back to the first known dome-like shelters made from
wood and willow about 400,000 years ago. Double curved surfaces have
existed in domes and sculptural ornaments of buildings through the ages.

It was only in the 19th century that architects were granted a sig-
nificant amount of freedom in their expression of forms and styles with
industrialization and improved building materials such as iron, steel, and
reinforced concrete (cf. François Coignet, ‘Béton aggloméré’, 1855). A sim-
ilar milestone were the early 20th century fabrication methods for glass
panels (Irving Colburn 1905, Emile Fourcault 1913, Max Bicheroux 1919).

Antoni Gaudi (1852–1926) achieved a deep understanding of statics
and shape of freeform surfaces by using form-finding techniques and phys-
ical models. His Sagrada Familia (1882–today) is the most prominent
example.
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Fig. 2. Kunsthaus Graz. Left: the fluid body of the outer skin. Right: An
interior view during construction, showing the triangulated and flat physical
layers of the inner skin. Photo: Archive S. Brell-Cokcan.

Reinforced concrete seemed to be a good solution for sculptural forms
and wide spans, with a peak of use in the 1960s, but its limitations were
soon realized: weight, cost, and labour. Early attempts to reduce weight
include segmentation of the desired surface into structural members and
cladding elements. In 1914, the German architect Bruno Taut (1880-1938),
used reinforced concrete girders as structural elements for his Glass Pavil-
ion, with Luxfer glass bricks as glazing elements. Glass, as the epitome of
‘fluidity and sparkle’, and the ‘highest symbol of purity and death’, is the
perfect material for Bruno Taut. Another successful solution by prefab-
rication are the spherical shells which form the roof of the Sydney opera
house (1957–1973, by Jorn Utzen).

The evolution from iron to steel offered new dimensions and possibil-
ities of prefabrication, as well as novel assembling logistics and material
compositions for complex geometrical lightweight structures. Pioneers are
Buckminster Fuller, famous for his geodesic domes, V.G. Suchov or Frei
Otto, known for their suspended structures, and Schober and Schlaich,
with their cable nets and grid shells (see [19, 33, 34, 35], and also Fig. 1). In
general, geometric knowledge in combination with new methods of struc-
tural computation opens up new approaches to manufacturing and fabri-
cation of freeform surfaces (cf. the Gaussian Vaults by Eladio Dieste, the
Sage Gateshead (1997–2004) by Foster and Partners, or the developable
surfaces of F. O’Gehry). Triangular meshes have been used whenever
freeform surfaces cannot be easily planarized in another way. A recent
example is the Milan trade fair roof by M. Fuksas (Fig. 1).

Optimization of geometry or structure is not the only reason for the
search for a good segmentation of freeform surfaces (in CAD terms, this
means a good way of meshing). Equally important are multifunctional
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Fig. 3. A multi-layer construction (right) based on offset meshes m, m′, m′′

with planar quadrilateral faces (left).

requirements originating in building physics, and consequently the need
for a multi-layered composition of the buildings’ skin. Important questions
here regard aesthetics as well as economic and structural viewpoints. Such
a question could be: Is the mesh and the implied segmentation motivating
the form in architectural terms? Is the mesh arbitrary, or supporting the
form’s dynamics, or is it perhaps doing the opposite?

A good example to mention here is the Kunsthaus Graz (2000-2003,
by P. Cook and C. Fournier) where the thickness of the buildings’ skin
ranges from 40cm up to 1m. Kunsthaus Graz explicitly shows the differ-
ent methods of meshing the ‘inner’ and ‘outer’ skin. While the ‘outer’ skin
supports the fluid acrylic glass body with a rectangular mesh, the inner
skin is a triangle mesh (see Fig. 2, right). The reason for this are economic
considerations, which enforce flat surfaces for the buildings’ physical lay-
ers.

For a good overview on contemporary architecture, containing a large
number of geometrically remarkable designs, we refer to the book series
“Architecture Now” [20].

§3. Discrete Surfaces for Architectural Design

3.1. Basic concepts

Multi-layered metal sheets and glass panel constructions used for covering
roofing structures are expensive, complicated, or even impossible to bend.
Therefore it is desirable to cover free-form geometry by planar panel ele-
ments, and use polyhedral surfaces, i.e., meshes with planar faces as our
basic surface representation. Unless noted otherwise, in the following we
always assume planarity of faces.

Parallel meshes and offsets. Many constructions in architecture are
layer composition constructions where each layer has to be covered by
planar panel elements (see e.g. Fig. 3, right). Geometry requirements are
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Fig. 4. In a pair of parallel meshes m,m′ with planar faces, corresponding edges

and face planes are parallel. To construct a parallel mesh m′ of a quadrilateral

mesh m with planar faces, one may prescribe the images P ′, Q′ to two polygons

P, Q (bold); the remaining part of m′ follows by parallelity.

present for all layers in the same way, and so meshes which possess exact
offset meshes is an important topic of research.

Offset meshes are special parallel meshes. This concept is illustrated
by Fig. 4: A mesh m′ is parallel to the mesh m, if (i) both m, m′ have
the same combinatorics; (ii) corresponding edges of m and m′ are parallel;
and (iii) m, m′ do not differ simply by a translation. It is a consequence
of property (ii) that corresponding faces of m and m′ are contained in
planes which are parallel to each other.

Supporting beams. Planar panels have to be held together by a support
structure, which is a composition of support beams arranged along the
edges of the underlying mesh (see Fig. 5). A beam may be seen as a
prismatic body, generated by a linear extrusion of a planar symmetric
profile in a direction orthogonal to the profile plane (i.e., by extrusion along
the longitudinal axis of the beam). The symmetry axis of the generator
profile extrudes to a symmetry plane of the beam (the central plane, see
Fig. 5). For most of our considerations, we will neglect the width of the
beam, which is measured orthogonal to its central plane. We are mainly
dealing with the slice of the beam lying in the central plane. This central
plane shall always pass through an edge of the base mesh m. We do not
consider the case of torsion along the length of the beam, i.e., all our
beams actually have a central plane.

Optimized nodes and geometric support structure. The higher
the valence of a vertex, the more complicated it usually is to join the
supporting beams there. Already the very simple case of a beam of width
zero shows these complications: An optimized node v is a mesh vertex
where the central planes of all emanating beams pass through a fixed
line, the axis of the node. The geometric support structure is formed by
quadrilaterals lying in the central planes. It is assumed henceforth that
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m
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Fig. 5. Left: A supporting beam is symmetric with respect to its central plane.
At an optimized node, the central planes of supporting beams pass through one
straight line, which is called the node axis. If the node is not optimized, we
speak of ‘geometric torsion in the node’. Right: A base mesh m and its offset

mesh m′ are the basis for construction of a geometric support structure with
optimized nodes. The quadrilaterals shown here are trapezoids and lie in the
central planes of the supporting beams. The offset pair of meshes shown in this
figure has the particular property that corresponding vertices lie at constant
distance. Further, corresponding faces are parallel at constant distance; see
Section 4.3.

all nodes are optimized and hence three sides of the quadrilaterals in a
geometric support structure are given by an edge e of m and the two
node axes at its ends. In most cases, the fourth edge e′ is parallel to e,
namely a corresponding edge of an offset mesh m′ of m. Then, each of the
quadrilaterals in the central planes is a trapezoid (see Fig. 5). Further,
all node axes may be seen as discrete surface normals. We will see in
the next subsection that especially for triangle meshes, optimization of all
nodes may be impossible.

3.2. Triangle meshes

A substantial amount of research in geometry processing deals with
triangle meshes and studies them from various perspectives. For instance,
refinement is possible with subdivision algorithms, and smoothing is well
understood. Although there are examples of the actual use of triangle
meshes in architecture, they cause problems exactly in connection with
the concepts discussed above, namely parallel meshes, offsets, and support
structures. Let us discuss this in more detail.

Proposition 1. A geometric support structure of a connected triangle
mesh with optimized nodes can only be trivial: Either all axes of the
nodes are parallel, or they pass through a single point.

Proof: Consider a triangular face F of the mesh. Through each edge ei of
F we have a central plane Ci of a supporting beam (i = 1, 2, 3). Because
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nodes are optimized, the intersection lines C1∩C2, . . . of these three planes
are the node axes. It follows that the three node axes at the three vertices
of F pass through the point O = C1∩C2∩C3, which possibly is at infinity.
Any neighbour triangle has two node axes in common with F , so also all
neighbour axes pass through O . By connectedness it follows that either
all node axes of the mesh pass through a finite point O, or through an
infinite point O, i.e., are parallel.

For triangle meshes, also the concept of parallel meshes becomes trivial:
Two triangles with parallel edges are connected by a similarity transfor-
mation. Hence, a parallel mesh m′ of a triangle mesh m is just a scaled
version of m. Further, it is easy to see that any offset mesh m′ of m arises
from m by uniform scaling from some center. It follows that only for
near-spherical triangle meshes, an offset can be at approximately constant
distance, and node axes can be approximately orthogonal to the mesh.
For general freeform triangle meshes, there is no chance to construct a
practically useful support structure with optimized nodes.

3.3. Beyond triangle meshes

The higher the number of edges in a planar face, the more flexibility we
have when constructing parallel meshes. This in turn implies more flexi-
bility in the construction of support structures, as shown by the following
result, which relates support structures and parallel meshes (see [9]).

Proposition 2. Any geometric support structure of a simply connected
mesh m with planar faces and non-parallel node axes can be constructed
as follows: Consider a parallel mesh m0 of m and a point O and let the
node axis Ni at the vertex mi be parallel to the line N0

i = Om0
i .

Proof: Given the axes Ni, we consider axes N0
i parallel to Ni, but passing

through a fixed point O. Generally, if Ni, Nj lie in the same central plane
Cij , the corresponding lines N 0

i , N0
j span a plane C0

ij parallel to Cij . We

may now construct a parallel mesh m0 of m. On one of the new lines,
say N0

k , we choose a vertex m0
k. We take a face adjacent to mk and

construct the corresponding face adjacent to m0
k by the requirement that

face planes are parallel, and for any vertex mi, the corresponding vertex
m0

i lies in N0
i . Thus the new face is constructed by intersecting lines with

a plane, and the edges of the new face (lying in the planes C0
ij), are, by

construction, parallel to the edges of the original face. In this way step by
step, in rings around the vertex m0

k, m0 is produced.

3.4. Quadrilateral meshes with planar faces

Gehry Partners and Schlaich Bergermann and Partners [19, 35] give a
number of reasons why planar quadrilateral elements are preferable over
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Fig. 6. (a) PQ strip as a discrete model of a developable surface. (b) Discrete
developable surface tangent to PQ mesh along a row of faces.

triangular panels (cf. Fig. 1). The planarity constraint on the faces of
a quad mesh however is not so easy to fulfill, and in fact there is only
little computational work on this topic. So far, architecture has been
mainly concentrating on shapes of simple genesis, where planarity of faces
is automatically achieved [19, 35]. For example, translational meshes,
generated by the translation of a polygon along another polygon, have
this property: In such a mesh, all faces are parallelograms and therefore
planar.

Prior work in discrete differential geometry. The geometry of
quadrilateral meshes with planar faces (PQ meshes) has been studied
within the framework of difference geometry, which is a precursor of dis-
crete differential geometry [7, 14]. It has been observed that such meshes
are a discrete counterpart of conjugate curve networks on smooth surfaces.
Earlier contributions are found in the work of R. Sauer from 1930 onwards,
culminating in his monograph [32]. Recent contributions, especially on the
higher dimensional case, include the work of Doliwa, Santini and Mañas
[16, 17, 23]. In the mathematical literature, PQ meshes are sometimes
simply called quadrilateral meshes.

PQ strips as discrete developable surfaces. The simplest PQ mesh
is a PQ strip, a single row of planar quadrilateral faces. The two rows of
vertices are denoted by a0, . . . ,an and b0, . . . ,bn (see Fig. 6). It is obvious
and well known that such a mesh is a discrete model of a developable
surface [27, 32]. This surface is cylindrical, if all lines aibi are parallel. If
the lines aibi pass through a fixed point s, we obtain a model for a conical
surface with vertex s. Otherwise the PQ strip is a patch on the ‘tangent
surface’ of a polyline r1, . . . , rn, as illustrated by Fig. 6.

This model is the direct discretization of the well known fact that in
general developable surfaces are patches in the tangent surfaces of space
curves. The lines riri+1 serve as the rulings of the discrete tangent surface,
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(a) (b) (c)

Fig. 7. Different networks of conjugate curves. From left: epipolar curves,
principal curvature lines, and generator curves of a translational surface.

which carries the given PQ strip. The planar faces of the strip represent
tangent planes of the developable surface.

PQ meshes discretize conjugate curve networks. We now con-
sider a PQ mesh which is a regular grid, with vertices vi,j , i = 0, . . . , n,
j = 0, . . . ,m (In practice, meshes will have vertices of valence 6= 4, which
can be treated like singularities). The relation between such PQ meshes
and conjugate curve networks is established as follows: Recall that two
families of curves are conjugate, if and only if the tangents to family A
along each curve of family B constitute a developable surface [27]. Ob-
viously, a PQ mesh has the property that the edges transverse to one
sub-strip constitute a discrete developable surface (see Fig. 6). Thus,
grid-like PQ meshes discretize conjugate curve networks, with the grid
polylines corresponding to the curves of the network. This relation shows
both the degrees of freedom and the limiting factors in the construction
of PQ meshes (for more details see [22]). Therefore, conjugate networks
of curves may serve as a guide for the design of PQ meshes, provided the
curves involved intersect transversely. Examples are the principal curva-
ture lines (see Fig. 7b), the generating curves of a translational surface
(used in architectural design [19, 35], see Fig. 7c), epipolar curves (see [12]
and Fig. 7a), and the family of isophotes w.r.t. the z axis together with
the family of curves of steepest descent [25].

An algorithm for planarization. Liu et al. [22] proposed an algorithm
which solves the following problem: Given a quad mesh with vertices vij ,
minimally perturb the vertices into new positions such that the resulting
mesh is a PQ mesh. They minimize a functional which expresses fairness
and closeness to the original mesh subject to the planarity condition. In
order to express planarity of a quad Qij , one considers the four angles φ1

ij ,

. . . , φ4
ij enclosed by the edges of the quad, measured in the interval [0, π].

It is known that Qij is planar and convex if and only if

φ1
ij + · · · + φ4

ij = 2π. (1)
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For input meshes not too far away from conjugate curve networks this
algorithm works very well. However, there is no reason to expect good
results with arbitrary input meshes. Mesh directions close to asymptotic
(self-conjugate) directions of an underlying smooth surface cause heavy
distortions and are usually useless for applications.

Combining subdivision and planarization. A practically useful and
stable method for generating PQ meshes from coarse control meshes is
achieved by a combination of the planarization algorithm with a quad-
based subdivision algorithm like Doo-Sabin or Catmull-Clark [22]: One
subdivides a given mesh. Since this operation introduces non-planar faces,
one then applies planarization. These two steps are iterated to generate a
hierarchical sequence of PQ meshes (see Fig. 10). Applying this method
just to a PQ strip yields a powerful method for modeling with developable
surfaces [22], which is also interesting for architecture.

In Section 4 we turn to two remarkable classes of PQ meshes. Both
of them discretize the network of principal curvature lines. They possess
offsets and support structures. Their computation can also be based on
constrained optimization and subdivision, but one needs a stronger con-
straint than just planarity of faces.

3.5. Hexagonal meshes and other patterns

The less edges per vertex, the more flexibility we have in the construction
of parallel meshes and support structures. Furthermore, lower valence
makes fabrication of nodes easier. This topic is not yet well explored,
even if there is some initial work by B. Cutler [13]. We would also like
to mention that subdivision, for hexagonal meshes and other patterns,
without planarity constraints, and focusing on applications in the arts,
has been used by E. Akleman [1, 2, 3].

§4. Principal Meshes in their Circular and Conical Incarnations

This section deals with circular and conical PQ meshes, which have par-
ticularly interesting properties for applications in architectural design. In
a circular mesh, all quadrilaterals have a circumcircle, whereas in a conical
mesh, the faces adjacent to a vertex are tangent to a right circular cone.
Both circular and conical meshes discretize the network of principal cur-
vature lines, thus representing fundamental shape characteristics. Both
possess exact offsets: circular meshes have vertex offsets, whereas conical
meshes possess face offsets. We will approach these two types of meshes
via the theory of parallel meshes [28]. This allows easy access to discrete
surface normals, offsets, and support structures.

Let us first think about discretizations of the network of principal cur-
vature lines. Since this is a conjugate curve network, we use a PQ mesh to
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discretize it. It is interesting that there is a rather general characterization
of principal PQ meshes:

Meta-Theorem. A quad mesh m with planar faces may be seen as a
principal mesh, i.e., a discrete analogue of the network of principal cur-
vature lines on a smooth surface, if it possesses a parallel mesh m0 which
approximates a sphere. In this case the discrete normals defined by means
of the auxiliary mesh m0 according to Proposition 2 have the property that
normals at neighbour vertices are co-planar.

Proof: Recall that a curve c in a surface is a principal curvature line
if and only if the surface normals along that curve form a developable
surface [27]. Now we say that grid polylines of a regular PQ mesh are
principal curvature lines in a discrete sense, if the normals associated with
neighbouring vertices are co-planar (cf. Fig. 6). In the terminology of the
general discussion above, this means that the normals are suitable axes
of a geometric support structure with optimized nodes, and Proposition 2
implies the existence of a parallel mesh m0, whose vertices (interpreted as
vectors) indicate the normals of the mesh m. As m and m0 are parallel
meshes, the lines connecting the origin of the coordinate system with the
vertices of m0 are discrete normals of the mesh m0, too. Therefore, m0 is
a mesh which is approximately orthogonal to a bundle of lines, i.e., which
is approximately spherical.

Both the statement and the proof of this result are vague because
there is no exact definition of ‘discrete normal’. A more restrictive def-
inition of ‘discrete normal’ simultaneously restricts the class of principal
meshes. The meta-theorem may be extended to relative differential geom-
etry, where a general convex surface takes the role of a sphere [29].

4.1. Circular meshes

Circular meshes have been introduced by Martin et al. [24]. They are
known to be a discrete analogue of the network of principal curvature lines
(not only in the sense of the meta-theorem) and have been the topic of
various contributions from the perspective of discrete differential geometry
and integrable systems [6, 7, 5, 11, 21]. The following result, which shows
that circular meshes are indeed related to meshes which approximate a
sphere, is shown in [21] and [28]:

Theorem 1. A PQ mesh m which possesses an offset mesh m′ such that
corresponding vertices of m and m′ lie at constant distance, is a circular
mesh. Any circular mesh is parallel to a mesh m0 whose vertices lie in a
sphere.

In view of the meta-theorem, a circular meshes m is a principal mesh.
It has an offset mesh m′ and therefore also a support structure. In case
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Fig. 8. The circular mesh at right has been constructed from the base mesh
(left) by a combination of Doo-Sabin subdivision and circular optimization.

m′ is at constant vertex distance, the support structure defined by joining
m with m′ has the property that the segments on the node axes are of
constant length.

The computation of circular meshes may be based on a combination
of planarization and subdivision (see Fig. 8), but one has to replace the
planarity constraint (1) by two constraints per face, which express the
existence of a circumcircle:

φ1
ij + φ3

ij − π = φ2
ij + φ4

ij − π = 0. (2)

Finally, let us mention that circular meshes, considered as a collection
of vertices, are a concept of Möbius geometry. A Möbius transformation
maps a circular mesh to another circular mesh.

4.2. Conical meshes

Whereas circular meshes have been known for some time, their conical
counterparts have been introduced only recently [22], motivated by geo-
metric problems in architecture: We demand principal meshes which have
offsets at constant face/face distance. Also the conical meshes are an in-
stance of the meta-theorem.

Theorem 2. A PQ mesh m which possesses an offset mesh m′ such that
corresponding oriented face planes of m and m′ lie at constant signed
distance, is a conical mesh. Any conical mesh is parallel to a mesh m0

whose face planes are tangent to a sphere.

Proof (Sketch): This is shown in [28], but we repeat the main argument
concerning the construction of m0 from m, because it is easy: We take
all face planes of a conical mesh m and translate them such that they are
tangent to the unit sphere. Faces adjacent to a vertex are tangent to a
circular cone (see Fig. 9), and obviously do not lose this property with the
translation – the cone axis after translation passes through the origin. It
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Fig. 9. In a conical mesh m, the four face planes incident to a vertex are tangent
to a right circular cone. The cone axes are discrete surface normals. An edge
e of m, the cone axes at the two end points of e, and the corresponding edge
of an offset mesh form a trapezoid, which lies in the bisector plane of the two
face planes meeting at e. A collection of such trapezoids constitute a geometric
support structure for m, as shown by Fig. 5.

follows that the translated planes carry the faces of a mesh m0 which is
circumscribed to the unit sphere. The discrete normals of m are the cone
axes.

The computation of conical meshes and applications in architecture
has been discussed by Liu et al. [22]. This is based on a simple criterion,
shown in [37], which ensures that a vertex in a PQ mesh is conical, i.e.,
the adjacent faces are tangent to a right circular cone.

Proposition 3. A quad mesh (grid case) is conical if and only if for all
vertices, the four interior angles ω1, . . . , ω4 successively enclosed by the
edges emanating from that vertex obey ω1 + ω3 = ω2 + ω4.

Conical meshes, viewed as sets of oriented face planes, are an object of
Laguerre geometry. A Laguerre transformation maps a conical mesh onto
a conical mesh. However, one has to admit degenerate cases of the tangent
cones at the vertices. For a more thorough discussion of this subject, see
[28].

4.3. The relation between circular and conical meshes

Both circular and conical meshes are discretizations of the network of prin-
cipal curvature lines; the former is a Möbius geometric concept, the latter
is based on Laguerre geometry. Lie sphere geometry [10] is a geometry
which subsumes both of these geometries. As Lie sphere transformations
preserve principal curvature lines (viewed as sets of contact elements), it
is natural to treat circular and conical meshes together. This unifying
viewpoint of Lie sphere geometry is assumed by Bobenko and Suris in the
recent paper [8].
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Fig. 10. A sequence of conical meshes (at left) produced by subdivision and
mesh optimization according to [22], which is the basis of the (incomplete, es-
pecially roofless) architectural design at right. Images: B. Schneider.

Even if we do not use these concepts of ‘higher geometry’, we can
still find close relations between circular and conical meshes, which are
expressed in terms of Euclidean geometry. One of the results in this di-
rection contained in [28] is the following:

Theorem 3. For each conical mesh l with face planes Fij (regular grid
case) there is a two-parameter family of circular meshes m whose vertices
lie in the face planes of l and are symmetric with respect to the edges of
l. Cone axes of the mesh l coincide with circle axes of the mesh m.

Proof (Sketch): We choose a face F00 and place a seed vertex m00 in
it. More vertices of m are constructed by reflecting already existing ver-
tices in the symmetry planes which are attached to the edges of l (see
Fig. 9). These symmetry planes contain the cone axes at the vertices. If
we consider only the intrinsic geometry of the mesh, this is something like
reflection in the edge itself.

It is not difficult to see, e.g., from Fig. 11, that successive reflection of
a point in the four edges which emanate from a vertex lij yields the point
we started with, so this construction unambiguously places a new vertex
mij into every face Fij . For details, see [28].

There are meshes which are both circular and conical, i.e., possess
vertex offsets and face offsets. Particularly interesting is the question of
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Fig. 11. Left: Construction of a circular mesh (thin lines) from a conical mesh
(bold lines) by successive reflection of a vertex m00 in the edges of the conical
mesh. Right: Top view in the direction of the cone axis at lij .

finding a mesh m having an offset m′ which is both a vertex offset and face
offset. Such a mesh can be constructed in an elegant way via a parallel
mesh m0 whose vertices lie on a sphere and whose face planes touch an-
other, concentric, sphere. This implies that the circumcircles of m0 have
a constant radius and thus they are diagonal meshes of rhombic meshes r

with vertices on a sphere; the meshes r are formed by skew quads with con-
stant edge length. An example of such a mesh m is given in Fig. 5. These
meshes are also closely related to the discrete representations of surfaces
with constant negative Gaussian curvature studied by W. Wunderlich and
R. Sauer [31, 38].

We would like to point out that the concepts of circular and conical
meshes become trivial or too restrictive if we try to apply them to other
meshes, e.g., to triangle meshes or hexagonal meshes. For a hexagonal
mesh, the generic valence of a vertex is 3 and hence it is always conical.
In contrast, a hexagonal mesh all of whose faces have a circumcircle must
have all of its vertices on a sphere. Likewise, a triangle mesh is always
circular, but it is only conical if all its face planes are tangent to a sphere.

§5. Aspects of Statics and Functionality

This section briefly reports on properties of meshes connected to equi-
librium forces, and on discrete minimal surfaces. These two topics are
connected, as discussed more thoroughly in [36].

5.1. PQ meshes in static equilibrium

Consider a framework of rods connected together with spherical joints.
Mathematically speaking, such a framework consists of collections of ver-
tices and edges. We assume that in some vertices external forces are
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Fig. 12. Left: A mesh which has equilibrium forces. Only the external forces
are shown. These forces are the edges of a mesh which is reciprocal-parallel to
the first one (at right, not to scale). The edges shown in bold correspond to
each other and thus illustrate the fact that a mesh and its reciprocal-dual mesh
are combinatorial duals. Both meshes are discrete minimal surfaces, and the left
hand mesh is conical.

applied. A system of internal forces is an assignment of a pair of opposite
forces to each edge, one for either end. Such a system of forces is in equi-
librium if for each vertex the sum of forces equals zero. Fig. 12 illustrates
this for a rectangular piece of quadrilateral mesh. Obviously the zero sum
condition means that the forces acting upon a vertex can be taken as the
boundary edges of a face in a new quad mesh, which is then called recip-
rocal-parallel to the original one [32]. The first ones in the following list
of properties of forces and reciprocal-parallel meshes are obvious, for the
rest we refer to [32] and [36]. The property of having equilibrium forces is
denoted for short by ‘EF’.

– The reciprocal-parallel relation is symmetric (disregarding boundaries).
– A PQ mesh is EF ⇐⇒ it has a reciprocal-parallel mesh

– If a mesh has property E, then so do all parallel meshes.

– A mesh reciprocal-parallel to a PQ mesh has planar vertex stars.

– A PQ mesh is EF ⇐⇒ it is infinitesimally flexible [32, 36]

– A PQ mesh is EF ⇐⇒ it has the property of Fig. 13 [32, 36].

– A conical mesh is EF ⇐⇒ its spherical image is isothermic [36].

The last property mentioned leads into the next subsection, which
discusses discrete minimal surfaces. The reader interested in definition,
properties, and previous work on isothermic meshes is referred to [36].
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Fig. 13. For a PQ mesh, the existence of a reciprocal-parallel mesh (or of equi-
librium forces) is characterized by an incidence property of the lines of intersec-
tion of every face F with its neighbours. The notation in the figure indicates
relative position with lower indices: l, r, u, d mean left, right, up, and down,
respectively. This is the Desargues configuration of projective geometry.

5.2. Discrete minimal surfaces

In the smooth category, minimal surfaces are curvature-continuous sur-
faces with vanishing mean curvature [15]. For various reasons, their math-
ematical theory is very rich. One is that they occur as solutions of a
prominent nonlinear optimization problem (minimizing surface area un-
der given boundary conditions), another one is that there is an almost
1-1 correspondence between minimal surfaces and holomorphic functions.
We note only one further property: Minimal surfaces are isothermic, i.e.,
they possess a curvature line parametrization g(u, v), such that not only
∂g

∂u
· ∂g

∂v
= 0, but also ‖ ∂g

∂u
‖ = ‖∂g

∂v
‖.

In the discrete category, this picture changes a bit. ‘The’ definition
of a discrete minimal surface does not exist, because each of the various
properties of smooth minimal surfaces can be discretized, and the discrete
representation of data plays an important role. A particular discretization
is worth studying if it transfers more than just one continuous property to
the discrete setting. Another reason of interest for a particular construc-
tion is that the resulting discrete theory is very rich.

One possible choice of property and data representation is triangle
meshes which minimize surface area under given boundary conditions.
They have been studied by K. Polthier [26]. Another fruitful combination
is PQ meshes which are discrete-isothermic, investigated by A. Bobenko
and coworkers [6]. They called a mesh isothermic, if it is circular, and for
each face, the cross ratio of the four vertices, computed with respect to
their circumcircle, equals −1. As it turns out, this is a discrete version of
the defining property of isothermic surfaces mentioned above.



Surfaces in Architecture 231

The work on isothermic meshes and related concepts recently culmi-
nated in the construction of discrete so-called s-isothermic minimal sur-
faces with prescribed combinatorics [5]. Our own work in that direction
[36] includes conical meshes in the shape of minimal surfaces, which are
intimately connected with the isothermic meshes of [6], and their recipro-
cal-parallel meshes, which are discrete minimal surfaces in their own right.
Examples of such constructions are shown by Fig. 12.

§6. Open Problems and Future Work

In this paper we have addressed a few problems which are motivated by
practical requirements in architectural design. Their solution leads to
remarkable discrete surface representations, some of which have been un-
known so far in discrete differential geometry. We believe that there is a
significant potential for further research in this area, which encompasses
problems originating in architectural design, geometry processing, and dis-
crete differential geometry. Topics of future research include the following:

• We need new and intuitive tools for the design of PQ meshes. Since PQ
meshes discretize conjugate curve networks, a possible approach would be
an interactive method for the design of conjugate curve networks, where
the network curves ‘automatically’ avoid asymptotic directions, and con-
sequently intersect transversely. These curve networks can then be used
to construct quad meshes capable of PQ optimization.

• It is necessary to continue to study parallel meshes in general, espe-
cially with regard to computation, design, and meshes with special prop-
erties parallel to a given mesh.

• Hexagonal meshes and other patterns should be investigated.

• We have seen that conical and circular meshes have face offsets and
vertex offsets, respectively. We are currently investigating the beautiful
geometry of those meshes (not only quad meshes) which possess edge
offsets. For architecture, these meshes have the attractive property that
their support structure may be built from beams of constant height. Initial
results on quad meshes with edge offsets may be found in [29].

• In architectural design, the aesthetic value of meshes is of great im-
portance. It is natural to employ geometric functionals and consider their
minimizers. Minimal surfaces are an example, but more work is needed in
this area. Obvious candidates to investigate are discrete Willmore surfaces
represented as circular meshes (this is a question of Möbius geometry).
Likewise, we could search for conical meshes representing Laguerre-min-
imal surfaces. The reader interested in these topics is referred to the
monograph by W. Blaschke [4] for the continuous case.
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From the architectural viewpoint, there are the following issues in con-
nection with freeform surfaces:

• Optimization should not neglect statics and structural considerations.

• The climate inside glass structures demands separate attention. Ge-
ometric questions which occur here have to do with light and shade, the
possibility of shading systems tied to support structures, and even a layout
of supporting beams with regard to shading. Also the aesthetic component
is present here at all times.

• The difficult geometric optimization of freeform surfaces which sup-
ports the architectural design process;

• The demand for planar segments without the appearance of an overall
polygonalisation;

• Generally speaking, the ‘right’ choice of an overall segmentation of a
multi-layered building skin with a good planar mesh;

• The complexity of joints, especially the absence of so-called geometric
torsion in the nodes (cf. Fig. 5, left).

In conclusion, we believe that architecture may be viewed as a rich
source for interesting and rewarding research problems in applied geome-
try.
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