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SMOOTHNESS ANALYSIS OF SUBDIVISION SCHEMES ON
REGULAR GRIDS BY PROXIMITY

PHILIPP GROHS∗

Abstract. Subdivision is a powerful way of approximating a continuous object f(x, y) by a
sequence ((Slpi,j)i,j∈Z)l∈N of discrete data on finer and finer grids. The rule S, that maps an

approximation on a coarse grid, Slp, to the approximation on the next finer grid, Sl+1p, is called
subdivision scheme. If for a given scheme S every continuous object f(x, y) constructed by S is of
Ck smoothness, then S is said to have smoothness order k.

Subdivision schemes are well understood if they are linear. However, for various applications the
data have values in a manifold which is not a vector space (for example when our data are positions
of a moving rigid body). Under these circumstances, subdivsion schemes become nonlinear and much
harder to analyze. One way of analyzing such schemes is to relate them to a given linear scheme and
establishing a so-called proximity condition between the two schemes, which helps in proving that
the two schemes share the same smoothness.

The present paper uses this method to show the C1-smoothness of a wide class of nonlinear
multivariate schemes.

Key words. linear subdivision schemes, nonlinear subdivision schemes, smoothness, multivari-
ate subdivision, wavelets
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1. Introduction. Subdivision is a powerful way of approximating a continuous
object f(x, y) by a sequence ((Slpi,j)i,j∈Z)l∈N of discrete data on finer and finer grids.
The rule S, that maps an approximation on a coarse grid, Slp to the approximation
on the next finer grid Sl+1p is called subdivision scheme. Generally this rule depends
on l but we will assume that it is always the same rule. The subdivision scheme is
then called stationary; this is the class of schemes we are interested in. If for a given
scheme S every continuous object f(x, y) constructed by S is of Ck-smoothness, we
say that the smoothness order of S is k. The fact that in this introduction we use
a bivariate function f(x, y) is immaterial, this paper is concerned with the general
multivariate case.

To store a continuous object which is constructed via subdivision, one only needs
to store a coarse approximation and the subdivision scheme constructing the object.
This fact makes subdivision a valuable tool in computer aided geometric design. An-
other application of subdivision schemes is data compression and noise removal via
wavelet-type transforms associated with the subdivision scheme [4, 2]. All these con-
cepts can be applied to manifold valued data using nonlinear subdivision schemes if
the underlying nonlinear scheme is of sufficient smoothness [10, 3].

Subdivision schemes are especially well understood if they are linear. However, for
various applications the data have values in a manifold which is not a vector space (for
example when our data are positions of a moving rigid body). Under these circum-
stances, subdivsion schemes become nonlinear and much harder to analyze. One way
of analyzing such schemes is to relate them to a given linear scheme and establishing
a so-called proximity condition between the two schemes, which helps in proving that
the two schemes share the same smoothness. In [13, 12] this method has been used
to prove smoothness properties for certain nonlinear curve schemes. The problem in
proving higher order smoothness is to verify sufficient proximity conditions. In [15] it
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has been shown that on the sphere and related manifolds any nonlinear scheme that
is constructed from an interpolatory linear scheme via closest point projection shares
the smoothness of the linear scheme.

All these results only apply to univariate schemes. The present paper treats the
general multivariate case and shows the C1-smoothness of a wide class of nonlinear
multivariate schemes. We follow the lines of [13] and also remove the necessity of a
condition on the decay rates of the linear scheme needed in this work.

1.1. An example: The Kobbelt scheme and its log-exp analogue. First
we describe, as an example, the construction of a nonlinear subdivision scheme for
matrix groups which is analogous to a well known interpolatory linear scheme (we
construct the log-exp version of Kobbelt’s scheme [8]).

The Kobbelt scheme is the bivariate tensor product rule of the interpolatory four
point scheme [6] with itself. It is defined as

Sp2i,2j = pi,j ,

Sp2i+1,2j = pi,j −
1
16

(v−1,0 + 9v1,0 − v2,0),

Sp2i,2j+1 = pi,j −
1
16

(v0,−1 + 9v0,1 − v0,2), and

Sp2i+1,2j+1 = pi,j +
1

256
(v2,2 − 9v2,1 − 9v2,0 + v2,−1 −

9v1,2 + 81v1,1 + 81v1,0 − 9v1,−1 − 9v0,2 +
81v0,1 − 9v0,−1 + v−1,2 − 9v−1,1 − 9v−1,0 + v−1,−1)

where vk,l := pi+k,j+l−pi,j is the vector pointing from pi,j to pi+k,j+l, and (Spi,j)i,j∈Z
means the grid function produced from (pi,j)i,j∈Z via subdivision.

The rules that define the usual Kobbelt scheme are all of the form

Sp2i+k,2j+l = pi,j +
∑
r,s

λk,l
r,svr,s,(1.1)

where the vector
∑

r,s λk,l
r,svr,s is added to the point pi,j . In a matrix group, this point-

vector addition of a point p and a vector v is realized with the matrix-exponential
function exp, as p · exp(v). The vector pointing from a group element p to the group
element q is given by

−→pq = log(p−1q).(1.2)

We can thus define an analogue of the Kobbelt scheme which works in matrix groups
as follows: for the rule given by (1.1), we define its log-exp analogue as

Tp2i+k,2j+l = pi,j · exp
( ∑

r,s

λk,l
r,svr,s

)
, vr,s = log(p−1

i,j pi+u,j+v).

To what extent does this nonlinear scheme share the properties of the Kobbelt
scheme? It is certainly interpolatory, but does it converge? And if so, does it produce
smooth limit functions? As we will see shortly, the answer to both questions is yes.

1.2. Other ways of constructing nonlinear analogues of linear schemes.
Aside from the log-exp approach there are two other nonlinear variants that we want
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to study. They both rely on the observation in [12] that every affinely invariant scheme
can be expressed in terms of the affine averaging operator

avλ(x, y) = λx + (1− λ)y, λ ∈ R.

In Euclidean space Rn, the shortest path from a point x to another point y is described
by the curve c(t) := tx + (1 − t)y. We see that avλ(x, y) is given by c(λ). This
can be generalized to surfaces in Rn, and Riemannian manifolds as well: in such
spaces geodesics play the role of straight lines, and if we define the geodesic average
g-avλ(x, y) := c(λ), where c is the shortest geodesic with c(0) = x and c(1) = y, we
can replace every ocurrence of the avλ-operator by the g-avλ-operator. This gives us
an analogue of a linear scheme, that assumes its values on a given manifold. A unique
shortest geodesic connecting two points need not always exist. However, it always
exists locally, and if the distances between consecutive points in the grid function we
want to subdivide, are sufficiently small, we won’t run into any problems (cf. the
discussion in [13]).

Another approach is to apply a projection operator on the averages. A projection
operator for a surface M⊆ Rn in our setting is a smooth function P : Rn →M with
the property that P (x) = x for all x ∈ M. For the nonlinear scheme we apply the
operator P ◦ avλ(x, y) instead of avλ(x, y). This defines the projection analogue of a
linear scheme.

2. Outline of this paper. In this work we analyze nonlinear subdivision schemes
that satisfy a proximity condition with a certain linear scheme and show that if the
linear scheme is convergent (resp. smooth), then the nonlinear scheme is convergent
(resp. smooth). In Section 3 we review some basic concepts of subdivision. Section
4 derives results of the linear theory needed for our analysis. Section 5 shows that if
a scheme is in proximity with a linear convergent scheme, it is convergent. Section
6 does the same with smoothness. In Section 7 we verify that a proximity condition
holds for various nonlinear analogues of linear schemes. Section 8 summarizes the
results, until then valid only for surfaces and matrix groups, and extends them to
abstract Lie groups and Riemannian manifolds.

3. Preliminaries. Let (pα)α∈Zs be a bounded grid function of points pα ∈ Rn

for n ∈ N. In that case (pα)α∈Zs can be viewed as an element of (l∞(Zs))n. A
subdivision scheme on a regular grid is a mapping that maps such a grid function
to a new grid function (Spα)α∈Zs under the condition that there exists an integer
N > 1 with the property that for all grid functions p, q with qα = pα+δi

, where δi

is the i-th canonical basis vector in Zs, the relation (Sq)α = (Sp)α+Nδi
holds. N is

called the dilation factor of S (typically N = 2). The case s = 1 corresponds to curve
subdivison, s = 2 to surface subdivision as in our example in Section 1. A subdivision
scheme S is called linear, if S is a linear mapping. It is easy to see that for a linear
scheme, there exists a sequence (Sα)α∈Zs with the property

(Sp)α =
∑
β∈Zs

Sα−Nβpβ .

This sequence is called the mask of S. We consider only subdivision schemes with
finite mask, meaning that Sα 6= 0 only for a finite number of α’s. Thus the assumption
that the grid function (pα)α∈Zs is bounded is not actually a restriction, because a finite
mask means that the subdivison operator is local.
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If the elements Sα of the mask are n×n matrices, one speaks of matrix subdivision
schemes.

An interpretation of this definition would be to view (pα)α∈Zs as a discrete ap-
proximation of some continuous data defined in some domain in Rs. The subdivision
operator S maps this approximation to a finer approximation on the grid 1

N Zs, S2

maps the approximation on the even finer grid 1
N2 Zs, and so on. If this sequence

of approximations converges to a function defined on Rs, the subdivision scheme is
called convergent, or more precisely (see [1, Definition 2.1]):

Definition 3.1. Let S : (l∞(Zs))n → (l∞(Zs))n be a subdivision scheme with
dilation factor N . S is called convergent, if for any p ∈ (l∞(Zs))n, there exists a
continous function S∞ : Rs → Rn with

lim
k→∞

max
α∈Zs

‖(Skp)α − f(N−kα)‖ = 0.

Moreover, if f ∈ Ck(Rs, Rn), S is called Ck, k ∈ N.
Clearly this definition is equivalent to saying that the functions Fl(Slp), given by

the piecewise s-multilinear Interpolation of Slp on 1
N l Zs, converge uniformly to f , as

l →∞.
The piecewise s-multilinear interpolation of a grid function p = (pα)α∈Zs is defined

by

Fl(p)(x) =
∑

I∈{0,1}s

( ∏
r:ir=0

(1−N lxr)
∏

s:is=1

N lxs

)
pα+I ,(3.1)

where x = (x1, . . . , xs) ∈ [α1, α1 + N−l]× [α2, α2 + N−l]× . . .× [αs, αs + N−l]. If p
is a vector of points, then Fl is applied componentwise.

4. Linear Theory. We review some results from the theory of linear schemes.
For further information concerning linear schemes, the reader may consult [1, 5, 17, 7].
We let n = 1, i.e. the points pα are elements of R. This is no restriction, since
convergence and smoothness properties can be treated componentwise in the linear
case. In the univariate setting, the (unique) forward difference operator plays an
important role. On grids we look at all the forward difference operators in the different
directions on the grid simultaneously. This allows us to define derived schemes as
discrete analogues of the left derivatives.

Let ∆i be the operator that maps a sequence of points, say (pα)α∈Zs , to the
sequence (pα − pα−δi)α∈Zs , where δi denotes the i-th canonical basis vector in Zs.

Definition 4.1. For p ∈ l∞(Zs) we define ∆p ∈ (l∞(Zs))s as

∆p :=
(
∆1p , ∆2p , . . . , ∆sp

)T
.

While linear schemes are in general defined for all input data, this is no longer true
for a nonlinear subdivision scheme T , which is defined on its domain D(T ) ⊆ Rn. In
that case the definition of convergence and smoothness is the same, it only has to
hold for grid functions p ∈ D(T ).

For a subdivision scheme to converge, we need that the distance between consec-
utive points becomes small. We therefore define

Definition 4.2.

D(p) := sup
α∈Zs

‖∆pα‖ =: ‖∆p‖∞, and di(p) := ‖∆ip‖∞,
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where ‖∆pα‖ := maxi=1,...,s ‖∆ipα‖.
The n-th derived scheme of a linear multivariate subdivision scheme S is defined

by the relation

S[n]∆n = Nn∆nS for n ≥ 1, and S[0] = S.

Note that for s > 1 the derived schemes are always matrix subdivision schemes. It
is possible to characterize smoothness of a linear subdivision scheme by the decay of
the derived schemes:

Theorem 4.3. Let S be a linear subdivision scheme. If there exists a constant
µ0 < 1 with

D(Skp) ≤ µk
0D(p) for all p,(4.1)

then S is convergent. Convergence of S implies the existence of S[1].
If in addition there exists a constant µ1 < 1 with

D((S[1])k∆p) ≤ µk
1D(∆p) for all p,(4.2)

then S is C1. The sufficient conditions (4.1) and (4.2) are almost necessary, for
convergence, resp. smoothness:

Theorem 4.4 ([5]). Let S be a convergent linear subdivison scheme. Then S[1]

exists and there is l ∈ Z+ such that Sl satisfies (4.1) with µ0l = 1
N l ‖(S[1])l|∆‖ < 1. If

in addition S is C1 and S[2] exists, then there exists l ∈ Z+ such that (S[1])l satisfies
(4.2) with µ1l = 1

N l ‖(S[2])l|∆2‖ < 1.
Remark 4.5. With the notation of Theorem 4.4 we may assume that there exists

a constant A such that ‖(S[1])k|∆‖ < A for all k ∈ Z+. This follows from the fact
that the derived scheme S[1] converges to the first derivative of the limit function of
S. This immediately implies that the spectral radius

ρ∞
(
(S[1])|∆

)
= lim inf

k→∞
‖(S[1])k|∆‖1/k = 1.(4.3)

For a linear convergent scheme S, the rate of convergence is known (compare [5,
Prop. 6.7]):

Lemma 4.6. Let S be a linear subdivision scheme and assume that S[1] exists.
Then there exists a constant C > 0 with

‖Fj+1(Sp)−Fj(p)‖∞ ≤ CD(p).(4.4)

If in addition S[2] exists, then there exists another constant C > 0 with

‖Fj+1(S[1]∆p)−Fj(∆p)‖∞ ≤ CD(∆p).(4.5)

In the second case, Fj is applied componentwise.

5. Convergence. In this section we show that a nonlinear scheme is convergent
if it satisfies a proximity condition with a linear and convergent scheme. Since most of
the nonlinear schemes we are interested in are not defined for all input data, we have
to restrict our analysis to initial data defined in certain subsets of Rn. The following
type of subsets is useful:

Definition 5.1. PM,ε denotes the set of grid functions, whose points are con-
tained in a subset M ⊆ Rn, which fulfill the condition D(p) ≤ ε. We want to obtain



6 Philipp Grohs

convergence and smoothness properties for nonlinear schemes derived from linear ones,
and we would like these properties to be directly related to the respective properties
of these linar schemes. For this purpose we need a condition that ensures that the
nonlinear scheme is not too far apart from the linear scheme. As we will see, the
following proximity condition serves us well. The next definition is the multivariate
analogue of Definition 7 in [13].

Definition 5.2. Let S, T be two subdivision schemes. We say that S, T satisfy
a 0-proximity condition for the class PM,ε with α > 1, if there is a constant C, such
that for all p ∈ PM,ε,

‖Sp− Tp‖∞ ≤ C ·D(p)α.(5.1)

From Theorem 4.4 we know that for a convergent linear scheme S there exists a
contractivity constant µ0 < 1 with

D(Slp) ≤ µl
0D(p).(5.2)

Actually, Theorem 4.4 only assures that (5.2) holds for one of the iterates S̃ := Sk

of S. Without loss of generality we start with S = S̃ and assume that (5.2) holds
for S itself. The idea to prove that a nonlinear scheme T in proximity with a linear
convergent scheme S is convergent, is as follows: From the proximity condition we
show that if S satisfies (5.2), i.e. is convergent, then T satisfies a similar condition.
After that we show that if such a condition is satisfied for a nonlinear scheme T in
proximity with a linear scheme S, the scheme T is itself convergent. We make the
following definition:

Definition 5.3. A subdivision scheme T is said to satisfy a convergence condi-
tion with factor µ0 < 1 and the class PM,ε, if

D(T lp) ≤ µl
0D(p)(5.3)

for all initial data p ∈ PM,ε. Recall that T is defined for grid functions with values
in D(T ). In the course of the proof of the following central lemma, we will denote the
constant from (4.4) by C ′.

Lemma 5.4. Assume that S, T satisfy a proximity condition for all p ∈ PM,ε with
α > 1, and S satisfies a convergence condition with factor µ0 < 1. Choose a subset
M ′ of M such that there exists δ′ > 0 with

{x ∈ D(T ) : inf
y∈M ′

‖x− y‖ ≤ δ′} ⊆ M.(5.4)

Then there is is δ > 0 and µ0 < 1 such that T satisfies a convergence condition with
factor µ0 for all p ∈ PM ′,δ. By choosing δ small enough, we can achieve that µ0 − µ0

is arbitrarily small. The constant δ depends on the constant C from the proximity
condition, on δ′, on C ′ and on µ0. In addition T lp ⊆ M for all l ∈ Z+. Proof: We
choose δ small enough to satisfy the following two conditions:

µ0 := 1 + 2Cδα−1 < 1(5.5)

and

δ
( C ′

1− µ0
+

Cδα−1

1− µ0
α

)
< δ′.(5.6)
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Condition (5.6) will assure us that the sequence T lp stays within M . We show that for
p ∈ PM ′,δ the norm of the difference sequence, D(Tp), can be estimated by µ0D(p):

D(Tp) ≤ D(Sp− Tp) + D(Sp) ≤ 2‖Sp− Tp‖+ D(Sp).

Since S is convergent with contractivity constant µ0 and T is in proximity with S, we
can deduce

D(Tp) ≤ 2D(p)α + µ0D(p) ≤ D(p)(µ0 + 2δα−1) = µ0D(p).

We show that if δ satisfies (5.6), then Tp is still contained in PM,δ. Indeed, we can
estimate

‖Tp− p‖ ≤ ‖Sp− Tp‖+ ‖Sp− p‖ ≤ CD(p)α + C ′D(p) ≤ δ
(
C ′ + Cδα−1

)
≤ δ′,

by (5.6). From (5.4) it follows that Tp ∈ PM,δ.
Now we use induction on l to prove that D(T lp) ≤ µ0D(p)l and that T lp ∈ PM,δ

under the assumption that T l−1p ∈ PM,δ and D(T l−1p) ≤ µ0
l−1D(p). Firstly,

D(T lp) ≤ D(T lp− ST l−1p) + D(ST l−1p) ≤ 2‖(S − T )T l−1p‖+ D(ST l−1p).

By the proximity condition and the convergence condition satisfied by S, we get

D(T lp) ≤ 2CD(T l−1p)α + µ0D(T l−1p) ≤ µ0D(T l−1p) ≤ µ0
lD(p).

It remains to show that T lp ∈ PM,δ (for initial data p ∈ PM ′,δ).

‖T lp− p‖ ≤
l∑

j=1

‖T jp− T j−1p‖ ≤
l∑

j=1

‖(T − S)T j−1p‖+ ‖ST j−1p− T j−1p‖

≤
l∑

j=1

CD(T j−1p)α + C ′D(T j−1) ≤
l−1∑
j=0

Cµ0
jαD(p)α + C ′µ0

jD(p) ≤ δ′

by (5.6). From the assumption (5.4) it follows that T lp ∈ PM,δ and the induction is
complete.

The statement regarding the difference µ0 − µ0 is immediate. �
Proposition 5.5. Under the assumptions of Lemma 5.4, the subdivision scheme

T is convergent for all initial data p ∈ PM ′,δ. Proof: We have

‖T j+1p− T jp‖∞ ≤ ‖Fj+1(T j+1p)−Fj+1(ST jp)‖∞

+‖Fj+1(ST jp)−Fj(T jp)‖∞ ≤ C ·D(T jp)α + C ′ ·D(T jp),

by the proximity condition and by (4.4). By Proposition 5.4, this expression is
bounded by a factor times µj with µ < 1. It follows that T jp is a Cauchy sequence
with respect to the sup norm. �
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6. Smoothness. In this section we show that a nonlinear scheme that is in
proximity with a linear and smooth scheme is itself smooth. To facilitate our analysis,
we assume that the second derived scheme exists, which is not really a restriction (see
[5]). We begin with a sufficient condition for a possibly nonlinear subdivision scheme
to converge to a smooth limit (see [7] for a proof):

Lemma 6.1. Let T be a subdivision scheme and pl := T lp. Assume that Fl(pl)
converges to a continuous function f = f(x1, . . . , xs) in the sup norm. Let

gj
l := Fl(N l∆jp

l) (j = 1, . . . , s).

If gj
l is a Cauchy sequence and liml→∞ dj(N l∆jp

l) = 0, then f is C1 in the variable
xj.

Definition 6.2. A subdivision scheme T is said to satisfy a mixed smoothness
condition, if T satisfies a convergence condition, and there is µ1 < 1 such that

D(N∆T lp) ≤ µl
1P1(l)D(p) for all l, p,(6.1)

where P1 is a linear function with positive coefficients.
Lemma 6.3. Suppose that S, T satisfy a proximity condition for p ∈ PM,ε with

α > 1, and that S satisfies a smoothness condition with factors µ0, µ1, such that

µ0 < µ∗0 = N−1/α, µ1 < 1.(6.2)

Then there is δ > 0 such that T satisfies a mixed smoothness condition with factors
µ0, µ1 which also satisfy (6.2), for all p ∈ PM,δ.

Proof. By Proposition 5.4 we know that there exists δ > 0 and a µ0 < 1 so that

D(T lp) ≤ µ0
lD(p) for D(p) < δ.

We want to show that there is µ1 < 1 and a linear polynomial with positive coefficients,
P1, such that D(N l∆T lp) ≤ µ1

lP1(l)D(p) for all p with D(p) < δ. We write dl :=
D(N l∆T lp) and q := T l−1p. Next we proceed just as in the proof of Theorem 5.4
and make use of the fact that ‖∆Sq −∆Tq‖∞ ≤ 2‖Sq − Tq‖∞. This follows from
the triangle inequality.

dl = D(N l∆Tq) ≤
(
D(N l∆Sq) + 2N l‖∆Sq −∆Tq‖∞

)
≤ D(N l∆Sq) + 4N l‖Sq − Tq‖∞
≤ µ1D(N l−1∆q) + 4N lCD(q)α,(6.3)

because of the smoothness condition satisfied by S and the proximity condition. We
can estimate the last summand as follows:

4N lCD(q)α ≤ 4N lC(µ0
l−1D(p))α = 4NC(Nµ0

α)l−1D(p)α.

Because of Proposition 5.4, (6.2) and the fact that we can make D(p) arbitrarily small,
we can choose µ0 := µ0 ≤ N−1/α < 1, and thus

4CN lD(q)α ≤ µ̃1
l−1D(p)αP0

with a positive constant P0. Substituting into (6.3) yields

dl ≤ dl−1µ1 + P0D(p)α
l−1∑
j=0

µl−j−1
1 µ̃1

j .
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Now we define µ1 := max{µ1, µ̃1} and get

dl ≤ µ1
ld0 + D(p)αµ1

l−1lP0.

There is a constant C ′ > 0 with 1
δα−1C′ < µ1, so that we have

D(p)αµ1
l−1 ≤ D(p)C ′µ1

l.

This shows that dl ≤ µ1
l (D(∆p) + C ′D(p)lP0) ≤ µ1

l(2 + C ′lP0)D(p), and the proof
is complete Condition (6.2) is automatically fulfilled if the second derived scheme
of S exists.

Lemma 6.4. Assume that S produces C1 limit functions. If the derived schemes
S[1] and S[2] exist, then (6.2) holds for an iterate of S. Proof: For the iterated
schemes Sk condition (6.2) reads µ0k ≤ N−k/α, where µ0k is the first contractivity
constant of Sk given by ‖(S[1])k|∆‖

Nk . Thus the statement of the lemma is equivalent to

ρ∞(‖S[1]|∆|‖) < N1−1/α.(6.4)

By Remark 4.5 the spectral radius of the first derived scheme is equal to 1 and thus
(6.4) is satisfied for every α > 1. �

Now we can show that a nonlinear scheme T in proximity with a linear C1 scheme
that satisfies (6.2), is itself C1.

Proposition 6.5. Let S be linear, of finite mask with C1 limits such that S[1]

and S[2] exist. Then the limit function liml→∞ Fl(T lp)(x1, . . . , xs) is C1. Proof:
First of all we have di(N l∆iT

lp) → 0 by Proposition 6.3. Since we assume the affine
invariance of the derived scheme S[1], By (4.5)

‖Fj+1(S[1]∆p)−Fj(∆p)‖∞ ≤ C ·D(∆p),

with a constant C > 0. Note that the smoothness condition is nothing but a conver-
gence condition for the derived scheme S[1]. Then

‖Fl+1(N l+1∆T l+1p)−Fl(N l∆T lp)‖∞
≤ ‖Fl+1(N∆T − S[1]∆)N lT lp‖∞ + ‖(Fl+1S

[1] −Fl)∆N lT lp‖∞
≤ (2N)‖(T − S)(N lT lp)‖∞ + CD(∆N lT lp)
≤ (2N)C ′N l(µ0D(p))αl + Cµl

1P1(l)D(p) =: βl.

By Lemma 6.4 we may assume µα
0 N < 1, and

∑
l βl < ∞. Therefore the sequence

Fl(N l∆iT
lp) is a Cauchy sequence, so we can apply Lemma 6.1 to complete the proof.

�

7. Verification of the Proximity Conditions. In order to show that a prox-
imity condition actually holds between an affinely invariant subdivision scheme and
the perturbations that we want to study, we use a generalization of Lemma 5 in [13].

Lemma 7.1. Let S be a linear, affinely invariant subdivision scheme on Zs. Then
S is expressible by the repeated application of the affine averaging operator given by

avλ(x, y) = λx + (1− λ)y, λ ∈ [0, 1].

Assume that (fλ(x, y))λ∈[0,1] is a family of functions from Rn × Rn → Rn, satisfying

‖avλ(x, y)− fλ(x, y)‖ ≤ C · ‖x− y‖2,(7.1)
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for a constant C > 0. If T is defined by exchanging the affine averaging operators
avλ by fλ, then S and T satisfy a proximity condition of order α = 2 in the sense of
Definition 5.2 for the class PM,ε.

Proof. The fact that S is expressible via the affine averaging operator is just
Theorem 1 in [13]. For the second assertion we perform induction on the number of
iterations of averaging operators. For a subdivision scheme with dilation factor N we
have Ns different rules, for each of them we have to verify

‖Spα+Nβ − Tpα+Nβ‖ ≤ C ·D(p)2.(7.2)

Let m be the number of iterations of the averaging operator for the rule associated
with β ∈ Zs. For m = 1 we get

Spα+Nβ = avλβ
(pα+rβ

, pα+sβ
).

Then, by (7.1) there exists a constant C such that (7.2) holds true. Now we perform
the induction step. Assume that our assertion is correct for m. Let y and z be
points obtained from at most m iterations of affine averaging operators, and y′, z′

the corresponding points obtained by replacing the averaging operators by f . By the
induction hypothesis,

‖y − y′‖, ‖z − z′‖ ≤ C ′ ·D(p)2 with a constant C ′ > 0.(7.3)

Clearly we also have

‖y − z‖ ≤ C ·D(p)(7.4)

with a constant C > 0. Let x := avλ(y, z), x′ := f(y′, z′), and x′′ := avλ(y′, z′). We
need to show that there exists a constant C̃ > 0 with

‖x− x′‖ ≤ C̃ ·D(p)2.(7.5)

We estimate

‖x− x′‖ ≤ ‖x′ − x′′‖+ ‖x− x′′‖ ≤ C ′′ · ‖y′ − z′‖+ ‖avλ(y − y′, z − z′)‖

≤ C ′′ · (‖y − y′‖+ ‖y − z‖+ ‖z − z′‖)2 + C ′′′ ·max(‖y − y′‖, ‖z − z′‖).

Because of (7.3) and (7.4) this implies (7.5).

7.1. Geodesic averaging. For a surface embedded in the Euclidean space Rn

we construct the geodesic analogue of a linear affinely invariant subdivision scheme
S by replacing the affine averaging operators avλ by the geodesic averaging operators
g-avλ, where g-avλ(x, y) := c(λ) with c the shortest geodesic with c(0) = x and
c(1) = y. Lemma 4 in [13] states that (7.1) is fulfilled with fλ = g-avλ, and therefore,
by Lemma 7.1, a proximity condition holds between a linear scheme and its geodesic
analogue.

7.2. Projection analogue. The second possibility of perturbing a linear scheme
that is studied in this paper is obtained by applying a projection operator P to the
subdivided points, i.e. we set fλ := P ◦avλ. P is only required to be smooth and leave
the points of the manifold fixed. In [13] it has been shown that (7.1) holds for this
class of schemes, therefore a proximity condition holds between S and the perturbed
scheme.
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7.3. Log-exp scheme. We go on to prove that a proximity condition holds
between a linear scheme S and its log-exp analogue T . In [14] a different log-exp
analogue is analyzed and a proximity condition that ensures C2 smoothness is proven.
However, this different log-exp analogue is not capable of being generalized to the
multivariate setting.

Proposition 7.2. Let S be a linear subdivision scheme with finite mask and T
its G-valued log-exp analogue for a matrix group G. Then for every bounded subset
M ⊆ G such that exp|M is diffeomorphic, S and T satisfy a proximity condition for
the class PM,ε for initial data p with D(p) small enough.

Proof. The matrix exponential function is given by

exp(v) = I + v +
v2

2
+

v3

3!
. . . ,

where v ∈ Rm×m. Since exp is a diffeomorphism in a neighbourhood of the identity
matrix I, we can choose δ1 > 0 such that ‖ exp(v)− I‖ < δ1 implies

α1‖ exp(v)− I‖ ≤ ‖v‖ ≤ α2‖ exp(v)− I‖, for some α1, α2 > 0,(7.6)

where ‖v‖ :=
√

tr(vT v), the Frobenius norm.
Since we are operating in a bounded subset of G, we can assume that ‖pα‖ ≤ γ1,

‖p−1
α ‖ ≤ γ2 for some γ1, γ2 > 0.

As explained in Section 1 the construction of new points in a linear subdivision
scheme S and its log-exp analogue T has the form

s = p +
∑

β λβ∈F (qβ − p) (linear),
t = p · exp

( ∑
β∈F λβvβ

)
(nonlinear),

where qβ = p · exp(vβ) and F is a finite subset of Zs. We show that

‖s− t‖ ≤ C ·max
β∈F

‖qβ − p‖2 for a C > 0,(7.7)

which is clearly equivalent to the required proximity condition.

‖s− t‖ = ‖p ·
(
I +

∑
β∈F

λβ(exp(vβ)− I)− exp
( ∑

β∈F

λβvβ

))
‖

≤ γ1‖
∑
β∈F

λβ

(v2
β

2
+

v3
β

3!
+ . . .

)
− 1

2
( ∑

β∈F

λβvβ

)2 − 1
3!

( ∑
β∈F

λβvβ

)3 − . . . ‖

≤ C1 max
β∈F

‖vβ‖2.(7.8)

By (7.6) we can estimate

‖vβ‖ ≤ α2‖ exp(vβ)− I‖ = α2‖p−1qβ − I‖
≤ α2‖p−1‖‖qβ − p‖ ≤ α2γ2‖qβ − p‖.(7.9)

If we combine (7.9) with (7.8), we get the proximity condition we want to establish.
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8. Results. In the previous section we verified that a proximity holds between a
linear subdivision scheme and the nonlinear analogues we want to study. We combine
these results with the inequalities obtained in Sections 5 and 6 and are able to state
some theorems:

Theorem 8.1. Let S be a linear subdivision scheme with finite mask defined on
Zs, s ≥ 1. If S is convergent and produces continuous limit functions then, for initial
data p with D(p) sufficiently small, the following holds:

(i) If M⊆ Rn is a smooth surface and T is the geodesic analoguous subdivision
scheme constructed from S, then T is convergent.

(ii) If T is the projection analogue of S obtained from a smooth projection mapping
P : Rn →M with P (x) = x for all x ∈M, then T is convergent.

(iii) If (G, ·) is a matrix group and T is the G-valued log-exp version of S, then T
is convergent.

Proof. By the results of Section 7, a proximity condition is satisfied between T and
S, therefore, by Proposition 5.5, the scheme T produces continuous limit functions.

The assumption that D(p) is sufficiently small does not mean that there exists
a global constant δ > 0 such that T lp converges for all initial data with D(p) small
enough. From what we have proved such a constant in general just exists locally.
This implies that if the surface resp. Lie group is compact, there exists such a global
constant. A global δ also exists in the following situations (compare [13] where the
univariate situation is discussed):

• For the geodesic analogue if the normal curvatures of the surface are bounded,
• for the projection analogue if the gradient and second derivative of P are

bounded,
• in general if p is contained in a compact set.

For certain special cases, for example the geodesic analogue of the chaikin algorithm,
it is possible to show that the nonlinear analogue is convergent for all initial data [16].

Theorem 8.2. Let S be a linear subdivision scheme with finite mask defined on
Zs, s ≥ 1 that produces C1 limit functions. Assume that the first and second derived
schemes S[1], and S[2] exist. Then for all initial data p, the following holds:

(i) If M⊆ Rn is a smooth surface and T is the geodesic analoguous subdivision
scheme constructed from S, then T is C1 if T lp converges.

(ii) If T is the projection analogue of S obtained from a smooth projection mapping
P : Rn →M with P (x) = x for all x ∈M, then T is C1 if T lp converges.

(iii) If (G, ·) is a matrix group and T is the G-valued log-exp version of S, then T
is C1 if T lp converges.

Proof. This is a direct consequence of the proximity condition and Proposition
6.5.

Up to this point we have only considered surfaces embedded in the Euclidean
space for the geodesic approach. This assumption can be dropped since, by Nash’s
global embedding theorem [9], any abstract Riemannian manifold can be smoothly
embedded in some Euclidean space Rn. Therefore the following theorem is true:

Theorem 8.3. Both Theorem 8.1 (i)− (ii) and Theorem 8.2 (i)− (ii) also hold
if M is an abstract Riemannian manifold.

In a similar manner one can define the log-exp analogue for a general abstract Lie
group (G, ·) with Lie algebra g: If a subdivision rule is given by pi,j +

∑
r,s λr,svr,s,

as in (1.1), we define the associated log-exp rule by

pi,j · exp
( ∑

r,s

λr,svr,s

)
, where vr,s := log(p−1

i,j · pi+r,j+s) ∈ g.
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The mapping ”exp“ is the exponential mappping of G. The log function, which is
the inverse of the exponential mapping is not defined globally, but only for a certain
neighbourhood of 0 in g. Since we are only dealing with schemes with finite mask,
we can restrict ourselves to a small neighbourhood of the identity element e of G.
By Ado’s theorem [11] every Lie group is locally isomorphic to a local matrix group,
and therefore, for D(p) small enough, the previous results also apply to general Lie
groups:

Theorem 8.4. Theorem 8.1 (iii) and Theorem 8.2 (iii) also holds if (G, ·) is an
abstract Lie group.
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