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CHEMICAL TREES MINIMIZING ENERGY AND HOSOYA INDEX

CLEMENS HEUBERGER AND STEPHAN G. WAGNER

Abstract. The energy of a molecular graph is a popular parameter that is defined as the
sum of the absolute values of a graph’s eigenvalues. It is well known that the energy is related
to the matching polynomial and thus also to the Hosoya index via a certain Coulson integral.
Trees minimizing the energy under various additional conditions have been determined in the
past, e.g., trees with a given diameter or trees with a perfect matching. However, it is quite a
natural problem to minimize the energy of trees with bounded maximum degree—clearly, the
case of maximum degree 4 (so-called chemical trees) is the most important one. We will show
that the trees with given maximum degree that minimize the energy are the same that have
been shown previously to minimize the Hosoya index and maximize the Merrifield-Simmons
index, thus also proving a conjecture due to Fischermann et al. Finally, we show that the
minimal energy grows linearly with the size of the trees, with explicitly computable growth
constants that only depend on the maximum degree.

1. Introduction and statement of results

The energy is a graph parameter stemming from the Hückel molecular orbital (HMO)
approximation for the total π-electron energy, see [3, 4]. It is defined as the sum of the
absolute values of all eigenvalues of a graph: if λ1, λ2, . . . , λn denotes the spectrum of a graph
G (i.e. the spectrum of its adjacency matrix), one has

E(G) =

n
∑

i=1

|λi|.

For more information about the chemical importance of the energy as well as important
properties, we refer to the book [5] and the survey article [4]. It is known that there are many
interesting relations between the spectrum and matchings in the case of trees. This is due
to the fact that the characteristic polynomial φ(T, x) = det(xI −A(T )), where A(T ) denotes
the adjacency matrix of a tree T and I the identity matrix, can be expressed as [1]

(1) φ(T, x) =
∑

k≥0

(−1)km(T, k)xn−2k,
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2 CLEMENS HEUBERGER AND STEPHAN G. WAGNER

where m(T, k) denotes the number of matchings of T of cardinality k. It follows from this
representation that the energy can actually be computed by means of the Coulson integral [5]

(2) E(T ) =
2

π

∫ ∞

0
x−2 log

(

∑

k

m(T, k)x2k

)

dx.

This connection to matchings has been used in various instances to determine the extremal
values of the energy within certain classes of graphs (trees or graphs that are closely related
to trees, such as unicyclic graphs—see [9]). We mention, for instance, the recent paper of Yan
and Ye [11], where trees with prescribed diameter maximizing the energy are characterized.
An earlier example is the article by Zhang and Li [12], where trees with a perfect matching
are studied.

For obvious reasons, it is also a natural problem to study chemical trees (i.e., trees with
maximum degree ≤ 4) and generally trees with bounded maximum degree. Fischermann et
al. [2] noticed that the chemical trees minimizing the energy agree with those minimizing
the Hosoya index (i.e., the total number of matchings, see [8]) for a small number of vertices.
Indeed, we will show that this is always the case and also holds for arbitrary given maximum
degree. The resulting trees have also been shown to maximize the Merrifield-Simmons index
(i.e., the total number of independent vertex subsets, see [10]) in an earlier paper by the
authors [7]. We will show that essentially the same method can be used again. In view of the
representation (2), it is sufficient to minimize the polynomial

M(T, x) =
∑

k

m(T, k)xk

for all positive values of x. Surprisingly, it turns out that the result of this minimization
problem does not depend on x. In order to state our result, we use the notion of complete
d-ary trees: the complete d-ary tree of height h−1 is denoted by Ch, i.e., C1 is a single vertex
and Ch has d branches Ch−1, . . . , Ch−1, cf. Figure 1. It is convenient to set C0 to be the
empty graph.

(a) C1 for all d (b) C2 for d = 2 (c) C2 for d = 3 (d) C3 for d = 2

Figure 1. Complete d-ary trees

Let Tn,d be the set of all trees with n vertices and maximum degree ≤ d + 1. We define a
special tree T ∗

n,d as follows (see also [7]):

Definition 1.1. T ∗
n,d is the tree with n vertices that can be decomposed as

B0,1 B0,d−1· · · Bℓ−1,1 Bℓ−1,d−1· · · Bℓ,1 Bℓ,d−1· · · Bℓ,d

· · ·
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with Bk,1, . . . , Bk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ℓ and either Bℓ,1 = · · · = Bℓ,d = Cℓ−1 or
Bℓ,1 = · · · = Bℓ,d = Cℓ or Bℓ,1, . . . , Bℓ,d ∈ {Cℓ, Cℓ+1, Cℓ+2}, where at least two of Bℓ,1, . . . ,
Bℓ,d equal Cℓ+1. This representation is unique, and one has the “digital expansion”

(3) (d − 1)n + 1 =
ℓ
∑

k=0

akd
k,

where ak = (d−1)(1+(d+1)rk ) and 0 ≤ rk ≤ d−1 is the number of Bk,i that are isomorphic
to Ck+2 for k < ℓ, and

• aℓ = 1 if Bℓ,1 = · · · = Bℓ,d = Cℓ−1,
• aℓ = d if Bℓ,1 = · · · = Bℓ,d = Cℓ,
• or otherwise aℓ = d + (d − 1)qℓ + (d2 − 1)rℓ, where qℓ ≥ 2 is the number of Bℓ,i that

are isomorphic to Cℓ+1 and rℓ the number of Bℓ,i that are isomorphic to Cℓ+2.

The tree T ∗
n,d has already been shown to minimize the Hosoya index and maximize the

Merrifield-Simmons index over Tn,d [7]. In the present paper, we will prove the following
result:

Proposition 1.2. Let n and d be positive integers and x > 0. Then T ∗
n,d is the unique (up

to isomorphism) tree in Tn,d that minimizes M(T, x).

Note that the Hosoya index is exactly M(T, 1), and so it is a trivial corollary that T ∗
n,d

minimizes the Hosoya index. Our main theorem is another immediate consequence that
follows from (2):

Theorem 1. Let n and d be positive integers. Then T ∗
n,d is the unique (up to isomorphism)

tree in Tn,d that minimizes the energy.

In our final section, we will study the asymptotic behavior of the minimal energy:

Theorem 2. The energy of T ∗
n,d is asymptotically

E(T ∗
n,d) = αdn + O(log n),

where

(4) αd = 2
√

d(d − 1)2









∑

j≥1
j≡0 mod 2

d−j

(

cot
π

2j
− 1

)

+
∑

j≥1
j≡1 mod 2

d−j

(

csc
π

2j
− 1

)









is a constant that only depends on d.

2. Recursive Formulæ for Rooted Trees

Let x > 0 be fixed. In order to derive recursive formulæ for M(T, x), we fix a root r of T
and we define m1(T, k) to be the number of matchings of cardinality k covering the root and
m0(T, k) to be the number of matchings of cardinality k not covering the root.

We write Mj(T, x) =
∑

k mj(T, k)xk for j ∈ {0, 1}. Obviously, we have M(T, x) =
M0(T, x) + M1(T, x). The ratio

(5) τ(T, x) =
M0(T, x)

M(T, x)
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will be an important auxiliary quantity in our proofs. The following lemma summarizes
important properties of all these quantities.

Lemma 2.1. Let T1, . . . , Tℓ be the branches of the rooted tree T . Then the following recursive
formulæ hold:

M0(T, x) =

ℓ
∏

i=1

M(Ti, x),(6)

M1(T, x) = x

ℓ
∑

i=1

M0(Ti, x)

ℓ
∏

j=1
j 6=i

M(Tj , x),(7)

τ(T, x) =
1

1 + x
∑ℓ

i=1 τ(Ti, x)
.(8)

Proof. A matching not covering the root corresponds to a selection of an arbitrary matching
in each branch. If the matching of T is required to have cardinality k, the cardinalities of the
corresponding matchings in the branches must add up to k. This is exactly the coefficient of

xk in the product
∏ℓ

i=1 M(Ti, x). This proves (6).
Every matching of T covering the root contains exactly one edge between the root and

some branch Ti. In this branch, a matching not covering the root of Ti may be chosen, in all
other branches, arbitrary matchings are allowed. The cardinality of the matching of T is then
the sum of the cardinalities of the matchings in the branches plus one for the edge incident
to the root. This yields (7).

Finally, (8) is an immediate consequence of (5), (6) and (7). �

In the following, we will fix a positive integer d and consider only trees whose maximum
degree is ≤ d+1. First of all, we study the behavior of the sequence τ(Ch, x). It is convenient
to set M0(C0, x) = 0 and M1(C0, x) = 1 for the polynomials associated to the empty tree.
Note that this choice allows adding empty branches without disturbing the recursive formulæ
(6), (7), (8). Then (8) translates into a recursion for τ(Ch, k) as follows:

τ(C0, x) = 0, τ(C1, x) = 1, τ(Ch, x) =
1

1 + dxτ(Ch−1, x)
.

It is an easy exercise to prove the following explicit formula for τ(Ch, x) by means of induction:

Lemma 2.2. For every x > 0, we have

τ(Ch, x) =

(

1+
√

1+4dx
2

)h
−
(

1−
√

1+4dx
2

)h

(

1+
√

1+4dx
2

)h+1
−
(

1−
√

1+4dx
2

)h+1
.

Now, the limit behavior of τ(Ch, x) for positive x follows immediately.

Lemma 2.3. For every x > 0, the subsequence τ(C2h, x) is strictly increasing, whereas the
subsequence τ(C2h+1, x) is strictly decreasing. Both subsequences are converging to the same
limit 2

1+
√

1+4dx
and we have

0 = τ(C0, x) < τ(C2, x) < · · · <
2

1 +
√

1 + 4dx
< · · · < τ(C3, x) < τ(C1, x) = 1.
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From this point on, the method of [7], in particular Section 5, can be applied. It suffices
to replace d by dx at certain points of the proof. For the sake of completeness, we state the
relevant auxiliary results.

Lemma 2.4. Let T be a rooted tree and x > 0. Then

1

dx + 1
≤ τ(T, x) ≤ 1,

unless T is empty, where τ(T, x) = 0.

Proof. To prove this lemma, use induction and Lemma 2.1. �

Definition 2.5. Let T be a possibly rooted tree. Then we construct the outline graph of T
by replacing all maximal subtrees isomorphic to some Ck, k ≥ 0, by a special leaf Ck. In this
process, we attach (d + 1− r) leaves C0 to internal nodes (non-leaves and non-root) of degree
r with 2 ≤ r ≤ d. If T is a rooted tree with a root of degree r (1 ≤ r ≤ d), then we also
attach d − r leaves C0 to it.

The construction ensures that the outline graph of a rooted tree is a rooted d-ary tree, and
that the outline graph of an arbitrary tree of maximum degree ≤ d + 1 has only vertices of
degree 1 and d + 1. An example is shown in Figure 2. The outline of a rooted tree Ck is just
the rooted tree consisting of the single leaf Ck.

C2

C1 C0

Figure 2. Reduction to the outline graph (d = 2)

If enough information on the outline of a rooted tree is available, we can determine it from
its τ(T, x)-value.

Lemma 2.6. Let j ≥ 0 be an integer and T be a rooted tree whose outline does not contain
any Ck for 0 ≤ k ≤ j − 3 and x > 0. If

j is odd and τ(Cj , x) ≤ τ(T, x)

or
j is even and τ(T, x) ≤ τ(Cj , x),

then T ∈ {Cj−2, Cj}.
Proof. The inductive proof is analogous to that of [7, Lemma 3.4], the only difference being
the fact that here, sums are considered instead of products. �

3. Minimal Trees with Respect to x

We say that T is a minimal tree with respect to some x > 0, if it minimizes M(T, x) among
all trees in Tn,d.

The key lemma is an exchange lemma which gives a local optimality criterion.
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Lemma 3.1. Let x > 0 and let T be a minimal tree with respect to x. If there are (possibly
empty) rooted trees L1, . . .Ld, R1, . . . , Rd and a tree T0 such that T can be decomposed as

v w

L1

L2

Ld

R1

R2

Rd

. . .

...
...

T0

and such that τ(L1, x) < τ(R1, x) (after appropriate reordering of the Li’s and the Ri’s), then

max{τ(Li, x) : 1 ≤ i ≤ d} ≤ min{τ(Ri, x) : 1 ≤ i ≤ d}.
Proof. We need four auxiliary quantities:

• m00(T0, k): number of matchings of T0 of cardinality k where neither v nor w is
covered.

• m10(T0, k): number of matchings of T0 of cardinality k where v is covered, but w is
not.

• m01(T0, k): number of matchings of T0 of cardinality k where w is covered, but v is
not.

• m11(T0, k): number of matchings of T0 of cardinality k where both v and w are covered.

The corresponding polynomials are denoted by Mij(T0, x) =
∑

k mij(T0, k)xk. Define

G(L1, . . . , Ld, R1, . . . , Rd;x) := M00(T0, x)

(

1 + x
d
∑

i=1

τ(Li, x)

)(

1 + x
d
∑

i=1

τ(Ri, x)

)

+ M10(T0, x)

(

1 + x

d
∑

i=1

τ(Ri, x)

)

+ M01(T0, x)

(

1 + x

d
∑

i=1

τ(Li, x)

)

+ M11(T0, x).

Then it is easily seen that

M(T, x) = G(L1, . . . , Ld, R1, . . . , Rd;x)

d
∏

i=1

M(Li, x)

d
∏

i=1

M(Ri, x).

In view of the minimality of M(T, x), we must have

G(L1, . . . , Ld, R1, . . . , Rd;x) ≤ G(π(L1), . . . , π(Ld), π(R1), . . . , π(Rd);x)

for all permutations π of {L1, . . . , Ld, R1, . . . , Rd}. Ignoring the assumption τ(L1, x) <
τ(R1, x) for the moment, we see that the minimum of the first summand among all pos-
sible permutations is attained if

(9) max{τ(Li, x) : i = 1, . . . , d} ≤ min{τ(Ri, x) : i = 1, . . . , d} or

min{τ(Li, x) : i = 1, . . . , d} ≥ max{τ(Ri, x) : i = 1, . . . , d}
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by standard arguments (note that the sum of the two factors does not depend on the permu-
tation). The sum of the second and the third summand is minimized if max{τ(Li, x) :
i = 1, . . . , d} ≤ min{τ(Ri, x) : i = 1, . . . , d} in the case M10(T0, x) ≤ M01(T0, x) and
is minimized if min{τ(Li, x) : i = 1, . . . , d} ≥ max{τ(Ri, x) : i = 1, . . . , d} in the case
that M10(T0, x) ≥ M01(T0, x). Therefore, the minimality of G yields (9). The assumption
τ(L1, x) < τ(R1, x) implies the first possibility. �

The remaining steps of the proof in [7] do not depend on the particular recursions any
more, they only depend on the monotonicity properties in Lemma 2.3 and Lemma 2.6 as well
as the local optimality criterion in Lemma 3.1. The only difference is that all inequalities
have to reversed (and ρ(T ) has to be replaced by τ(T, x)). Thus the basis of the induction
can be formulated as follows.

Lemma 3.2. Let T be a minimal tree with respect to x > 0 and let j be the least nonnegative
integer such that the outline graph of T contains a Cj . Then the outline graph of T contains
Cj at most (d − 1) times and there is a vertex v of the outline graph of T which is adjacent
to all copies of Cj in the outline graph of T .

Proof. Analogous to the proof of [7, Lemma 4.3]. �

The inductive step can be formulated as follows.

Lemma 3.3. Let x > 0, T be a minimal tree with respect to x, k be a nonnegative integer
and assume that the outline graph of T can be decomposed as

Lk Rk

for some rooted trees Lk (possibly empty) and Rk with

k is even and τ(Ck, x) < τ(Lk, x) < τ(Ck+2, x)

or

k is odd and τ(Ck+2, x) < τ(Lk, x) < τ(Ck, x)

or

Lk = Ck.

Assume that Rk is non-empty and the outline of Rk does not contain any Cℓ with ℓ < k.
Then exactly one of the following assertions is true:

(1) Rk ∈ {Ck, Ck+1, Ck+3},
(2) Rk consists of d branches Ck+1, Ck+1, Cℓ3, . . . , Cℓd

with ℓi ∈ {k, k + 1, k + 2} for
3 ≤ i ≤ d,

(3) the outline of Rk can be decomposed as

v Rk+1

Bk,1 Bk,2 Bk,d−1
. . .
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for Bk,1, . . . , Bk,d−1 ∈ {Ck, Ck+2} and a non-empty rooted tree Rk+1 whose outline
does not contain any Cℓ for ℓ ≤ k. Furthermore,

k is even and τ(Ck+3, x) < τ(Lk+1, x) < τ(Ck+1, x)

or
k is odd and τ(Ck+1, x) < τ(Lk+1, x) < τ(Ck+3, x)

where Lk+1 is defined as follows:

vLk

Bk,1 Bk,2 Bk,d−1
. . .

Proof. Analogous to the proof of [7, Lemma 4.4]. �

Repeated application of Lemma 3.3 now yields Proposition 1.2 and thus also our main
theorem.

Proof of Proposition 1.2. Analogous to the proof of [7, Theorem 1]. �

4. The value of the minimal energy

Since the extremal trees are described in terms of complete d-ary trees, we have to study
the energy of these trees first. Note that, in view of (6) and the definition of τ(M,x), we have

M(Ch, x) =
1

τ(Ch, x)
· M(Ch−1, x)d.

Iterating this equation yields

M(Ch, x) =

h
∏

j=1

τ(Cj, x)−dh−j

,

and in view of Lemma 2.2 this gives us the explicit formula

M(Ch, x) =
h
∏

j=1

(

Qj+1(x)

Qj(x)

)dh−j

,

where

Qj(x) :=
u(x)j − v(x)j

u(x) − v(x)
,

u(x) :=
1 +

√
1 + 4dx

2
,

v(x) :=
1 −

√
1 + 4dx

2
.

The denominator u(x) − v(x) has been introduced such that Qj(x) is always a polynomial:
Indeed, the recursion

Q1(x) ≡ 1, Q2(x) ≡ 1, Qj(x) = Qj−1(x) + dxQj−2(x)

holds, and it follows by induction that Qj is a polynomial of degree ⌊(j − 1)/2⌋.
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Now we have

M(Ch, x) = Qh+1(x)Q1(x)−dh−1

h
∏

j=2

Qj(x)d
h+1−j

h
∏

j=2

Qj(x)−dh−j

= Qh+1(x)
h
∏

j=1

Qj(x)(d−1)dh−j

,

where the fact that Q1(x) = 1 has been used. It turns out that the zeros of Qj can be
explicitly computed. If Qj(x) = 0, then u(x)j = v(x)j , and so

u(x)

v(x)
=

1 +
√

1 + 4dx

1 −
√

1 + 4dx

has to be an j-th root of unity ζ. Then,

x = − ζ

d(1 + ζ)2
= − 1

2d(1 + Re(ζ))
.

Thus, x has to be of the form

x = − 1

2d
(

1 + cos 2kπ
j

)

for some 0 ≤ k < j
2 . However, note that x = − 1

4d is also a zero of the denominator u(x) −
v(x) =

√
1 + 4dx, and that there are no double zeros, since the derivative is given by

d

dx

(

u(x)j − v(x)j
)

=
jd√

1 + 4dx

(

u(x)j−1 + v(x)j−1
)

,

which cannot be 0 if u(x) = ζv(x) for a j-th root of unity ζ 6= −1. Hence, the zeros of Qj are
precisely the numbers

− 1

2d
(

1 + cos 2kπ
j

) , k = 1, 2, . . . ,

⌊

j − 1

2

⌋

,

and it follows from (1) that the characteristic polynomial φ(Ch, x) can be written as

φ(Ch, x) = xnM(Ch,−x−2) = xnQh+1(−x−2)

h
∏

j=1

Qj(−x−2)(d−1)dh−j

.

Hence, the nonzero eigenvalues of φ(Ch, x) are

±
√

2d

(

1 + cos
2kπ

j

)

= ±2
√

d cos
kπ

j
, k = 1, 2, . . . ,

⌊

j − 1

2

⌋

,

with multiplicity (d − 1)dh−j for j = 1, 2, . . . , h and multiplicity 1 for j = h + 1. If follows
that the energy of Ch is given by

E(Ch) =





h
∑

j=1

(d − 1)dh−j

⌊(j−1)/2⌋
∑

k=1

4
√

d cos
kπ

j



+

⌊h/2⌋
∑

k=1

4
√

d cos
kπ

h + 1
.
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Noticing that
⌊(j−1)/2⌋
∑

k=1

cos
kπ

j
=







1
2

(

cot π
2j − 1

)

j ≡ 0 mod 2,

1
2

(

csc π
2j − 1

)

j ≡ 1 mod 2,

this reduces to

E(Ch) = 2
√

d(d − 1)









h
∑

j=1
j≡0 mod 2

dh−j

(

cot
π

2j
− 1

)

+

h
∑

j=1
j≡1 mod 2

dh−j

(

csc
π

2j
− 1

)









+







2
√

d
(

csc π
2(h+1) − 1

)

h ≡ 0 mod 2,

2
√

d
(

cot π
2(h+1) − 1

)

h ≡ 1 mod 2.

Next, we determine the asymptotic behavior of the energy of Ch:

Lemma 4.1. The energy of a complete d-ary tree Ch satisfies

E(Ch) = αd|Ch| + O(1),

where |Ch| denotes the number of vertices of Ch and αd is given by (4).

Proof. Note that |Ch| = dh−1
d−1 = dh

d−1 + O(1) and cot π
2j = 2j

π + O(1), csc π
2j = 2j

π + O(1), so

that

E(Ch) = 2
√

d(d − 1)dh









h
∑

j=1
j≡0 mod 2

d−j

(

cot
π

2j
− 1

)

+

h
∑

j=1
j≡1 mod 2

d−j

(

csc
π

2j
− 1

)









+
4
√

dh

π
+ O(1)

= αd|Ch| − 2
√

d(d − 1)dh









∑

j>h
j≡0 mod 2

d−j

(

cot
π

2j
− 1

)

+
∑

j>h
j≡1 mod 2

d−j

(

csc
π

2j
− 1

)









+
4
√

dh

π
+ O(1)

= αd|Ch| − 2
√

d(d − 1)dh
∑

j>h

d−j

(

2j

π
+ O(1)

)

+
4
√

dh

π
+ O(1)

= αd|Ch| − 2
√

d(d − 1)dh

(

2hd−h

(d − 1)π
+ O(d−h)

)

+
4
√

dh

π
+ O(1)

= αd|Ch| + O(1),

as claimed. �

Now, we are able to prove our main asymptotic result:

Proof of Theorem 2. Using the decomposition of T ∗
n,d as shown in Definition 1.1, we note that
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



ℓ−1
∏

k=0

d−1
∏

j=1

M(Bk,j, x)









d
∏

j=1

M(Bℓ,j, x)



 ≤ M(T ∗
n,d, x)

≤





ℓ−1
∏

k=0

d−1
∏

j=1

M(Bk,j, x)









d
∏

j=1

M(Bℓ,j, x)



 (1 + x)d(ℓ+1)

for arbitrary x > 0, since every matching in the union
⋃

k

⋃

j Bk,j is also a matching in T ∗
n,d,

whereas every matching of T ∗
n,d consists of a matching in

⋃

k

⋃

j Bk,j and a subset of the

remaining ≤ d(ℓ + 1) edges. Making use of (2) once again, this implies that

ℓ−1
∑

k=0

d−1
∑

j=1

E(Bk,j) +

d
∑

j=1

E(Bℓ,j) ≤ E(T ∗
n,d)

≤
ℓ−1
∑

k=0

d−1
∑

j=1

E(Bk,j) +

d
∑

j=1

E(Bℓ,j) +
2

π
d(ℓ + 1)

∫ ∞

0
x−2 log(1 + x2) dx.

Since
∫∞
0 x−2 log(1 + x2) dx = π, this implies that

E(T ∗
n,d) =

ℓ−1
∑

k=0

d−1
∑

j=1

E(Bk,j) +

d
∑

j=1

E(Bℓ,j) + O(ℓ)

=

ℓ−1
∑

k=0

d−1
∑

j=1

(αd|Bk,j| + O(1)) +

d
∑

j=1

(αd|Bℓ,j| + O(1)) + O(ℓ)

= αd





ℓ−1
∑

k=0

d−1
∑

j=1

|Bk,j| +
d
∑

j=1

|Bℓ,j|



+ O(ℓ)

= αd(|T ∗
n,d| − O(ℓ)) + O(ℓ)

= αdn + O(ℓ).

It is not difficult to see that ℓ = O(log n) (this follows from (3), see [6] for a detailed analysis),
and so we finally have

E(T ∗
n,d) = αdn + O(log n),

which finishes the proof. �

The following table shows some numerical values of the constants αd:
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d αd

2 1.102947505597
3 0.970541979946
4 0.874794345784
5 0.802215758706
6 0.744941364903
7 0.698315075830
8 0.659425329682
9 0.626356806404
10 0.597794680849
20 0.434553264777
50 0.279574397741
100 0.198836515295
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