
FoSP
FoSPAlgorithmen &

mathematische
Modellierung Forschungsschwerpunkt

Algorithmen und mathematische Modellierung

Complements and Signed Digit Representations: Analysis of

a Multi-Exponentiation-Algorithm of Wu, Lou, Lai and

Chang

Clemens Heuberger and Helmut Prodinger

Project Area(s):

Analysis of Digital Expansions with Applications in Cryptography

Institut für Optimierung und Diskrete Mathematik (Math B)

Report 2008-8, April 2008

COMPLEMENTS AND SIGNED DIGIT REPRESENTATIONS:
ANALYSIS OF A MULTI-EXPONENTIATION-ALGORITHM OF WU,

LOU, LAI AND CHANG

CLEMENS HEUBERGER AND HELMUT PRODINGER

Abstract. Wu, Lou, Lai and Chang proposed a multi-exponentiation algorithm using
binary complements and the non-adjacent form. The purpose of this paper is to show
that neither the analysis of the algorithm given by its original proposers nor that by other
authors are correct. In fact it turns out that the complement operation does not have
significant influence on the performance of the algorithm and can therefore be omitted.

1. Introduction

An efficient way to compute a power an is to use the binary expansion
∑

j dj2
j of n and

compute an by a square and multiply algorithm [10],

a
P`−1

j=0 dj2
j

= (((ad`−1)2 · ad`−2)2 · · · ad1)2ad0 ,

where the number of squarings needed is `− 1, whereas the number of multiplications by
adj equals to the number of nonzero dj minus 1 (under the assumption that d`−1 = 1),
because multiplications with a0 can be omitted. Among the various possible optimisations
is the use of signed digit representations, i.e., allowing digits −1 also, which results in
multiplications by a−1. This is of particular interest if a−1 is known or can be computed
easily, e.g., in the point group of an elliptic curve.

Some cryptosystems also need multi-exponentiation
∏D

j=1 a
nj

j (usually for D ∈ {2, 3}).
A trivial approach would be to compute a

nj

j separately for j ∈ {1, . . . , D} and multiply the

results, however, Straus1 [15] demonstrated that an interleaved approach leads to better
results. For simplicity of exposition, we restrict ourselves to D = 2 at this point, although

2000 Mathematics Subject Classification. 11A63; 68W40 94A60.
Key words and phrases. Signed digit representation; Multi-exponentiation; Complement; Non-Adjacent-

Form; Canonical signed digit representation.
This paper was written while C. Heuberger was a visitor at the Center of Experimental Mathematics

at the University of Stellenbosch. He thanks the center for its hospitality. He is also supported by the
Austrian Science Foundation FWF, project S9606, that is part of the Austrian National Research Network
“Analytic Combinatorics and Probabilistic Number Theory.”

H. Prodinger is supported by the NRF grant 2053748 of the South African National Research Foundation
and by the Center of Experimental Mathematics of the University of Stellenbosch.

1This approach is frequently called Shamir’s trick, we refer to [2] for a discussion of this attribution.
Similar suggestions have been made in [11] and [4].

1

2 CLEMENS HEUBERGER AND HELMUT PRODINGER

the method works for arbitrary D. For computing ambn, we take binary expansions m =∑`−1
j=0 cj2

j and n =
∑`−1

j=0 dj2
j and compute

a
P`−1

j=0 cj2
j

b
P`−1

j=0 dj2
j

= (((ac`−1bd`−1)2ac`−2bd`−2)2 . . . ac1bd1)2ac0bd0 .

If acbd are precomputed for all admissible pairs of digits (c, d), then the number of squar-
ings equals ` − 1 and the number of multiplications by acjbdj equals the joint Hamming
weight, i.e., the number of pairs (cj, dj) 6= (0, 0), minus one (under the assumption that
(c`−1, d`−1) 6= (0, 0)) plus the time needed for the precomputation, which is clearly constant
and does not depend on the length of the expansion. In dimension D = 2, pairs of integers
can be identified with complex numbers as proposed in [11], but this is merely an other
way to formulate the procedure. Allowing negative digits again, redundancy can be used
to decrease the joint Hamming weight.

As in the case of dimension 1, there is a syntactic condition which yields expansions of
minimal joint Hamming weight, cf. [14], [5], [12]. In dimension D = 2, it is shown that
these optimal expansions have expected Hamming weight (1/2)` + O(1), so that the total
expected number of multiplications equals2 (3/2)` + O(1), cf. also [1] and [6]. We refer to
[7] for a more detailed introduction with more references.

The authors of [17] present an alternative approach in dimension D involving the com-
plement of the binary expansion and claim that the expected number of multiplications
of their algorithm equals 1.304` + O(1). This was followed by [16] whose authors claim to
correct the result [17] and that the same algorithm needs 1.471` + O(1) multiplications on
average. The purpose of this note is to show that both results are incorrect. We explain
why the result cannot be better than the above optimal joint expansions (Theorem 1),
show that the algorithm essentially corresponds to taking the NAF for both arguments
(Theorem 2) and give the correct expected number (14/9)` + O(1) = 1.555 . . . ` + O(1) of
multiplications (Theorem 3).

In Section 2, we collect notations and well-known results on digit expansions. Section 3
presents the algorithm proposed by [17], which is analysed in Section 4. Finally, in Sec-
tion 5, we discuss where the errors in the probabilistic arguments of [17] and [16] lie.

2. Digit Expansions

2.1. Digit Expansions of Integers. A signed digit expansion of an integer n is a word
d`−1 . . . d0 over the alphabet {−1, 0, 1} such that n = value(d`−1 . . . d0) =

∑`−1
j=0 dj2

j. The

(Hamming) weight weight(d`−1 . . . d0) of d`−1 . . . d0 is the number of non-zero digits dj.
When all digits are in {0, 1}, we speak of the standard binary expansion of n (which

must then be non-negative). The standard binary expansion of n is denoted by Binary(n).
While every integer n admits infinitely many signed digit expansions, one special expan-

sion has attracted particular attention.

Definition 2.1. A signed digit expansion d`−1 . . . d0 is called a Non-Adjacent-Form (NAF),
if djdj+1 = 0 for all j, i.e., there are no adjacent non-zero digits.

2The authors of [17] and [16] erroneously write 1.503` without further comment.

COMPLEMENTS AND SIGNED DIGIT REPRESENTATIONS 3

Reitwiesner [13] showed that every integer n admits a unique NAF, denoted by NAF(n),
and that NAF(n) minimises the Hamming weight over all signed digit expansions of n. The
NAF is known under various names, e.g., the canonical signed digit expansion.

The ones’ complement of a standard binary expansion d`−1 . . . d0 is d̂`−1 . . . d̂0, where

d̂ = 1− d =

{
0 d = 1,

1 d = 0.

It is immediate from the definition that

value(d`−1 . . . d0) = 2` − value(d̂`−1 . . . d̂0)− 1.

This can be seen as another signed digit expansion,

value(d`−1 . . . d0) = value(1(−d̂`−1) . . . (−d̂1)(−d̂0 − 1)),

with the exception that the least significant digit is now in {−1,−2}.

2.2. Digit Expansion of Vectors. A signed digit joint expansion of an integer vector
(m

n
) is a word d(`−1) . . .d(0) over the alphabet {−1, 0, 1}2 such that(m

n

)
= value(d(`−1) . . .d(0)) =

`−1∑
j=0

dj2
j.

The joint (Hamming) weight of d(`−1) . . .d(0) is the number of j with d(j) 6= 0 := (0
0
). The

components of d(j) are written as (
d
(j)
1

d
(j)
2

).

So, the digits are now column vectors. One simple way to obtain such a joint expansion

is to independently choose two signed-binary expansions d
(`−1)
1 . . . d

(0)
1 and d

(`−1)
2 . . . d

(0)
2 of

m and n, respectively, and to write them on top of each other. In order to achieve small
joint weight, one might take the NAFs of m and n and write them on top of each other;
the expected joint weight is (5/9)` + O(1), cf. [6].3

Solinas [14] discussed the “Joint Sparse Form”, a joint expansion which minimises the
joint weight over all joint expansions of the same pair of integers. Here, we use a simplified
version introduced in [5].

Definition 2.2. A joint expansion d(`−1) . . .d(0) is called a Simple Joint Sparse Form
(SJSF), if the following two conditions hold for all j ≥ 0:

If |d(j)
1 | 6= |d

(j)
2 |, then |d(j+1)

1 | = |d(j+1)
2 |,(1)

If |d(j)
1 | = |d

(j)
2 | = 1, then d(j+1) = 0.(2)

3The heuristic argument to see this would be that the expected number of zeros in a NAF is (2/3)`+O(1),
thus the expected number of digits vectors 0 when writing two NAFs on top of each other should be
(4/9)` + O(1), which leaves (5/9)` + O(1) for the Hamming weight. As we shall see when discussing the
errors in [17] and [16], such arguments do not take possible dependence of the digits into account and
might lead to errors. Therefore, we refer to the precise analysis in [6].

4 CLEMENS HEUBERGER AND HELMUT PRODINGER

In [5], we proved that every pair of integers (m
n
) admits exactly one SJSF, denoted by

SJSF(m
n
), and that SJSF(m

n
) minimises the joint weight over all joint expansions of (m

n
)

with digits in {−1, 0, 1}. In [6], it was shown that the expected joint weight of a SJSF of
length ` is (1/2)` + O(1).

3. Multi-Exponentiation Algorithm

We now present the algorithm of [17] in Algorithm 1. We assume that ad1
1 ad2

2 have been
precomputed for (d1, d2) ∈ {−1, 0, 1}2 and are used in Lines 13 and 15. It might happen

that d
(0)
k = −2, in that case, two multiplications are needed in Line 15. Note that the

length of the NAF may exceed the length of the standard binary expansion by at most 1.

Algorithm 1 Wu, Lou, Lai and Chang’s [17] Algorithm for Multi-Exponentiation

Input: a1, a2 ∈ G (some Abelian group), n1, n2 ∈ N
Output: b = an1

1 an2
2

1: ` = blog2(max(n1, n2))c+ 1
2: for k = 1, 2 do

3: b
(`−1)
k . . . b

(0)
k ← Binary(nk)

4: if weight(b
(`−1)
k . . . b

(0)
k) > `/2 then

5: (d
(`)
k . . . d

(0)
k)← NAF(value((b

(`−1)
k − 1) . . . (b

(0)
k − 1)))

6: d
(`)
k ← d

(`)
k + 1

7: d
(0)
k ← d

(0)
k − 1

8: else
9: (d

(`)
k . . . d

(0)
k)← NAF(nk)

10: end if
11: {We have nk = value(d

(`)
k . . . d

(0)
k)}

12: end for

13: b← a
d
(`)
1

1 a
d
(`)
2

2

14: for j = `− 1 downto 0 do

15: b← b2a
d
(j)
1

1 a
d
(j)
2

2

16: {We have b = a
P`

k=j d
(k)
1 2k−j

1 a
P`

k=j d
(k)
2 2k−j

2 }
17: end for

The idea of the algorithm is the following: If the weight of the binary expansion of the
exponent nj is large (> `/2), then nj is represented by its complement and the NAF of
the complement is used. The heuristic is that reducing the weight of the expansion before
converting it to its NAF should result in a lower weight of the NAF.

Note that after execution of Line 12 of Algorithm 1, we have a joint expansion d(`) . . .d(0)

of n = (n1

n2
) where d(j) ∈ {−1, 0, 1}2 for j > 0 and d(0) ∈ {−2,−1, 0, 1}2. The number of

COMPLEMENTS AND SIGNED DIGIT REPRESENTATIONS 5

group multiplications is ` (for the squarings) plus

weight1(d
(`) . . .d(0)) :=

∑̀
j=0

max{|d(j)
k | : k ∈ {1, 2}}

minus 1 (no multiplication is required for the most significant digit). Note that for expan-
sions with digits {−1, 0, 1}, the notions of weight1 and weight agree.

4. Analysis of the Algorithm

We will now extend the optimality proof for the SJSF from [5] to the case of digits from
{−2,−1, 0, 1, 2}. It turns out that we can allow arbitrary digits of absolute value at most
2 without changing the result. In fact, we do not even need any particular properties of
the SJSF.

Theorem 1. Let d(`−1) . . .d(0) be a word over the alphabet {−2,−1, 0, 1, 2}2 and n =
value(d(`−1) . . .d(0)). Then we have

weight1(d
(`−1) . . .d(0)) ≥ weight1(SJSF(n)) = weight(SJSF(n)),

i.e., SJSF(n) minimises weight1 over all expansions of n with digits in {−2,−1, 0, 1, 2}.

Before proving the theorem, we note that this already shows that the analysis in [17]
and [16] cannot be correct:

Corollary 4.1. The expected number of group multiplications needed by Algorithm 1 is
at least (3/2)` + O(1).

Proof of Corollary 4.1. For every n, the number of multiplications used by Algorithm 1 is
not less then the number of multiplications needed when using the SJSF, which is known
to be (3/2)` + O(1) from [6]. �

The essential step in the proof of Theorem 1 is the following lemma.

Lemma 4.2. Let d(`−1) . . .d(0) be a word over the alphabet {−2,−1, 0, 1, 2}2 where k > 0
digit vectors contain a digit of absolute value 2. Then there is a word c(`′−1) . . . c(0)

over the alphabet {−2,−1, 0, 1, 2}2 with less than k digit vectors containing a digit of ab-
solute value 2, value(d(`−1) . . .d(0)) = value(c(`′−1) . . . c(0)) and weight1(d

(`−1) . . .d(0)) ≥
weight1(c

(`′−1) . . . c(0)).

Proof. We prove the lemma by induction on weight1(d
(`−1) . . .d(0)). Choose j maximal such

that d(j) contains a digit of absolute value 2. We write d(j) = 2q + r with q ∈ {−1, 0, 1}2
and r ∈ {0, 1}2. We have weight1(d

(`−1) . . .d(j+2)(d(j+1) + q)) ≤ weight1(d
(`−1) . . .d(0))− 1

and d(`−1) . . .d(j+2)(d(j+1) + q) is an expansion with digits from {−2,−1, 0, 1, 2}, where
digits of absolute value 2 can only occur in (d(j+1) + q). Thus, by induction hypothesis,
there is an expansion c(`′−1) . . . c(j+1) with digits from {−1, 0, 1}, value(c(`′−1) . . . c(j+1)) =
value(d(`−1) . . .d(j+2)(d(j+1) + q)) and

weight1(c
(`′−1) . . . c(j+1)) ≤ weight1(d

(`−1) . . .d(j+2)(d(j+1) + q)).

6 CLEMENS HEUBERGER AND HELMUT PRODINGER

Setting c(j)c(j−1) . . . c(0) = rd(j−1) . . .d(0), we see that

weight1(c
(`′−1) . . . c(0)) ≤ weight1(d

(`−1) . . .d(j+2)(d(j+1) + q)) + weight1(rd
(j−1) . . .d(0))

≤ weight1(d
(`−1) . . .d(j+2)d(j+1)) + 1 + 1 + weight1(d

(j−1) . . .d(0))

= weight1(d
(`−1) . . .d(0))

and that c(`′−1) . . . c(0) satisfies the requirements of the lemma. �

We are now able to prove Theorem 1.

Proof of Theorem 1. Repeated application of Lemma 4.2 shows that there is an expansion
c(`′−1) . . . c(0) with digits from {−1, 0, 1} with value(c(`−1) . . . c(0)) = n and

weight1(d
(`−1) . . .d(0)) ≥ weight1(c

(`−1) . . . c(0)).

Taking into account that weight1(c
(`−1) . . . c(0)) = weight(c(`−1) . . . c(0)) and the optimal-

ity of the SJSF [5, Theorem 2] completes the proof of the theorem. �

The next question is how Algorithm 1 compares with the simple strategy of directly
using (NAF(n1)

NAF(n2)
).

Theorem 2. Let b`−1 . . . b0 be a standard binary expansion and b̂`−1 . . . b̂0 its complement.
Then

|weight(NAF(value(b`−1 . . . b0)))− weight(NAF(value(b̂`−1 . . . b̂0)))| ≤ 2.

This means that the strategy of taking the NAF of the complement of a number at
best induces a saving of 2 in the weight, which is subsequently lost when adding the two
corrective terms. In other words, this strategy never yields a lower weight than a direct
use of the NAF.

Proof of Theorem 2. The NAF can be computed from the standard binary expansion of
a positive integer n by a transducer automaton from right to left (cf. [8, Figure 2]), re-
produced here as Figure 1. For typographical reasons, negative digits −d are written as
d̄.

In order to compare the NAFs of n and its complement, we compute these NAFs simul-
taneously by one transducer. This transducer is shown in Figure 2. Here, ⊥ denotes the
end of the input and ε denotes the empty word.

The transducer reads the standard binary expansion of n from right to left and writes
vectors of digits containing the NAF of n and its complement. The labels of the states
correspond to carries, the “binary point” indicates the look-ahead, i.e., the number of
digits read minus the number of digits written. The transducer can be decomposed in
four strongly connected components: C1 = {0

0
} (the initial state only), C2 = {.0

1
, .1

0
},

C3 = {.0
2
, .1

1
, .2

0
} and C4 = {terminal state}.

When leaving C1, the weights of the two output rows are trivially equal. After leaving
C2, the difference of the weights is at most 1, as there is only one cycle in C2 and its weights
are balanced. Within C3, the weight of the output in both rows is always the same. When

COMPLEMENTS AND SIGNED DIGIT REPRESENTATIONS 7

0 .1 .2

0|
ε

1|ε

0|0

1|0

0|1

1|1

0|0

1|0

Figure 1. Transducer for converting the standard binary expansion to the NAF.

0
0

. 0
1

. 1
0

. 0
2

. 2
0

. 1
1

0|ε

1|ε

⊥|ε1|
01

⊥| 0
1

0| 01̄

0|
10

⊥|
1
0

1| 1̄0

⊥|
0
1

0
0

0|
00

1|
00

⊥| 1
0 0
0

1|
00

0|
00

⊥| 11

0|
11̄

1|
1̄1

Figure 2. Transducer converting a standard binary expansion d`−1 . . . d0

into
(

NAF(value(d`−1...d0))

NAF(value(dd`−1...cd0))

)
, i.e., the NAF and the NAF of the complement.

leaving C3, another difference of at most 1 might occur. Summing up, the weight difference
is at most 2. �

We can now quantify the performance of Algorithm 1:

Theorem 3. For a random pair (n1, n2) with 0 ≤ n1, n2 < 2` (all of these pairs are consid-
ered to be equally likely), the expected number of multiplications when executing Algorithm 1
is

14

9
` + O(1) = 1.555 . . . ` + O(1).

8 CLEMENS HEUBERGER AND HELMUT PRODINGER

Proof. Before considering pairs, it is essential to understand the effect of Algorithm 1 on
a single integer, which is encoded by the transducer automaton in Figure 2. We number
the states of the transducer as follows:

number 1 2 3 4 5 6

state 0
0

.0
1

.1
0

.0
2

.2
0

.1
1

The transition probability matrix of the transducer is

P =



0 1
2

1
2

0 0 0

0 0 1
2

1
2

0 0

0 1
2

0 0 1
2

0

0 0 0 1
2

0 1
2

0 0 0 0 1
2

1
2

0 0 0 1
2

1
2

0


,

i.e., the entry in row i, column j, is the probability of a transition from state i to state j.
These are 0 or 1/2 depending on whether there is a transition from i to j at all; the digits
of the standard binary expansion are independently uniformly distributed.

The probability of reaching state j after reading k digits is the jth component of

(1, 0, 0, 0, 0, 0)P k =

(
0, 2−k, 2−k,

1

3
+ O(2−k),

1

3
+ O(2−k),

1

3
+ O(2−k)

)
.

When leaving States 4 or 5, the transducer writes a digit 0, when leaving State 6, a non-
zero digit is written. The situation in States 2 and 3 is more complicated as it depends
on the weight of the standard binary expansion, however, since we are in these states with
probability 2−k, we do not have to deal with this problem. Summing up, the probability
that the transducer writes a digit 0 as the (k − 1)st output digit is pk−2 := 2/3 + O(2−k).

Let now d(`) . . .d(0) be the joint expansion of (n1, n2) produced by Algorithm 1, where
n1 and n2 are independent and uniformly distributed random variables on {0, . . . , 2` − 1}.
Denote by zeros(d(`) . . .d(0)) the number of digit vectors 0 in d(`) . . .d(0), which implies that
zeros(d(`) . . .d(0)) = ` + 1−weight(d(`) . . .d(0)). Then the expectation of zeros(d(`) . . .d(0))
can be computed as

E
(
zeros(d(`) . . .d(0))

)
=

∑̀
k=0

P
(
d(k) = 0

)
=

∑̀
k=0

P
(
d

(k)
1 = 0

)
P

(
d

(k)
2 = 0

)
=

∑̀
k=0

p2
k =

∑̀
k=0

(
4

9
+ O(2−k)

)
=

4

9
` + O(1),

where we used the fact that the random variables d
(k)
1 and d

(k)
2 are independent (which is a

consequence of the fact that n1 and n2 have been assumed to be independent). From this,
we see that

E
(
weight(d(`) . . .d(0))

)
= ` + 1− E

(
zeros(d(`) . . .d(0))

)
=

5

9
` + O(1),

COMPLEMENTS AND SIGNED DIGIT REPRESENTATIONS 9

and the results follows by adding the unavoidable ` squarings. �

Remark 4.3. This proof can easily be generalised to higher dimensions. In dimension D,
we obtain

E
(
weight(d(`) . . .d(0))

)
=

(
1−

(
2

3

)D)
` + O(1).

On the other hand, the approach in [6] can be generalised to explicitly give the constants
now hidden in the error term at the cost of more complicated transducers and a delicate
analysis of the influence of the weight of the standard binary expansion, cf. [9].

5. Errors in [17] and [16]

The purpose of this section is to point out where the errors in [17] and [16] occurred.
The authors of [17] write on page 1072 in Section 4:

“Besides, the average proportion of non-zeros in binary representation is
1
2

and in canonical-signed-digit binary representation is 1
3
. So the average

proportion of zeros in the proposed algorithm is (1− 1
2
× 1

3
) = 5

6
.”

This assertion is erroneous, because the multiplication of 1/2 and 1/3 cannot be justified
in any way: The weight of a NAF is roughly 1/3 times the length of the expansion, not
1/3 times the weight of the standard binary expansion. Moreover, the weights of the NAF
and the standard binary expansion are only asymptotically independent, cf. [9].

The authors of [16] write on page 1851:

“Before the complement recoding, each bit of E = (ek−1 . . . e1e0)2 assumes a
value of 0 or 1 with equal probability, i.e. P (ei = 0) = P (ei = 1) = 1/2 for
0 ≤ i ≤ k − 1, and there is no dependency between any two bits. After the
complement recoding, it should be a value of 0 or 1 with unequal probability,
i.e. P (ei = 0) = 3/4 and P (ei = 1) = 1/4 for 0 ≤ i ≤ k − 1. Certainly, there
is still no dependency between any two bits.”

By construction, there is some dependence between the bits, as at most half of them can
be equal to 1. Next, the claimed probabilities 3/4 and 1/4 are incorrect, this has also been
discussed in detail by Yen, Lien and Moon [18] while correcting erroneous claims in [3].

6. Conclusions

We analysed the multi-exponentiation algorithm from [17]. It turns out that the perfor-
mance estimates in [17] and [16] are based on incorrect probabilistic assumptions and are
wrong. The method due to Solinas [14] or its equivalent formulations have better perfor-
mance. Even worse, taking the complement does not have any positive effect, because the
non-adjacent form essentially ignores the influence of the complement. Thus the proposed
algorithm performs as if one would simply take the NAF for both arguments, which cor-
responds to the method proposed by [4] (without improvements) and is known to be not
optimal.

10 CLEMENS HEUBERGER AND HELMUT PRODINGER

References

[1] R. M. Avanzi, The complexity of certain multi-exponentiation techniques in cryptography, J. Cryptol-
ogy 18 (2005), 357–373.

[2] D. Bernstein, Pippenger’s exponentiation algorithm, Preprint. Available at http://cr.yp.to/
papers.html, 2002.

[3] Chin-Chen Chang, Ying-Tse Kuo, and Chu-Hsing Lin, Fast algorithms for common-multiplicand mul-
tiplication and exponentiation by performing complements, 17th International Conference on Advanced
Information Networking and Applications, 2003. AINA 2003, 2003, pp. 807–811.

[4] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, Complexity and fast algorithms for multiexponentia-
tions, IEEE Trans. Comput. 49 (2000), 141–147.

[5] P. J. Grabner, C. Heuberger, and H. Prodinger, Distribution results for low-weight binary represen-
tations for pairs of integers, Theoret. Comput. Sci. 319 (2004), 307–331.

[6] P. J. Grabner, C. Heuberger, H. Prodinger, and J. Thuswaldner, Analysis of linear combination
algorithms in cryptography, ACM Trans. Algorithms 1 (2005), 123–142.

[7] C. Heuberger and J. Muir, Minimal weight and colexicographically minimal integer representations,
J. Math. Cryptol. 1 (2007), 297–328.

[8] C. Heuberger and H. Prodinger, Analysis of alternative digit sets for nonadjacent representations,
Monatsh. Math. 147 (2006), 219–248.

[9] , The Hamming weight of the Non-Adjacent-Form under various input statistics, Period. Math.
Hungar. 55 (2007), 81–96.

[10] D. E. Knuth, Seminumerical algorithms, third ed., The Art of Computer Programming, vol. 2,
Addison-Wesley, 1998.

[11] K. Z. Pekmestzi, Complex number multipliers, IEE Proceedings — Computers and Digital Techniques
136 (1989), 70–75.

[12] J. Proos, Joint sparse forms and generating zero columns when combing, Tech. Report CORR 2003-
23, Centre for Applied Cryptographic Research, University of Waterloo, 2003, available at http:
//www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-23.ps.

[13] G. W. Reitwiesner, Binary arithmetic, Advances in computers, vol. 1, Academic Press, New York,
1960, pp. 231–308.

[14] J. A. Solinas, Low-weight binary representations for pairs of integers, Tech. Report CORR 2001-
41, Centre for Applied Cryptographic Research, University of Waterloo, 2001, available at http:
//www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps.

[15] E. Straus, Addition chains of vectors (Problem 5125), Amer. Math. Monthly 71 (1964), 806–808.
[16] Da-Zhi Sun, Jin-Peng Huai, Ji-Zhou Sun, and Jia-Wan Zhang, Computational efficiency analysis of

Wu et al.’s fast modular multi-exponentiation algorithm, Appl. Math. Comput. 190 (2007), 1848–
1854.

[17] Chia-Long Wu, Der-Chyuan Lou, Jui-Chang Lai, and Te-Jen Chang, Fast modular multi-
exponentiation using modified complex arithmetic, Appl. Math. Comput. 186 (2007), 1065–1074.

[18] Sung-Ming Yen, Wei-Chih Lien, and SangJae Moon, Inefficiency of common-multiplicand multipli-
cation and exponentiation algorithms by performing binary complements, Appl. Math. Comput. 189
(2007), 285–290.

Institut für Mathematik B, Technische Universität Graz, Austria
E-mail address: clemens.heuberger@tugraz.at

Department of Mathematics, University of Stellenbosch, South Africa
E-mail address: hproding@sun.ac.za

http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-23.ps
http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-23.ps
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

