
FoSP
FoSPAlgorithmen &

mathematische
Modellierung Forschungsschwerpunkt

Algorithmen und mathematische Modellierung

Clever or Smart: Strategies for the Online Target Date

Assignment Problem

Elisabeth Gassner, Johannes Hatzl, Sven O. Krumke, and Sleman Saliba

Project Area(s):

Kombinatorische Optimierung komplexer Systeme

Institut für Optimierung und Diskrete Mathematik (Math B)

Report 2008-10, May 2008



clever or smart: Strategies for the Online Target Date

Assignment Problem

Elisabeth Gassner∗∗ Johannes Hatzl∗ Sven O. Krumke† Sleman Saliba†

May 29, 2008

Abstract

In this paper, we consider the Online Target Date Assignment Problem (OnlineTDAP)
with deferral time one and unsplittable requests for general downstream problems, where the
downstream cost are nonnegative, additive and satisfy the triangle inequality.

We show that the lower bound on the competitive ratio of any online algorithm for this
problem is greater than 3/2 − ε. The first online algorithm analyzed is smart, which was
introduced by Angelelli et al. [3]. We prove that its competitive ratio is at most 2

√
2 − 1 ≈

1.8284 for this setting. This result answers the question posed in Angelelli et al. [4], if smart

has a competitive ratio strictly less than 2 for the Dynamic Multi-Period Routing Problem
(Dmprp) with customers located on the Euclidean plane, provided splitting of request sets is
prohibited.

Finally, we present the online algorithm clever and show that this strategy is asymptot-
ically optimal with a competitive ratio of 3/2.

1 Introduction

Online optimization problems have seen an increasing attention over the last years, since the issue
of planning with incomplete knowledge and making decisions without detailed knowledge about
the future grows permanently. A detailed description of the state of the art and an extensive
bibliography can be found in [1, 2, 5, 6]. A general framework for online problems with a two
stage decision process structure is the Online Target Date Assignment Problem. It was introduced
by Heinz et al. [7]. Requests are released at certain dates. In the first stage an online algorithm has
to assign a target date for the request at which the request will be processed. This decision must
be made immediately upon release and is irrevocable. In the second stage an offline optimization
problem for all requests assigned to a certain target date is solved. This offline problem is called the
downstream problem. We assume that the downstream problem can be solved to optimality and
the cost at a target date are the optimal cost (downstream cost) of the downstream problem solved
for all requests assigned to this date. The downstream problem can be any classical optimization
problem like, e.g., a routing, bin packing or machine scheduling problem.

An instance of this online problem consists of a sequence of requests σ = (r0, r1, r2, . . . , rm)
and a downstream problem Π, which is an offline optimization problem having arbitrary subsets
of σ as feasible inputs. The planning horizon is divided into m + 1 time periods t0, t1, . . . , tm with
ti 6= tj for all i 6= j. At the beginning of each period ti (i = 0, . . . , m) a request ri is released.
The decision maker must immediately and irrevocably assign the request to a target date in time

∗Graz University of Technology, Institute of Optimization and Discrete Mathematics, Steyrergasse 30, Graz,

Austria. {gassner,hatzl}@opt.math.tu-graz.ac.at
†University of Kaiserslautern, Department of Mathematics, P.O.Box 3049, Paul-Ehrlich-Str. 14, 67653 Kaiser-

slautern, Germany. {krumke,saliba}@mathematik.uni-kl.de
∗This research is partially supported by the Austrian Science Fund Project P18918-N18 Efficiently solvable

variants of location problems.

1



period ti, . . . , ti+δ(ri), where δ (ri) is the allowed deferral time of request ri. In the general setting
of an Online Target Date Assignment Problem the allowed deferral time becomes known at the
request’s release. In a feasible solution with respect to a downstream problem Π each request is
allocated a feasible target date and for each target date, the instance of the corresponding offline
problem Π is feasible as well. For a detailed description of the Online Target Date Assignment
Problem and competitive online algorithms we refer the reader to [7].

Angelelli et al. [3, 4] introduce the Dynamic Multi-Period Routing Problem (Dmprp), where
at the beginning of each time period a set of customers located on the Euclidean plane becomes
known. The customers have to be served either in the current or in the next time period. The
Dmprp is a special case of the Online Target Date Assignment Problem, where the underlying
downstream problem is a traveling salesman problem and a request ri is a set of customers. For a
detailed description of the problem, lower bounds and online strategies we refer to [3, 4].

We investigate a special case of the Online Target Date Assignment Problem, where at the
beginning of each time period one request is released that can either be served immediately or
postponed to the next time period, that means requests are allowed to be delayed for at most one
period, i.e., δ (ri) = 1 for all i = 0, . . . , m. Note that in this model at most two requests are served
in one time period. Moreover, in the model considered in this paper it is not possible to split a
request. For example, if in the Dmprp a request ri contains several customers, all of them have
to be served in the time period ti or all of them are postponed.

The analysis is not only valid for a special downstream problem, but for a wide class of
optimization problems with a natural structure. Let us denote by Li the downstream cost if
request ri is served on its own either in time period ti or ti+1 and by Li,i+1 the minimum cost of
serving both requests ri and ri+1 in period ti+1. Then, we only require that

Li ≥ 0, (nonnegativity) (1)

Li,i+1 ≤ Li + Li+1, (triangle inequality) (2)

Li ≤ Li,i+1 and Li+1 ≤ Li,i+1 (monotonicity). (3)

The objective is to minimize the total sum of the downstream cost. From now on, we denote
the Online Target Date Assignment Problem with deferral time one, unsplittable requests and
downstream problems, where the downstream cost satisfy Conditions (1)—(3) by OnlineTDAP.

An instance of OnlineTDAP consists of a finite sequence σ = (r0, r1, r2, . . . , rm) of requests
and a solution of OnlineTDAP is given by a sequence X(σ) = (X0, X1, . . . , Xm), where Xi is
either D or I (i.e., Xi ∈ {D, I}). If Xi = D request ri is delayed to time period ti+1 and if
Xi = I it is processed immediately in period ti. Throughout the paper, the (offline) optimal
objective value of an instance σ is denoted by Opt(σ). Let Alg be an (online) algorithm for
this problem and XAlg(σ) = (XAlg

0 , XAlg
1 , . . . , XAlg

m ) the obtained solution for instance σ with
objective function value z(Alg(σ)). Then, the competitive ratio of an online algorithm Alg is
given by

r(Alg) := sup
σ

z(Alg(σ))

Opt(σ)
. (4)

It is known that the competitive ratio of any algorithm for the Online Target Date Assignment
Problem where splitting is allowed is at least 3/2 (see [3]). Our contribution is to show that if
splitting is not allowed in an optimal solution the competitive ratio has the same lower bound for
any online algorithm for OnlineTDAP.

Moreover, we study two online algorithms and analyze their competitive ratios. The first online
algorithm is called smart and was suggested for the Dmprp in [3]. Therein, it was shown that this
algorithm is optimal for two time periods and the question was posed if smart has a competitive
ratio strictly less than two for arbitrary time horizons. We answer this question and prove that
r(smart) < 2 provided requests are unsplittable.

The second analyzed online algorithm is called clever and is introduced for the first time
in this paper. We prove that the competitive ratio of clever applied to instances of the

2



OnlineTDAP is 3/2. Thus, this algorithm is optimal.

2 A lower bound on the competitive ratio

In this section, it is shown that there cannot exist an online algorithm Alg for OnlineTDAP

with a competitive ratio strictly better than 3/2. Note that this bound also holds for the Dmprp

where it is allowed to split requests (see [3]).

Theorem 2.1. Let Alg be any online algorithm for OnlineTDAP. Then, for all ε > 0 there
exists an m(ε) such that

r(Alg) >
3

2
− ε.

Proof. We consider an instance of the OnlineTDAP with an input sequence σ = (r0, r1, . . . , rm),
where m = 2n+1 is an odd integer. The corresponding downstream problem is a routing problem
on the real line, that means at each target date a server located in the origin is required to visit all
requests assigned to this target and return to the origin afterwards. The distance traveled thereby
comply with the downstream cost. The objective is to minimize the sum of the downstream cost,
i.e., the distance traveled over all target dates. In this instance, we assume that a request consists
of a single customer. Thus, it suffices to give a real number for each request representing the
coordinate of the corresponding customer.

The first request is released at distance a0 from the origin, i.e., r0 = a0 and the second one
at distance a1 > a0. The online algorithm has two choices: it can serve r1 either immediately
together with r0 in time period t1 or delay it to the next time period. First consider an algorithm
Alg

′ that decides to serve r1 immediately. Then, the adversary issues another request with the
same distance and stops afterwards, i.e., r2 = a1 and all forthcoming requests will be released at
the origin. In this case, the cost of Alg

′ are 4a1, whereas the optimal cost are 2a0 + 2a1 yielding

r(Alg
′) ≥ 2a1

a0 + a1
.

If we denote by Alg
′′ an algorithm that decides to delay r1, the adversary issues request r2

at distance a2 > a1 from the origin and the algorithm has again to decide if r2 is processed
immediately with r1 or delayed to time period t3. If Alg

′′ serves r2 in time period t2 then assume
that r3 = r2 and the remaining requests r4, . . . , rm are again located at the origin. Thus, the cost
obtained by Alg

′′ are 2a0 + 4a2 whereas the optimal cost are given by 2a2 + 2a1 and

r(Alg
′′) ≥ 2a2 + a0

a2 + a1

can be concluded. This process continues till either the online algorithm Alg chooses to serve
a request ri for some 1 ≤ i ≤ m − 1 immediately or the time period m is reached. In the
first case, ri+1 is set to ri and ri+2 = . . . = rm = 0 and we obtain the answer set XAlg(σ) =
{D, D, D, . . . , D, I, D} with cost

z(Alg(σ)) = 4ai + 2

i−2
∑

j=0

aj .

If i = 2k − 1 then the optimal solution is X∗(σ) = {D, D, I, D, . . . , I, D, I} and if i = 2k then
X∗(σ) = {D, I, D, I, . . . , D, I, D, I} with

Opt(σ) =

{

2a2k−1 + 2a2k−2 + 2
∑k−2

j=0 a2j if i = 2k − 1

2a2k + 2a2k−1 + 2
∑k−1

j=1 a2j−1 if i = 2k.

3



In the latter, the end of the time horizon is reached and the online algorithm has always de-
layed, i.e., XAlg(σ) = {D, D, . . . , D}. Then rm is set to 0 and the optimal strategy is X∗(σ) =
{D, D, I, D, . . . , D, I}. In this situation the cost sum up to

z(Alg(σ)) = 2

2n
∑

j=0

aj and Opt(σ) = 2

n
∑

j=0

a2j .

Combining all these results implies that

r(Alg) ≥ min
1≤k≤n

{

2a2k +
∑2k−2

j=0 aj

a2k + a2k−1 +
∑k−1

j=1 a2j−1

,
2a2k−1 +

∑2k−3
j=0 aj

a2k−1 + a2k−2 +
∑k−2

j=0 a2j

,

∑2n

j=0 aj
∑n

j=0 a2j

}

(5)

holds for any online algorithm Alg. If we choose the numbers by the following recursion

a0 := 1 an := 2an−1 + Fn ∀n ≥ 1,

where
F0 := 0, F1 := 1 Fn+2 = Fn+1 + Fn ∀n ≥ 2

is the Fibonacci-sequence, then the first two terms in (5) are equal to 3/2 for all 1 ≤ k ≤ n and

lim
n→∞

∑2n
j=0 aj

∑n

j=0 a2j

=
3

2
.

2

3 Instance Splitting

To find the competitive ratio r(Alg) of an algorithm Alg it is necessary to give an instance σ

that maximizes the ratio z(Alg(σ))
Opt(σ) . Along the lines of the ideas in [4], we may restrict ourselves

to instances with a very special structure. It is sufficient to consider unsplittable instances of the
following two types:

• Type 1: XAlg(σ) = (D, D, I, D, I, . . . ) and X∗(σ) = (D, I, D, I, D, . . . )

• Type 2: XAlg(σ) = (D, I, D, I, D, . . . ) and X∗(σ) = (D, D, I, D, I, . . . ).

Let
S(i, m) = {σ | σ is of Type i, with m + 1 requests}

denote the set of all sequences that are of Type 1 or 2 and have m+1 requests. For a given online
algorithm Alg we write

A(m) = sup
σ∈S(1,m)

z(Alg(σ))

Opt(σ)
,

B(m) = sup
σ∈S(2,m)

z(Alg(σ))

Opt(σ)
.

The following lemma gives some monotonicity properties about A(j) and B(j).

Lemma 3.1. For all n ∈ N the following inequalities are satisfied:

A(2n) ≤ A(2n − 1) and B(2n + 1) ≤ B(2n).

4



Proof. We only show that A(2n) ≤ A(2n−1), because the other case can be done in an analogous
way. Let σ ∈ S(1, 2n) then deleting the last request of σ leads to a new instance σ′ ∈ S(1, 2n− 1)
such that

z(Alg(σ))

Opt(σ)
≤ z(Alg(σ′))

Opt(σ′)
.

2

Using these results the following statement follows easily.

Corollary 3.2. Let σ be an instance with m+1 requests. Then, the competitive ratio of an online
algorithm Alg is given by

r(Alg) = max

{

A

(

2

⌊

j − 1

2

⌋

+ 1

)

, B

(

2

⌊

j

2

⌋)

: j = 1, . . . , m

}

.

4 Analysis of the online algorithm smart

In this section, we discuss the online algorithm smart(q) which depends on a parameter q ≥ 0.
Formally, this algorithm can be described as follows:

Algorithm smart(q)
At the beginning of each time period ti(i = 0 . . . , m), do the following: If
request ri−1 was postponed to period ti and Li−1,i ≤ qLi−1, then process the
requests ri−1 and ri together, otherwise postpone ri.

Note that it has already been shown in [3] that if q ≤ 1, i.e., the requests are always postponed,
the competitive ratio of smart(q) is 2. Thus, we restrict our analysis to the case where q > 1.
The aim of this section is to give the competitive ratio of smart(q) for any q > 1. This enables
us to compute an optimal value for q, i.e., the value which minimizes the competitive ratio. Using
this value it can be shown that smart has a better competitive ratio than 2. In fact, we prove
the following theorem for OnlineTDAP.

Theorem 4.1. Let m ∈ N and σ = (r0, r1, r2, . . . , rm) an instance of the OnlineTDAP. Then,

r(smart(q)) =















q2−q+2−2q(q−1)⌊m−1
2 ⌋+1

q−q(q−1)⌊m−1
2 ⌋+1

if 1 < q < 2,

3+4⌊m−1
2 ⌋

2+2⌊m−1
2 ⌋ if q = 2.

Moreover,

r(smart(
√

2)) ≤ 2
√

2 − 1 < 2 and lim
m→∞

r(smart(
√

2)) = 2
√

2 − 1

holds.

4.1 A lower bound on the competitive ratio of smart

We consider an instance of the OnlineTDAP with an input sequence σ = (r0, r1, . . . , rm). The
corresponding downstream problem is a routing problem on the real line as in the proof of Theo-
rem 2.1. Let us consider the following instance where m is odd and ε > 0 (see Figure 1):

r0 = 1 − ε, r1 = q and r2k = r2k+1 = (−1)kq(q − 1)k for k = 1, . . . ,
⌊m

2

⌋

. (6)

5



−q(q − 1) −q(q − 1)3 0 q(q − 1)2 1 − ε q

r2, r3 r6, r7 r4, r5 r0 r1

Figure 1: Request locations for the example using smart(q)

Observe that 2q = L0,1 > qL0 = 2q(1− ε) and therefore r1 is delayed by smart(q). In general,

L2k−1,2k = L2k−1 + L2k = 2q(q − 1)k−1 + 2q(q − 1)k = 2q2(q − 1)k−1 for k = 1, . . . ,
⌊m

2

⌋

holds. Thus, the solution obtained by smart(q) is Xsmart(q)(σ) = (D, D, I, D, I, . . .) and the
corresponding cost are

z(smart(q)(σ)) = L0 + L1,2 + L3,4 + . . . + Lm−2,m−1 + Lm

=

{

2
2−q

(

2 − q + q2 − 2q(q − 1)⌊m−1
2 ⌋+1

)

− 2ε if 1 < q, q 6= 2,

6 + 8
⌊

m−1
n

⌋

− 2ε if q = 2.

On the other hand, an offline optimal solution will accept r1 immediately and perform r2k and
r2k+1 for k = 1, . . . ,

⌊

m
2

⌋

together, which leads to X∗(σ) = (D, I, D, I, . . .) and the optimal
objective function value is given by

Opt(σ) = L0,1 + L2,3 + . . . + Lm−1,m

=

{

2q
2−q

(

1 − (q − 1)⌊
m−1

2 ⌋+1
)

if 1 < q, q 6= 2,

4 + 4
⌊

m−1
2

⌋

if q = 2.

Thus,

z(smart(q)(σ))

Opt(σ)
=



















„

2−q+q2−2q(q−1)⌊m−1
2 ⌋+1

«

−(2−q)ε

„

1−(q−1)⌊m−1
2 ⌋+1

« if 1 < q, q 6= 2,

3+4⌊m−1
2 ⌋−ε

2+2⌊m−1
2 ⌋ if q = 2.

(7)

In a similar way it is also possible to construct an instance σ = (r0, r1, . . . , rm) where m is
even which leads to the ratio given on the right hand side of equation (7). Using ε → 0

r(smart(q)) ≥















q2−q+2−2q(q−1)⌊m−1
2 ⌋+1

q−q(q−1)⌊m−1
2 ⌋+1

if 1 < q, q 6= 2,

3+4⌊m−1
2 ⌋

2+2⌊m−1
2 ⌋ if q = 2,

follows. It will be shown later (see inequality (16)) that the right hand side of this inequality is
exactly the competitive ratio of smart(q). Since the lower bound is monotonically increasing for
all q ≥ 2, the analysis is restricted to the case 1 < q ≤ 2.

4.2 Competitive analysis

In this subsection, we determine the competitve ratio of the algorithm smart(q) for 1 < q ≤ 2.
According to Corollary 3.2 it suffices to bound A(2n + 1) and B(2n).

Case 1: A (2n + 1)

6



Assume that we are given an unsplittable sequence σ of Type 1 with m = 2n + 1, i. e.,

z(Xsmart(q)(σ)) = L0 + L1,2 + L3,4 . . . + L2n−1,2n + L2n+1

Opt(σ) = L0,1 + L2,3 + . . . + L2n,2n+1.

Since smart (q) produces Xsmart(q)(σ) we know that request r1 is delayed because

L0,1 > qL0 (8)

and requests r2j−1 and r2j for j = 1, . . . , n are performed together because

L2j−1,2j ≤ qL2j−1 ∀j = 1, . . . , n. (9)

At the beginning the special case where n = 0 is investigated. Straightforward calculations
lead to

A(1) ≤ L0 + L1

L0,1
<

1
q
L0,1 + L1

L0,1
≤

1
q
L0,1 + L0,1

L0,1
=

1

q
+ 1.

Observe that 1
q

+ 1 is equal to q2−q+2−2q(q−1)1

q−q(q−1)1 and hence corresponds to the bound stated in

Theorem 4.1 for the special case of m = 1 (and therefore n = 0).

In a next step, we consider sequences of arbitrary length m = 2n + 1 for n ≥ 1. In order to
find a bound on r(smart (q)) we consider a sequence σ ∈ S(1, 2n+1) and bound z(Xsmart(q)(σ)).
Using (8) and (9) yields several different bounds on z(Xsmart(q)(σ)): For k = 1, . . . , n we have

z(Xsmart(q)(σ)) = L0 + L1,2 + L3,4 . . . + L2n−1,2n + L2n+1 <

1

q
L01 +

k
∑

j=1

L2j−1,2j +
n

∑

j=k+1

L2j−1,2j + L2n+1 ≤

1

q
L0,1 + qL1 +

k
∑

j=2

qL2j−1 +

n
∑

j=k+1

(L2j−1 + L2j) + L2n+1 ≤

1

q
L0,1 + qL0,1 + q

k
∑

j=2

L2j−1 + L2k+1 +

n−1
∑

j=k+1

(L2j + L2j+1) + L2n + L2n+1 ≤

(

q +
1

q

)

L0,1 + q

k
∑

j=2

L2j−2,2j−1 + L2k,2k+1 + 2

n
∑

j=k+1

L2j,2j+1 =

(

q +
1

q

)

L0,1 + q

k−1
∑

j=1

L2j,2j+1 + L2k,2k+1 + 2

n
∑

j=k+1

L2j,2j+1 =:f̄k(σ).

For the special case of k = 0 we have

L0 + L1,2 + L3,4 . . . + L2n−1,2n + L2n+1 <
1

q
L0,1 +

n
∑

j=1

(L2j−1 + L2j) + L2n+1 ≤

1

q
L0,1 + L0,1 + 2

n
∑

j=1

L2j,2j+1 =

(

1 +
1

q

)

L01 + 2

n
∑

j=1

L2j,2j+1 =: f̄0(σ)

Let us define

fk(σ) :=
f̄k(σ)

Opt(σ)
=

f̄k(σ)
∑n

j=0 L2j,2j+1
≥ z(Xsmart(q)(σ))

Opt(σ)
(10)

7



for k = 0, . . . , n. Observe that we are given n + 1 different bounds on z(Xsmart(q)(σ))
Opt(σ) . For every

unsplittable sequence we consider its best bound, i. e., we get subsets of sequences of the form

Sk(1, 2n + 1) = {σ ∈ S(1, 2n + 1) | fk(σ) ≤ fi(σ), i = 0, . . . , n}.

Then it follows that

A(2n + 1) ≤ sup
σ∈S(1,2n+1)

min
k=0,1,...,n

fk(σ) = max
k=0,...,n

sup
σ∈Sk(1,2n+1)

fk(σ).

The main idea is to fix k and find a worst instance σ ∈ Sk(1, 2n + 1). In order to simplify the
notation we will write fk instead of fk(σ). Now consider a fixed k ∈ {0, . . . , n} and assume that
fk ≤ fi for all i = 0, 1, . . . , k − 1 and i = k + 1, k + 2, . . . , n. Using the definition of fk in equation
(10) this is equivalent to

L2k,2k+1 ≥ (q − 1)L2i,2i+1 + (q − 2)
k−1
∑

j=i+1

L2j,2j+1 i = 0, 1, . . . , k − 1, (11)

(q − 1)L2k,2k+1 ≥ (2 − q)

i−1
∑

j=k+1

L2j,2j+1 + L2i,2i+1 i = k + 1, k + 2 . . . , n. (12)

Finding a worst sequence in Sk(1, 2n + 1) is equivalent to determine an upper bound on

fk =

(

q + 1
q

)

L01 + q
∑k−1

j=1 L2j,2j+1 + L2k,2k+1 + 2
∑n

j=k+1 L2j,2j+1

L01 +
∑n

j=1 L2j,2j+1

while (11) and (12) are satisfied. Cumbersome and tedious calculations lead to

sup
σ∈Sk(1,2n+1)

fk(σ) ≤
{

q2−q+2−2q(q−1)n+1

q−q(q−1)n+1 if 1 < q < 2
3+4n
2+2n

if q = 2

for k = 0, . . . , n and therefore

A(2n + 1) ≤ max
k=0,...,n

sup
σ∈Sk(1,2n+1)

fk(σ) ≤
{

q2−q+2−2q(q−1)n+1

q−q(q−1)n+1 if 1 < q < 2,
3+4n
2+2n

if q = 2.
(13)

Case 2: B (2n)

Assume that we are given an unsplittable sequence σ of Type 2 with m = 2n, i. e.,

z(Xsmart(q)(σ)) = L0,1 + L2,3 + L4,5 . . . + L2n−2,2n−1 + L2n

Opt(σ) = L0 + L1,2 + . . . + L2n−1,2n.

Since Xsmart(q)(σ) is the result of smart (q) we know that

L2j,2j+1 ≤ qL2j (14)

for all j = 0, . . . , n − 1.

First we are interested in the case where n = 1. Let σ ∈ S(2, 2) then the corresponding
competitive ratio is equal to

z(Xsmart(q)(σ))

Opt(σ)
=

L0,1 + L2

L0 + L1,2
.

However, the result of smart (q) can be bounded in two ways:

L0,1 + L2 ≤ L0 + L1 + L2 ≤ L0 + 2L1,2

L0,1 + L2 ≤ qL0 + L2 ≤ qL0 + L1,2

8



Therefore, the competitive ratio is equal to

z(Xsmart(q)(σ))

Opt(σ)
= max

{

L0 + 2L1,2

L0 + L1,2
,
qL0 + L1,2

L0 + L1,2

}

(q−1)L0=L1,2
= 2 − 1

q
.

Now consider an unsplittable sequence of S (2, m) with m = 2n and n ≥ 2. Then the objective
value of smart (q) can be bounded as follows:

z(Xsmart(q)(σ)) = L0,1+L2,3+L4,5 . . .+L2n−2,2n−1+L2n ≤ L0+L1+L2,3+· · ·+L2n−2,2n−1+L2n.

Assume that σ ∈ S(2, 2n), then we have

z(Xsmart(q)(σ))

Opt(σ)
=

L0,1 + L2,3 + L4,5 . . . + L2n−2,2n−1 + L2n

L0 + L1,2 + . . . + L2n−1,2n

≤ L0 + L1 + L2,3 + · · · + L2n−2,2n−1 + L2n

L0 + L1,2 + . . . + L2n−1,2n

≤ L1 + L2,3 + · · · + L2n−2,2n−1 + L2n

L1,2 + . . . + L2n−1,2n

.

Consider a new sequence σ̄ which results from σ by deleting the first request r0. Due to the
optimality of Opt(σ) we know that

Opt(σ̄) = L1,2 + L3,4 + . . . + L2n−1,2n.

On the other hand, if L1,2 > qL1 then

Xsmart(q)(σ̄) = L1 + L2,3 + · · · + L2n−2,2n−1 + L2n

holds. However, if L1,2 ≤ qL1 then no information on Xsmart(q)(σ̄) is available. Therefore, we
distinguish two cases:

• If L1,2 > qL1 then

z(Xsmart(q)(σ))

Opt(σ)
≤ L1 + L2,3 + · · · + L2n−2,2n−1 + L2n

L1,2 + . . . + L2n−1,2n

=
Xsmart (q) (σ̄)

Opt(σ̄)
≤ A(2n − 1)

holds because σ̄ ∈ S(2, 2n − 1).

• If L1,2 ≤ qL1 then L2 ≤ L1,2 ≤ qL1 implies

L1,2 = L1,2 − L2 + L2 ≥ L1,2 − qL1 + L2 ≥ (1 − q)L1 + L2.

Hence, we get

z(Xsmart(q)(σ))

Opt(σ)
≤ L1 + L2,3 + · · · + L2n−2,2n−1 + L2n

(1 + q)L1 + L2 + L3,4 + . . . + L2n−1,2n

≤ max

{

1

1 + q
,
L2,3 + · · · + L2n−2,2n−1 + L2n

L2 + L3,4 + . . . + L2n−1,2n

}

≤ max

{

1

1 + q
, B(2n − 2)

}

.

The last inequality holds, since the sequence σ̃ obtained from σ̄ by deleting r1 is an element
of S(2, 2n − 2). This procedure can be repeated and we get

z(Xsmart(q)(σ))

Opt(σ)
≤ max

{

A(2n − 1), A(2n − 3), . . . , A(3),
1

1 + q
, B(2)

}

= max

{

A(2n − 1), A(2n − 3), . . . , A(3),
1

1 + q
, 2 − 1

q

}

.

9



Observe that 2 − 1
q
≥ 1

1+q
holds for 1 < q ≤ 2. Therefore, we get

B(2n) ≤
{

2 − 1
q

for n = 1

max
{

A(3), A(5), . . . , A(2n − 1), 2 − 1
q

}

for n ≥ 2.
(15)

Putting all together:

The available bounds on A(2n + 1) and B(2n) are now used to get a bound on r(smart (q)).
Consider the following observations:

• The bound on A(2n + 1) is monotonically increasing in n.

• 2− 1
q
≤ min

{

1 + 1
q
, 3

2

}

holds for all 1 < q ≤ 2, i.e., the bound on B(2) is dominated by the

bound on A(1) for 1 < q ≤ 2.

These two observations immediately imply the following result:

r(smart (q)) = max

{

A

(

2

⌊

j − 1

2

⌋

+ 1

)

, B

(

2

⌊

j

2

⌋)

| j = 1, . . . , m

}

≤















q2−q+2−2q(q−1)⌊m−1
2 ⌋+1

q−q(q−1)⌊m−1
2 ⌋+1

if 1 < q < 2

3+4⌊m−1
2 ⌋

2+2⌊m−1
2 ⌋ if q = 2

(16)

This shows the correctness of Theorem 4.1.

The optimal choice of q depends on m. The following table contains an optimal value of q for
m ∈ {1, . . . , 8}:

m ratio for q = 2 ratio for q < 2 optimal q∗ optimal ratio

{1, 2} 1.5 1 + 1
q

q∗ = 2 = 1.5

{3, 4} 1.75 2 + 1
q2 − 1

q
q∗ = 2 = 1.75

{5, 6} ≈ 1.83333 1+q−2q2+2q3

q−q2+q3 q∗ ≈ 1.5652 ≈ 1.8084

{7, 8} 1.875 q2−q+2−2q(q−1)4

q−q(q−1)4 q∗ ≈ 1.4694 ≈ 1.8219

Unfortunately, an optimal q is hard to find because one has to determine the roots of poly-
nomials of high degree. Nevertheless, a good choice is to take q∗ =

√
2 since

√
2 is optimal for

m → ∞. Simple calculations yield

r(smart(
√

2)) ≤ 2
√

2 − 1 < 2.

5 Analysis of the online algorithm clever

In this section, we present and analyze the online algorithm clever. The idea of this algorithm
is that two requests are processed together in one time period if combined service is preferable to
serving each request on its own. We will show that the competitive ratio of clever is 3/2. Due
to Theorem 2.1 this algorithm is optimal.

Algorithm clever

At the beginning of each time period ti(i = 0 . . . , m), do the following: If
request ri−1 was postponed to period ti and Li−1,i ≤ 2

3 (Li−1 + Li), then
process the requests ri−1 and ri together, otherwise postpone ri.

10



Theorem 5.1. Let m be an integer and σ = (r0, r1, r2, . . . , rm) an instance of the OnlineTDAP.
Then,

r(clever) =
3

2
.

Proof. To compute the competitve ratio, we need to analyze A (2n + 1) and B (2n).

We start by analyzing short sequences with two requests r0 and r1 (n = 0), where the online
algorithm has to decide whether to process the requests separately or together. It is easy to see
that serving both requests in time period t1 is optimal, since we assumed Condition (2) to hold
(triangle inequality). However, if L0,1 > 2

3 (L0 + L1), then applying clever requests r0 and r1

will be served separately yielding a competitive ratio of

L0 + L1

L0,1
<

3

2

L0,1

L0,1
=

3

2
.

Case 1: A (2n + 1)

Now assume an unsplittable sequence σ of Type 1 consisting of an even number of requests.
Then the optimal strategy is of the form X∗(σ) = {D, I, D, . . . , D, I} with optimal value

Opt(σ) = L0,1 + L2,3 + · · · + L2n−2,2n−1 + L2n,2n+1,

whereas clever produces the answer set Xclever(σ) = {D, D, I, . . . , I, D} with value

z (clever(σ)) = L0 + L1,2 + · · · + L2n−1,2n + L2n+1.

Therefore the competitive ratio is

A (2n + 1) =
z (clever(σ))

Opt(σ)
=

L0 + L1,2 + · · · + L2n−1,2n + L2n+1

L0,1 + L2,3 + · · · + L2n−2,2n−1 + L2n,2n+1
.

Augmenting the nominator yields

A (2n + 1) =
L0 − L0,1 + L1,2 − L2,3 + · · · − L2n−2,2n−1 + L2n−1,2n

L0,1 + L2,3 + · · · + L2n−2,2n−1 + L2n,2n+1

+
L0,1 + L2,3 + · · · + L2n−2,2n−1 + L2n+1

L0,1 + L2,3 + · · · + L2n−2,2n−1 + L2n,2n+1
.

Since the second ratio is less than or equal to 1 (Condition (3): L2n+1 ≤ L2n,2n+1), it remains to
be shown that the first one is at most 1/2. Let us define

f (n) : =

L0 +
n
∑

i=1

L2i−1,2i −
n−1
∑

i=0

L2i,2i+1

n
∑

i=0

L2i,2i+1

(17)

=

L0 +
n−1
∑

i=1

L2i−1,2i + L2n−1,2n −
n−2
∑

i=0

L2i,2i+1 − L2n−2,2n−1

n−1
∑

i=0

L2i,2i+1 + L2n,2n+1

.

We know that L2n−1,2n ≤ 2/3L2n−1 + 2/3L2n, since requests r2n−1 and r2n are served together.
Additionally, we know from Condition (3) that L2n,2n+1 ≥ L2n and L2n−2,2n−1 ≥ L2n−1. Using
this information we get

f (n) ≤
L0 +

n−1
∑

i=1

L2i−1,2i −
n−2
∑

i=0

L2i,2i+1 + 2/3L2n−1 + 2/3L2n − L2n−1

n−1
∑

i=0

L2i,2i+1 + L2n

. (18)

11



Moreover, we know that
L2n ≤ L2n−1,2n ≤ 2/3L2n−1 + 2/3L2n.

The first inequality follows from Condition (3) and the second one, because requests r2n−1 and
r2n are served in the same time period, resulting in L2n ≤ 2L2n−1. Observe that the right hand
side of inequality (18) is monotonically increasing in L2n and hence

f (n) ≤
L0 +

n−1
∑

i=1

L2i−1,2i −
n−2
∑

i=0

L2i,2i+1 − 1
3L2n−1 + 4

3L2n−1

n−1
∑

i=0

L2i,2i+1 + 2L2n−1

=

L0 +
n−1
∑

i=1

L2i−1,2i −
n−2
∑

i=0

L2i,2i+1 + L2n−1

n−1
∑

i=0

L2i,2i+1 + 2L2n−1

≤ max















L0 +
n−1
∑

i=1

L2i−1,2i −
n−2
∑

i=0

L2i,2i+1

n−1
∑

i=0

L2i,2i+1

,
1

2















.

(19)

Comparing inequality (17) with (19), we observe that

f (n) ≤ max

{

f (n − 1) ,
1

2

}

.

Hence, we have to prove that the statement is true for n = 1, i.e., f (1) ≤ 1
2 . Since L1,2 ≤

2/3 (L1 + L2) and L2,3 ≥ L2 we get

f (1) =
L0 + L1,2 − L0,1

L0,1 + L2,3
≤ L0 − L0,1 + 2

3L1 + 2
3L2

L0,1 + L2
. (20)

We know that L2 ≤ 2L1 and (20) is monotonically increasing in L2. Thus,

f (1) ≤ L0 − L0,1 + 2
3L1 + 4

3L1

L0,1 + 2L1
=

L0 − L0,1 + 2L1

L0,1 + 2L1
.

Because requests r0 and r1 are not served in one time period

L0,1 >
2

3
L0 +

2

3
L1 and L0 <

3

2
L0,1 − L1.

Therefore,

f (1) ≤
3
2L0,1 − L1 − L0,1 + 2L1

L0,1 + 2L1
=

1
2L0,1 + L1

L0,1 + 2L1
=

1

2
.

Summarizing the calculations for the competitive ratio in case of an unsplittable sequence of
Type 1 we get

A (2n + 1) ≤ f (n) + 1 ≤ max

{

1

2
, . . . ,

1

2

}

+ 1 ≤ 3/2.

Case 2: B (2n) In an analogue way we get

B (2n) ≤ max

{

1

3
,
1

2
, . . . ,

1

2

}

+ 1 ≤ 3

2
.

Therefore, the competitive ratio of the online algorithm clever is

r (clever) ≤ z (clever(σ))

Opt(σ)
= max

{

A

(

2

⌊

j − 1

2

⌋

+ 1

)

, B

(

2

⌊

j

2

⌋)

| j = 1, . . . , m

}

≤ max

{

4

3
,
3

2
, . . . ,

3

2

}

≤ 3

2
.

This proves the desired result. 2

12



References

[1] S. Albers. Online algorithms: A survey. Mathematical Programming, 97:3–26, 2003. Invited
paper at ISMP 2003.

[2] S. Albers. Interactive Computation: The New Paradigm, chapter Online algorithms, pages
143–164. Springer-Verlag, 2006.

[3] E. Angelelli, M. G. Speranza, and M. W. P. Savelsbergh. Competitive analysis for dynamic
multiperiod uncapacitated routing problems. Networks, 49(4):308–317, 2007.

[4] E. Angelelli, M. G. Speranza, and M. W. P. Savelsbergh. Competitive analysis of a dispatch
policy for a dynamic multi-period routing problem. Operations Research Letters, 35:713–721,
2007.

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[6] A. Fiat and G. J. Woeginger, editors. Online algorithms: The state of the art, volume 1442 of
Lecture Notes in Computer Science. Springer, 1998.

[7] S. Heinz, S. O. Krumke, N. Megow, J. Rambau, A. Tuchscherer, and T. Vredeveld. The online
target date assignment problem. In Thomas Erlebach and G. Persiano, editors, Approximation
and Online Algorithms (WAOA 2005), volume 3879 of Lecture Notes in Computer Science,
pages 230–243. Springer, Berlin, Germany, 2006.

13


