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ON A CLASS OF EXTREMAL TREES FOR VARIOUS INDICES

CLEMENS HEUBERGER AND STEPHAN G. WAGNER

Abstract. It was recently shown that an interesting class of trees maximizes the Merrifield-
Simmons index and minimizes the Hosoya index and energy among all trees with given number

of vertices and maximum degree. In this paper, we describe how these trees (which we will

call F-trees) can be constructed algorithmically by means of so-called F-expansions, which are
very similar to ordinary base-d digital expansions. Our algorithms are illustrated by various

examples. Furthermore, some more properties of F-trees are described and numerical data is
provided.

1. Introduction

The Merrifield-Simmons index, defined as the number of independent vertex subsets of a graph,
and the Hosoya index, the number of matchings (independent edge subsets) of a graph, are two
of the most popular topological indices that serve as molecular descriptors, see [6, 19, 22]. In
view of the similar definitions, it is not surprising that there are many interesting connections
between the two. One of the most important questions in the study of such indices is the extremal
problem, i.e., the problem of determining the graphs within a prescribed class that maximize or
minimize the index. There is a vast amount of recent literature on the extremal problem for the
Merrifield-Simmons index as well as the Hosoya index: since acyclic systems are often of particular
interest, a lot of work has been done on trees. It is a long-known fact [6, 21] that among all trees
of a given size, the star has maximum Merrifield-Simmons index and minimum Hosoya index,
while the path maximizes the Hosoya index and minimizes the Merrifield-Simmons index. The
fact that the star and the path are extremal among all trees is actually the typical behavior for
all topological indices.

In order to obtain a deeper understanding of the Merrifield-Simmons index and the Hosoya
index of trees, the extremal problem has been investigated for trees with certain restrictions,
such as given diameter [17, 20], given size of largest matching [12] or given number of leaves
[20, 26, 27, 30]. For trees without restrictions, not only the largest or smallest possible values are
known, but also further values, see [14, 15, 23].

Furthermore, graphs with a bounded number of cycles, in particular unicyclic and bicyclic
graphs [3, 16, 24, 25, 28, 29], can be treated along essentially the same lines, and again, several
restrictions (e.g. fixed girth) can be included in the study as well. Other structures that have
been investigated include hexagonal chains [31], which are very natural objects considering the
chemical background. Typically, the graphs within a given class that minimize one of the two
indices maximize the other, and vice versa, even though there are notable exceptions (see [2]).
This is quite intuitive in view of the similar definitions, while it is a less intuitive fact that the
trees which minimize the Hosoya index usually also minimize the energy (see for instance [13, 27]),
i.e., the sum of the absolute values of all eigenvalues (of the adjacency matrix). This is due to
a relation between the characteristic polynomial and matchings of a tree, which gives rise to a
formula for the energy via a so-called Coulson integral [6]:
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(1) E(T ) =
2
π

∫ ∞

0

x−2 log

(∑
k

m(T, k)x2k

)
dx,

where m(T, k) is the number of matchings of size k of a tree T . This relation was used in many
instances to show that the extremal trees with respect to energy and Hosoya index coincide, see
[5] for the earliest instance.

A very natural class of graphs that arises from the chemical applications is the class of chemical
trees, i.e., trees with maximum degree at most 4. The minimum Hosoya index and energy of
chemical trees were determined in [4] for a small number of vertices, and it was also conjectured
in this paper that the extremal chemical trees for the two are always the same. This conjecture
was proven recently in [8], where it was shown that the extremal chemical trees for the energy
have the same shape as those that had been shown earlier to maximize the Merrifield-Simmons
index and minimize the Hosoya index, see [9]. In the proof, the aforementioned Coulson integral
representation plays a significant role.

The results for chemical trees are actually just special cases of more general theorems for trees
with given maximum degree. An earlier result in this context is due to Lv and Yu [18], where
the maximum degree is assumed to be relatively large. The extremal trees with given number of
vertices and maximum degree form a very interesting class of trees that we treat in the current
paper in some more depth. First, we define them and summarize all known results. Section 2
deals with an associated digital system which we call the F-system; the F-expansion associated
to a given integer n can be determined by a short algorithm (Section 3) that also allows us to
generate the trees (Section 4), which is exhibited for several examples (Section 5). Finally, we
state a few more properties of our class of trees and provide some numerical data.

Before defining the class of trees under consideration, we fix our notations on complete trees.
Throughout the paper, d is a fixed integer ≥ 2. The complete d-ary tree of height h−1 is denoted
by Ch, i.e., C1 is a single vertex and Ch has d branches Ch−1, . . . , Ch−1, cf. Figure 1. It is
convenient to set C0 to be the empty graph.

(a) C1 for all d (b) C2 for d = 2 (c) C2 for d = 3 (d) C3 for d = 2

Figure 1. Complete d-ary trees

As the shape of the trees under consideration is somewhat reminiscent of a festoon, we call the
trees festoon trees or F-trees for short.

Definition 1.1. An F-tree is a tree of the form

B0,d−1 B0,1· · · B`−1,d−1 B`−1,1· · · B`,d B`,d−1 B`,1· · ·

· · ·

with Bk,1, . . . , Bk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ` and
• either B`,1 = · · · = B`,d = C`−1

• or B`,1 = · · · = B`,d = C`

• or B`,1, . . . , B`,d ∈ {C`, C`+1, C`+2}, where at least two of B`,1, . . . , B`,d equal C`+1.
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It is not obvious from the definition that such a tree exists for arbitrary order n and d and
that it is unique. The existence has been proved implicitly (in the proof of their extremality with
respect to the Merrifield-Simmons index and the Hosoya index) in [9].

Theorem 1 ([9]). For every d ≥ 2 and n ≥ 1, there is a unique F-tree of order n, denoted by
T ∗n,d.

More specifically, let rk be the number of copies of Ck+2 among the subtrees Bk,j for k < `, set
ak = (d− 1)(1 + (d + 1)rk) and

• a` = 1, if B`,1 = · · · = B`,d = C`−1,
• or a` = d, if B`,1 = · · · = B`,d = C`,
• or a` = d + (d− 1)q` + (d2− 1)r`, where q` ≥ 2 is the number of copies of C`+1 and r` the

number of copies of C`+2 among the subtrees B`,j.
Then we have

(2) (d− 1)n + 1 =
∑̀
k=0

akdk.

In fact, (2) is the result of simply counting the vertices of the various branches of T ∗n,d, taking

into account that Ch has precisely dh−1
d−1 vertices.

The proof in [9] proves the existence of an F-tree of order n by starting with an extremal tree
with respect to the Merrifield-Simmons index, deriving that this is an F-tree, and then using the
counting argument to deduce (2). Uniqueness is then shown by establishing that (2) (together
with the obvious restrictions 0 ≤ rk < d, 0 ≤ r`, 0 ≤ r` + q` ≤ d) determines rk, q`, r` completely.
It is, however, not explained how to determine these quantities, and therefore T ∗n,d, from the
knowledge of n and d. This gap is filled in the present paper: we provide an explicit short
algorithm (Algorithm 2) to compute the auxiliary quantities and thus T ∗n,d (Proposition 4.1). This
is achieved by considering (2) as a d-ary digital expansion with slightly unusual digits. All this
will motivate the definitions of Section 2.

The following properties of T ∗n,d have been proven in [8, 9].

Theorem 2 ([9]). Among all trees with n vertices and maximum degree ≤ d + 1, the F-tree T ∗n,d

is the unique tree that maximizes the Merrifield-Simmons index and minimizes the Hosoya index.

Theorem 3 ([8]). Let m(T, k) denote the number of matchings of size k of a tree T , and define
the polynomial M(T, x) by

M(T, x) =
∑
k≥0

m(T, k)xk.

Then, for any fixed n and x > 0, the unique tree that minimizes M(T, x) among all trees with n
vertices and maximum degree ≤ d + 1 is the F-tree T ∗n,d.

From the representation (1), one immediately obtains the following fact:

Theorem 4 ([8]). The F-tree T ∗n,d is the unique tree with n vertices and maximum degree ≤ d+1
that minimizes the energy.

Furthermore, it is possible to describe the asymptotic behavior of the extremal values, i.e., the
Merrifield-Simmons index, the Hosoya index and the energy of T ∗n,d, see [8, 10] for details.

Theorem 5 ([10]). The Merrifield-Simmons index of the F-tree T ∗n,d is given by

σ(T ∗n,d) = ρnβn,

where β = β(d) only depends on d, and ρn is bounded above and below by positive constants which
depend only on d.

Both β(d) and the upper and lower bounds for ρn can be computed numerically. Similarly, one
has an analogous theorem for the Hosoya index:
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Theorem 6 ([10]). The Hosoya index of the F-tree T ∗n,d is given by

Z(T ∗n,d) = τnγn,

where γ = γ(d) only depends on d, and τn is bounded above and below by positive constants which
depend only on d.

Finally, it can be shown that the energy of an F-tree T ∗n,d grows linearly in the number of
vertices for fixed d. This is made explicit in the following theorem:

Theorem 7 ([8]). The energy of T ∗n,d is asymptotically

E(T ∗n,d) = αn + O(log n),

where

α = α(d) = 2
√

d(d− 1)2

 ∑
j≥1

j≡0 mod 2

d−j

(
cot

π

2j
− 1
)

+
∑
j≥1

j≡1 mod 2

d−j

(
csc

π

2j
− 1
)

is a constant that only depends on d.

2. F-expansions

The equation (2) provides the starting point for an algorithm that constructs T ∗n,d (given n

and d) and motivates the following definitions. Note that the right hand side is essentially a
digital expansion (base-d expansion), the only difference being the fact that the “digits” ak are
not contained in the set {0, 1, . . . , d − 1}, but in a somewhat different set (the final one, a`, is
particularly exceptional). Hence, we introduce the concept of an F-expansion.

In the following, we write m + dZ for the residue class of m modulo d, i.e., m + dZ = {m + kd |
k ∈ Z}, where m and d > 0 are integers. Furthermore, we write m mod d for the unique integer
in m + dZ in the range {0, . . . , d− 1}.

Let d ≥ 2 be a fixed integer. We set

D := {(d− 1) + (d2 − 1)r | 0 ≤ r ≤ d− 1},
Df := {1, d} ∪ {d + (d− 1)q + (d2 − 1)r | q ≥ 2, r ≥ 0, r + q ≤ d}.

The elements of D and Df are called the F-digits and final F-digits, respectively. Note that ak ∈ D
for k < ` in our identity (2) and that a` ∈ Df . We are considering digital expansions to the base
d with those digits.

Example 2.1. We give D and Df for small values of d in Table 1.

d D Df

2 {1, 4} {1, 2, 4}
3 {2, 10, 18} {1, 3, 7, 9, 15}
4 {3, 18, 33, 48} {1, 4, 10, 13, 16, 25, 28, 40}
5 {4, 28, 52, 76, 100} {1, 5, 13, 17, 21, 25, 37, 41, 45, 61, 65, 85}

Table 1. F-digits

A d-ary F-expansion of a positive integer N is a sequence (a`, a`−1, . . . , a0) with a` ∈ Df and
aj ∈ D for 0 ≤ j < ` such that

N = value(a`, a`−1, . . . , a0) =
∑̀
j=0

ajd
j .
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Example 2.2. The sequence (3, 2, 10, 10) is a ternary (i.e., 3-ary) F-expansion of N = 139: Obvi-
ously, the digits belong to the correct digit sets, and we have

3 · 33 + 2 · 32 + 10 · 31 + 10 · 1 = 139.

We need the following information on the set D in order to compute F-expansions.

Lemma 2.3. Let m ∈ Z. Then there is exactly one a ∈ D such that m ≡ a (mod d), which will
be denoted by ε(m). We have

ε(m) = (d− 1) + (d2 − 1) (−m− 1 mod d) .

Example 2.4. For d = 3, we have ε(139) = 2 + 8 · (−140 mod 3) = 10.

Proof. We have m ≡ (d − 1) + (d2 − 1)r (mod d) for some 0 ≤ r < d if and only if r ≡ −m − 1
(mod d). Thus we have to choose r = (−m− 1 mod d). �

Next, we give an alternative description of the set of final digits. It is obvious that all final
digits are congruent to 1 modulo d− 1.

Example 2.5. For d = 5, the intersections of the sets Df and D with the residue classes modulo 5
are given in Table 1.

∩ Df D
0 + 5Z {5, 25, 45, 65, 85} {100}
1 + 5Z {1, 21, 41, 61} {76}
2 + 5Z {17, 37} {52}
3 + 5Z {13} {28}
4 + 5Z ∅ {4}

Table 2. Intersections of Df and D with the residue classes modulo 5 for d = 5

In Example 2.5, it is shown that the intersection of Df with some residue class m+5Z consists
of those positive numbers congruent to 1 modulo d − 1 = 4 and congruent to m modulo d = 5
which are less than (or equal to) the unique representative ε(m) of the residue class in the set of
digits D. In the following lemma, we prove that this is true in general.

Lemma 2.6. Let m ∈ Z. Then

(3) Df ∩ (m + dZ) = {a ∈ Z | 0 < a ≤ ε(m), a ≡ 1 (mod d− 1), a ≡ m (mod d)}.
Furthermore, a = ε(m) can only happen for d = 2.

Proof. We claim that

(4) Df = {a ∈ Z | ∃k ∈ Z : 0 < a ≤ ε(k), a ≡ 1 (mod d− 1), a ≡ k (mod d)}.
While proving this claim, we denote the set on the right hand side of (4) by S.

The congruence a ≡ k (mod d) is equivalent to a ≡ ε(k) (mod d) and to a = ε(k)− sd for an
appropriate s ∈ Z. Thus in a first step we can rewrite S as

S = {a = ε(k)− sd | a ≥ 1, s ≥ 0, a ≡ 1 (mod d− 1), k ∈ Z}.
As ε(k) ∈ D, we have ε(k) ≡ 0 (mod d − 1), so the condition a ≡ 1 (mod d − 1) translates to
s ≡ −1 (mod d− 1), so we may write s = −d + q(d− 1) for an appropriate q ∈ Z. The condition
s ≥ 0 then translates to q ≥ 2. This gives

S = {a = ε(k) + d2 − qd(d− 1) | a ≥ 1, q ≥ 2, k ∈ Z}.
Next, we replace ε(k) by (d− 1) + (d2 − 1)R for some 0 ≤ R ≤ d− 1 and obtain

S = {a = d2 + d− 1 + (d2 − 1)R− qd(d− 1) | a ≥ 1, q ≥ 2, 0 ≤ R ≤ d− 1}
= {a = d + (d− 1)q + (d2 − 1)(R− q + 1) | a ≥ 1, q ≥ 2, 0 ≤ R ≤ d− 1}.
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Setting R− q + 1 = r, we get the alternative expression

(5) S =
{

a = d + (d− 1)q + (d2 − 1)r
∣∣∣ 1 ≤ r + q ≤ d, q ≥ 2, r ≥ −1 + q + r

d

}
.

We note that r+q ≤ d implies (1+q+r)/d ≤ 1+1/d < 2, and so these inequalities imply r ≥ −1.
Thus the lower bound r + q ≥ 1 is redundant and can be removed. On the other hand, the lower
bound for r is certainly negative. Thus we separately consider the two cases r ≥ 0 and r = −1 in
(5) and obtain

(6) S = {a = d + (d− 1)q + (d2 − 1)r | q ≥ 2, r ≥ 0, r + q ≤ d}
∪ {a = d + 1− d2 + (d− 1)q | 2 ≤ q ≤ d + 1, q ≥ d}.

In the second set, the lower bound q ≥ 2 is redundant. Actually, we have

(7) {a = d + 1− d2 + (d− 1)q | 2 ≤ q ≤ d + 1, q ≥ d} = {1, d},
as the only remaining choices for q are d and d + 1. Combining (6) and (7) and comparing with
the definition of Df exactly gives S = Df , which concludes the proof of (4).

Intersecting (4) with m + dZ immediately yields (3).
As ε(m) ≡ 0 (mod d−1) and all final digits a ∈ Df satisfy a ≡ 1 (mod d−1), ε(m) = a implies

that (d− 1) divides 1, i.e., d = 2. �

We can now classify the integers admitting a F-expansion, prove uniqueness of the expansion,
and give an algorithm to compute it.

Theorem 8. If N 6≡ 1 (mod d− 1), then N does not admit a F-expansion.
If N ≡ 1 (mod d − 1), then N admits a unique F-expansion and it can be computed by Algo-

rithm 1.

Algorithm 1 Computing the F-expansion

Input: Positive integer N with N ≡ 1 (mod d− 1)
Output: The F-expansion (a`, a`−1, . . . , a0) of N

j ← −1
m← N
while m 6= 0 do

j ← j + 1
ε← ε(m) = (d− 1) + (d2 − 1)(−m− 1 mod d)
if ε < m then

aj ← ε
m← (m− aj)/d
{We have m ≡ 1 (mod d− 1).}

else
aj ← m
m← 0

end if
{We have N = mdj+1 +

∑j
k=0 akdk.}

end while
return (aj , aj−1, . . . , a0).

Proof of Theorem 8. First, we prove that N ≡ 1 (mod d− 1) is necessary for the existence of an
F-expansion of N : Assume that a positive integer N admits an F-expansion. Then

N =
∑̀
j=0

ajd
j ≡ a`d

` ≡ 1 · 1` = 1 (mod d− 1),

because a ≡ 0 (mod d− 1) for a ∈ D and a ≡ 1 (mod d− 1) for a ∈ Df .
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Next, we prove uniqueness of the F-expansion via an indirect proof that was also used in [9].
Let N be the least positive integer which admits two different F-expansions. Let (a`, . . . , a0) and
(b`′ , . . . , b0) be two different F-expansions of N .

If we had a0 = b0, then (N − a0)/d = (N − b0)/d would have two different F-expansions
(a`, . . . , a1) and (b`′ , . . . , b1), which is a contradiction to the minimality of N .

Thus we have a0 6= b0. Considering
∑`

j=0 ajd
j =

∑`′

j=0 bjd
j modulo d immediately yields

a0 ≡ b0 (mod d). As two different elements of D are incongruent modulo d (Lemma 2.3), we
conclude that one of a0 and b0 is an element of Df . Without loss of generality, we may assume
that b0 ∈ Df , which implies that `′ = 0 and N = b0.

As b0 = N =
∑`

j=0 ajd
j and a0 6= b0, we conclude that ` > 0. This implies that a0 < N

and a0 ∈ D, which in turn shows that a0 = ε(N) (by Lemma 2.3) and b0 > ε(N). But this is a
contradiction to Lemma 2.6, which concludes the proof of the uniqueness of the F-expansion.

To prove that N ≡ 1 (mod d − 1) is indeed sufficient for the existence of a F-expansion of N
only requires to show that Algorithm 1 terminates and is correct.

To see termination, we simply note that 0 < aj ≤ m in every step, which implies that m strictly
decreases in every step and is always a non-negative integer.

The invariants stated as comments in the algorithm are easily proved by induction. If ε ≤ m,
then the algorithm chooses aj = ε ∈ D. In the final step, when ε > m, we have ε = ε(m) ≡ m
(mod d) by construction. Furthermore, we have m ≡ 1 (mod d− 1) by the loop invariants. From
Lemma 2.6 we conclude that m ∈ Df , as required. �

Example 2.7. We come back to Example 2.2, where the ternary F-expansion of N = 139 has been
given without any explanation. We now compute this expansion using Algorithm 1.

As noted in Example 2.4, we have ε(139) = 2 + 8 · 1 = 10. As 10 < ε(139), we set a0 = 10 and
continue with m = (139− 10)/3 = 43. Again, we have ε(43) = 10, set a1 = 10 and continue with
m = 11. Now, we have ε(11) = 2, which is still less than 11, so we get a2 = 2 and m = 3. We
obtain ε(3) = 2 + 8 · 2 = 18, which is too large. Thus we have to set a3 = m = 3 and are done:
We obtained ` = 3 and the F-expansion (3, 2, 10, 10). The proof of Theorem 8 shows that the fact
that the final m = 3 was an admissible final digit is not a coincidence.

3. F-coefficients

For our application, our interest is not focused on the digits aj of the F-expansion, but rather
on the auxiliary variables q and r used in the definition of D and Df .

For an a ∈ D with a = (d − 1) + (d2 − 1)r and 0 ≤ r ≤ d − 1, we call r the corresponding
F-coefficient. For a final digit a = d+(d−1)q+(d2−1)r with q ≥ 2, r ≥ 0, and r+q ≤ d, the pair
(q, r) is called the corresponding final F-coefficient. The final F-coefficients for a = 1 and a = d
are defined to be (−1, 0) and (0, 0), respectively, such that the relation a = d+(d−1)q +(d2−1)r
also holds in these special cases.

It is obvious that the F-coefficient of a digit a ∈ D is defined uniquely. We claim that this is
also true for the final F-coefficient of a final digit.

Lemma 3.1. Let a ∈ Df . Then there is a unique final F-coefficient (q, r) corresponding to a,
namely

q =

{
−1, if a = 1,
a−d
d−1 mod (d + 1), if a > 1,

and

(8) r =
a− d

d2 − 1
− q

d + 1
.

Proof. If a = 1, we get q = −1 and r = −1/(d + 1) + 1/(d + 1) = 0, as requested. Similarly, if
a = d, we obtain q = 0 and r = 0. So we are left with the case

(9) a = d + (d− 1)q + (d2 − 1)r
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for some q ≥ 2. We obtain
a− d

d− 1
mod (d + 1) = (q + (d + 1)r) mod (d + 1) = q mod (d + 1) = q,

because 2 ≤ q ≤ d holds by assumption. Obviously, (8) is equivalent to (9). �

Let N be a positive integer with F-expansion (a`, . . . , a0). The F-coefficients corresponding to
the digits aj , 0 ≤ j < `, are denoted by rj , 0 ≤ j < `. The final F-coefficient of the final F-digit a`

is denoted by (q`, r`). Then the d-ary F-sequence of N is defined to be r0, r1, . . . , r`−1, (q`, r`).

Example 3.2. We calculate the ternary F-sequence of 139. In Example 2.7, the F-expansion of 139
has been calculated as (3, 2, 10, 10). Since 10 = 2 + 8 · 1 and 2 = 2 + 8 · 0, we have r0 = 1, r1 = 1
and r2 = 0. For the final digit a3 = 3, we have q3 = 0 mod 4 = 0 and obtain r3 = 0. Thus the
F-sequence of 139 is 1, 1, 0, (0, 0).

For the convenience of the reader, we include a version of Algorithm 1 computing the F-sequence
of a given integer N as Algorithm 2. It is simply a combination of Algorithm 1, Lemma 2.3 and
Lemma 3.1.

Algorithm 2 Computing the F-sequence

Input: Positive integer N with N ≡ 1 (mod d− 1)
Output: The F-sequence r0, r1, . . . , r`−1, (q`, r`) of N

j ← −1
m← N
while m 6= 0 do

j ← j + 1
R← (−m− 1 mod d)
ε← (d− 1) + (d2 − 1)R
if ε < m then

rj ← R
m← (m− ε)/d

else
if m = 1 then

qj ← −1
else

qj ← m−d
d−1 mod (d + 1)

end if
rj ← m−d

d2−1 −
qj

d+1

return (r0, r1, . . . , r`−1, (q`, r`))
end if

end while

4. F-trees

The considerations of the previous sections enable us to give the following constructive variant
of Theorem 1.

Proposition 4.1. Let n be a positive integer and r0, r1, . . . , r`−1, (q`, r`) be the F-sequence of
N = (d− 1)n + 1 (as computed by Algorithm 2). Then T ∗n,d is the tree of the form

B0,d−1 B0,1· · · B`−1,d−1 B`−1,1· · · B`,d B`,d−1 B`,1· · ·

· · ·
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with

• Bj,1 = · · · = Bj,rj
= Ck+2 and Bj,rj+1 = · · ·Bj,d−1 = Ck for 0 ≤ j ≤ `− 1,

• If q` = −1, then B`,1 = . . . = B`,d = C`−1,
• If q` ≥ 0, then B`,1 = . . . = B`,r`

= C`+2, B`,r`+1 = . . . = B`,r`+q`
= C`+1 and

B`,r`+q`+1 = · · · = B`,d = C`.

Example 4.2. We construct T ∗69,3. To this aim, we need the F-sequence of N = 2 · 69 + 1 = 139,
which has been computed in Example 3.2 as 1, 1, 0, (0, 0). Thus we start with a path of 4 vertices
v0, v1, v2, v3.

• We attach r0 = 1 copy of C0+2 = C2 and d− 1− r0 = 1 copy of C0+0 = C0 at vertex v0.
• We attach r1 = 1 copy of C1+2 = C3 and d− 1− r1 = 1 copy of C1+0 = C1 at vertex v1.
• We attach no (r2 = 0) copy of C2+2 = C4 and d−1−r2 = 2 copies of C2+0 = C2 at vertex

v2.
• Finally, we attach no (r3 = 0) copy of C3+2 = C5, no (q3 = 0) copy of C3+1 = C4 and

d− r3 − q3 = 3 copies of C3+0 = C3 at vertex v4.

The result is shown in Figures 2 and 3, once in the decomposition as in the definition and once in
explicit form.

C0 C2 C1 C3 C2 C2 C3 C3 C3

Figure 2. T ∗69,3 in decomposed form. An explicit version is shown in Figure 3

Figure 3. T ∗69,3, explicit version

Example 4.3. In the same way, we construct T ∗69,2 now. The corresponding F-sequence (obtained
from the binary F-expansion of 70) is easily found to be 1, 0, 1, 1, (−1, 0) in this case. Note that
only one complete binary tree is attached to each of the vertices of the base-path v0v1v2v3v4,
except for the very last one. This complete binary tree is Cj+2 if rj = 1 and Cj otherwise. Note
also that this example illustrates the special case when the final F-coefficient is (−1, 0), so that
we have to attach two copies of C3 to the terminal vertex v4 of the base path. The result is shown
in Figures 4 and 5, as in the previous example.

C2 C1 C4 C5 C3 C3

Figure 4. T ∗69,2 in decomposed form. An explicit version is shown in Figure 5
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Figure 5. T ∗69,2, explicit version

Example 4.4. Our last example in this section shows an instance where three different types of
complete d-ary trees are attached to the terminal vertex of the base path, namely the F-tree T ∗44,4.
The corresponding F-expansion is found to be 2, (2, 1) in this case, and so we have ` = 1, meaning
that we have to start with a path v0v1 and attach two copies of C2 to v0 (and one copy of C0,
which does not actually change anything) and one copy of C1, two copies of C2 and one copy of
C3 to v1, see Figures 6 and 7.

C0 C2 C2 C1 C2 C2 C3

Figure 6. T ∗44,4 in decomposed form. An explicit version is shown in Figure 7

Figure 7. T ∗44,4, explicit version

5. Further examples

In addition to the examples discussed in the previous section, we show complete lists of the
F-trees T ∗n,d for small values of n and d, specifically for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4. These are shown
in Figures 8 to 10. All of these figures, including the ones in Section 4, were created automatically
by means of an Asymptote [1] package that can be downloaded from [11]. On this webpage, all
necessary files for creating pictures of F-trees of arbitrary size and degree are provided together
with samples containing all F-trees up to 100 vertices for d ≤ 5.

6. Further properties and numerical data

Various structural parameters of F-trees can be determined directly from the F-coefficients. For
instance, it is not difficult to see that all vertices, with at most one exception, in an F-tree T ∗n,d

have degree 1 or d + 1. The degree of the exceptional vertex is given by 1 + r0, provided that
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Figure 8. The F-trees T ∗n,2 for 1 ≤ n ≤ 20

` > 0. Since the sum of all degrees is known to be twice the number of edges, a simple counting
argument yields a formula for the number of leaves of T ∗n,d:

Proposition 6.1. For n > 1, the F-tree T ∗n,d has exactly

L = L(n, d) =
⌊

(d− 1)n + 2
d

⌋
leaves.

Proof. Assume that ` > 0. If r0 = 0, every vertex has degree 1 or d + 1, and one obtains

L + (d + 1)(n− L) = 2(n− 1),

which simplifies to

L =
(d− 1)n + 2

d
.

If r0 > 0, then there is an additional vertex of degree 1 + r0, which leads to

L + (1 + r0) + (d + 1)(n− L− 1) = 2(n− 1),
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Figure 9. The F-trees T ∗n,3 for 1 ≤ n ≤ 20

or

L =
(d− 1)n + 2 + r0 − d

d
,

and since 0 < r0 < d, this simplifies to the desired identity. In case that ` = 0, one simply has to
replace r0 by q0 + r0. �

It is somewhat trickier to provide a formula for the diameter. Roughly stated, the diameter of
T ∗n,d is close to the minimum diameter for any tree with n vertices and maximum degree ≤ d + 1,
i.e.,

Proposition 6.2. The diameter of the F-tree T ∗n,d is 2 logd n + O(1).

More specifically, the diameter can be expressed explicitly in terms of the F-expansion as follows:

Proposition 6.3. The diameter of the F-tree T ∗n,d is given by 2`+δ, where −1 ≤ δ ≤ 4 is specified
as follows:

• If r` ≥ 2, then δ = 4.
• If r` = 1, then

δ =

{
3 ` = 0 or rk = 0 for all k < `,

4 otherwise.
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Figure 10. The F-trees T ∗n,4 for 1 ≤ n ≤ 20

• If r` = 0 and q` ≥ 2, then

δ =

{
2 ` = 0 or rk = 0 for all k < `,

3 otherwise.

• If r` = 0 and q` = 0, then

δ =

{
0 ` = 0 or rk = 0 for all k < `,

2 otherwise.

• If r` = 0 and q` = −1, then

δ =


2 r`−1 ≥ 2 or r`−1 = 1 and rk 6= 0 for some k < `− 1,

−1 rk = 0 for all k < `

1 otherwise.

Proof. Note first that the diameter of any tree is the maximum distance between two of its leaves.
If H(Bi,j) − 1 denotes the height of a subtree Bi,j (i.e. H(Bi,j) = h if Bi,j is a Ch), then two
leaves of the subtrees Bi1,j1 and Bi2,j2 have a distance of

|i1 − i2|+ H(Bi1,j1) + H(Bi2,j2),

unless (i1, j1) = (i2, j2), in which case the distance is at most 2H(Bi1,j1)−2. Now all that needs to
be done is to distinguish all the cases mentioned in the statement of the problem and determine the
maximum distance between leaves in each case. For instance, if r` ≥ 2, then B`,1 and B`,2 are both
isomorphic to C`+2, and so the distance between leaves of these two subtrees is 2(` + 2) = 2` + 4.
It is easy to see that there cannot be a larger distance between leaves, since

|i1 − i2|+ H(Bi1,j1) + H(Bi2,j2) ≤ |i1 − i2|+ i1 + 2 + i2 + 2 = 2 max(i1, i2) + 4.
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If r` = 1, then the largest distance between leaves occurs for leaves of the two subtrees B`,1 and
B`,2, which are isomorphic to C`+2 and C`+1 respectively (yielding a distance of 2` + 3), unless
there is some k < ` for which rk > 0. In this case, Bk,1 is a Ck+2, so that the distance between a
leaf of Bk,1 and a leaf of B`,1 is

(`− k) + ` + 2 + k + 2 = 2` + 4.

Hence, we obtain the formula stated in the second case; the remaining cases are similar. Finally,
it is not difficult to see that ` = logd n+O(1), yielding Proposition 6.2. This follows from the fact
that

(d− 1)n + 1 =
∑̀
k=0

akdk ≥ (d− 1)
`−1∑
k=0

dk + d` = 2d` − 1

by (2) and similarly

(d− 1)n + 1 =
∑̀
k=0

akdk ≤ (d− 1)d2
`−1∑
k=0

dk + (d3 − 2d2 + 2d)d` = (d2 − d + 2)d`+1 − d2.

Much more detailed asymptotic information on ` is contained in [7]. �

Finally, we provide some numerical data; the following tables (Table 3 to Table 5) list the values
of the Merrifield-Simmons index, the Hosoya index and the energy in the cases d = 2, d = 3, d = 4
for small values of n. The values have been computed using Mathematica R© routines which are
also available on the accompanying web site [11].

n σ(T ∗n,2) σ(T ∗n,3) σ(T ∗n,4)
1 2 2 2
2 3 3 3
3 5 5 5
4 9 9 9
5 14 17 17
6 24 26 33
7 41 44 50
8 66 80 84
9 110 145 152

10 189 226 288
11 305 388 545
12 510 684 834
13 863 1241 1412
14 1425 1970 2568
15 2345 3330 4760
16 3987 5868 9009
17 6515 10657 13922
18 10905 17001 23748
19 18254 28674 42500
20 30135 50508 78744

Table 3. The Merrifield-Simmons index of F-trees T ∗n,d for 1 ≤ n ≤ 20 and
2 ≤ d ≤ 4

Table 6 lists the aforementioned polynomials M(T ∗n,d, x) whose coefficients are exactly the
numbers of k-matchings. We conjecture that the following strong result holds:

Conjecture 1. For given positive integers n, d and k, the F-tree T ∗n,d minimizes the number of
k-matchings (i.e. matchings of cardinality k) among trees with n vertices and maximum degree
≤ d + 1.
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n z(T ∗n,2) z(T ∗n,3) z(T ∗n,4)
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 7 5 5
6 10 9 6
7 15 13 11
8 24 17 16
9 37 24 21

10 54 40 26
11 87 56 35
12 132 81 60
13 201 112 85
14 306 176 110
15 483 264 151
16 720 376 200
17 1137 512 325
18 1710 816 450
19 2655 1216 635
20 4068 1712 860

Table 4. The Hosoya index of F-trees T ∗n,d for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4

n E(T ∗n,2) E(T ∗n,3) E(T ∗n,4)
1 0 0 0
2 2 2 2
3 2.82843 2.82843 2.82843
4 3.46410 3.46410 3.46410
5 5.22625 4 4
6 6 5.81863 4.47214
7 6.82843 6.60272 6.32456
8 8.42429 7.21110 7.11529
9 9.33533 7.93624 7.72741

10 10.1290 9.61686 8.24621
11 11.6857 10.3631 8.89898
12 12.6171 11.1349 10.6332
13 13.4801 11.8272 11.3910
14 14.9113 13.3979 11.9820
15 15.9244 14.2651 12.6664
16 16.7721 15.0171 13.2915
17 18.2517 15.6838 14.9282
18 19.1867 17.2461 15.6569
19 20.1045 18.1316 16.3921
20 21.5369 18.8673 17.0539

Table 5. The energy of F-trees T ∗n,d for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4

The same might also be true for independent vertex subsets:

Conjecture 2. For given positive integers n, d and k, the F-tree T ∗n,d maximizes the number of
independent sets of cardinality k among trees with n vertices and maximum degree ≤ d + 1.
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n M(T ∗n,2, x) M(T ∗n,3, x) M(T ∗n,4, x)
1 1 1 1
2 x + 1 x + 1 x + 1
3 2x + 1 2x + 1 2x + 1
4 3x + 1 3x + 1 3x + 1
5 2x2 + 4x + 1 4x + 1 4x + 1
6 4x2 + 5x + 1 3x2 + 5x + 1 5x + 1
7 8x2 + 6x + 1 6x2 + 6x + 1 4x2 + 6x + 1
8 4x3 + 12x2 + 7x + 1 9x2 + 7x + 1 8x2 + 7x + 1
9 10x3 + 18x2 + 8x + 1 15x2 + 8x + 1 12x2 + 8x + 1

10 20x3 + 24x2 + 9x + 1 9x3 + 21x2 + 9x + 1 16x2 + 9x + 1
11 8x4 + 36x3 + 32x2 + 10x + 1 18x3 + 27x2 + 10x + 1 24x2 + 10x + 1
12 24x4 + 56x3 + 40x2 + 11x + 1 33x3 + 36x2 + 11x + 1 16x3 + 32x2 + 11x + 1
13 52x4 + 86x3 + 50x2 + 12x + 1 54x3 + 45x2 + 12x + 1 32x3 + 40x2 + 12x + 1

Table 6. Polynomials M(T ∗n,d, x) for 1 ≤ n ≤ 13 and 2 ≤ d ≤ 4

The asymptotic behavior of the Merrifield-Simmons index, the Hosoya index and the energy is
stated in Theorems 5 to 7; these results were proved in references [10] and [8] respectively, where
numerical values of the involved constants were provided as well. We list these values again for
completeness (Table 7).

d β(d) γ(d) α(d)
2 1.663458397072 1.537176717182 1.102947505597
3 1.711047716866 1.467929313206 0.970541979946
4 1.752772283509 1.413925936186 0.874794345784
5 1.786638067241 1.371550869136 0.802215758706
10 1.877945384383 1.250294688426 0.597794680849
20 1.935063600987 1.157772471129 0.434553264777
50 1.973001642192 1.080428182842 0.279574397741
100 1.986321304317 1.046824956103 0.198836515295

Table 7. Numerical values of the constants β(d), γ(d) and α(d) that occur in
Theorems 5 to 7. The Merrifield-Simmons index of an F-tree T ∗n,d grows like
β(d)n, the Hosoya index like γ(d)n, and the energy like α(d) · n.
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