
FoSP
FoSPAlgorithmen &

mathematische
Modellierung Forschungsschwerpunkt

Algorithmen und mathematische Modellierung

Combinatorial algorithms for inverse absolute and vertex

1-center location problems on trees

Behrooz Alizadeh and Rainer Ernst Burkard

Project Area(s):

Effizient lösbare kombinatorische Optimierungsprobleme

Institut für Optimierung und Diskrete Mathematik (Math B)

Report 2009-9, April 2009

Combinatorial algorithms for inverse absolute and vertex

1-center location problems on trees

Behrooz Alizadeh∗† Rainer E. Burkard ∗

April 28, 2009

Abstract. In an inverse network absolute (or vertex) 1-center location problem
the parameters of a given network, like edge lengths or vertex weights, have to
be modified at minimum total cost such that a prespecified vertex s becomes
an absolute (or a vertex) 1-center of the network. In this article, the inverse
absolute and vertex 1-center location problem on trees with n + 1 vertices is
considered where the edge lengths can be changed within certain bounds. For
solving these problems a fast method is developed for reducing the height of
one tree and increasing the height of a second tree under minimum cost until
the height of both trees is equal. Using this result a combinatorial O(n2) time
algorithm is stated for the inverse absolute 1-center location problem in which
no topology change occurs. If topology changes are allowed, an O(n2r) time
algorithm solves the problem where r, r < n, is the compressed depth of the tree
network T rooted in s. Finally, the inverse vertex 1-center problem with edge
length modifications is solved on T . If all edge lengths remain positive, a new
approach yields the improved O(n2) time complexity. In the general case one gets
the improved O(n2rv) time complexity where the parameter rv is bounded by dn/2e.

Keywords: network center location, inverse optimization, combinatorial
optimization,

1 Introduction

Location problems are fundamental optimization models in operations research and
play a considerable role in practice and theory. These problems are concerned with
determining the optimal locations of one or more new facilities in network systems or in

∗Institute of Optimization and Discrete Mathematics, Graz University of Technology, Steyrergasse
30, A-8010 Graz, Austria. {alizadeh,burkard}@opt.math.tugraz.at

†Department of Applied Mathematics, Faculty of Basic Sciences for Engineering, Sahand University
of Technology, Tabriz, Iran. alizadeh@sut.ac.ir

Corresponding author: Rainer E. Burkard, Tel. +43(316) 8735350, Fax. +43(316) 8735369

The first author acknowledges financial support by the NAWI-Project under the grant F-NW-
MATH-05. This research has also been supported by the Austrian Science Fund (FWF) Project
P18918-N18.

1

space in order to fulfill the demands of customers. See the books of Daskin [6], Drezner
and Hamacher [7], Francis, McGinnis and White [8], Love, Morris and Wesolowsky [18],
and Mirchandani and Francis [21] for detailed surveys on location problems.

The 1-center location problem, or simply center location problem, is the special case
where one center is to be located such that the maximum weighted distance to the given
points becomes minimum. Such problems occur when the best location of an emergency
service, a hospital, a fire station, a police office, a bank branch or another facility center
has to be found. One of the most important components of a center location model
is the classical network 1-center location problem which is stated in the following way.
Let a connected graph G = (V (G), E(G)) with vertex set V (G), |V (G)| = n, and edge
set E(G), |E(G)| = m, be given. Every edge e ∈ E(G) has a positive length `(e).
Moreover, for any vertex v ∈ V (G), let w(v) be a nonnegative vertex weight. We say
that point p lies in G, p ∈ G, if p coincides with a vertex or lies on an edge of G. In
the classical network 1-center location problem, the task is to find a point p ∈ G such
that the maximum weighted distance from any vertex v ∈ V (G) to point p becomes
minimum, or,

minimize max
v∈V (G)

w(v)d`(v, p)

subject to p ∈ G, (1)

where d`(v, p) denotes the shortest path distance from v to p. A point p∗ which solves
problem (1), is said to be an absolute 1-center location. If in problem (1) point p is
restricted to be a vertex (i.e., p ∈ V (G)), then we say that the optimal solution p∗ is a
vertex 1-center location of G.

Kariv and Hakimi [16] designed an O(mn log n) algorithm for finding an absolute 1-
center of a weighted network and an O(mn+n2 log n) algorithm for finding an absolute
1-center of an unweighted network, provided that the distance matrix of the network
is available. Moreover, they proposed an O(n log n) time algorithm for the absolute
(or vertex) 1-center location problem on weighted trees. Later, in 1983, Megiddo [20]
showed that the weighted 1-center of a tree can be obtained in O(n) time, since the
objective function of the problem is convex on every simple path of the tree. For the
unweighted case an efficient O(n) time algorithm was developed by Handler [12].

Inverse optimization problems, particularly inverse location problems have found a
significant interest in recent years. Since we usually are confronted with the situation
that facilities already exist and cannot be relocated, inverse location problems play an
important role in practice. Given a feasible solution for a location problem, the inverse
location problem is concerned with modifying parameters of the original problem at
minimum total cost within certain modification bounds such that the given feasible
solution becomes an optimal solution with respect to the new parameter values.

A detailed survey on inverse optimization problems has been compiled by Heuberger
[14]. In the context of location problems Cai, Yang and Zhang [5] proved that the
inverse 1-center location problem with edge length modification on general unweighted
directed graphs is NP-hard, while the underlying center location problem is solvable in
polynomial time. In 2004, Burkard, Pleschiutschnig and Zhang [3] considered inverse
p-median problems and showed that discrete inverse p-median location problems can be

2

solved in polynomial time, when p is fixed and not an input parameter. They proposed
a greedy-like O(n log n) time algorithm for the inverse 1-median problem with vertex
weight modifications on tree networks. Hatzl [13] as well as Galavii [9] showed later that
this problem can actually be solved in O(n) time. Moreover, Burkard et al. [3] proved
that the inverse 1-median problem on the plane under Manhattan (or Chebyshev) norm
can be solved in O(n log n) time. Later the same authors [4] investigated the inverse 1-
median problem with vertex weight modification and unit cost on a cycle. They showed
that this problem can be solved in O(n2) time by using methods from computational
geometry. In 2007, Gassner [10] suggested an efficient O(n log n) time solution method
for the inverse 1-maxian problem with edge length modifications on tree networks. The
inverse Fermat-Weber problem was studied by Burkard, Galavii and Gassner [2]. The
authors derived a combinatorial approach which solves the problem in O(n log n) time
for unit cost and under the assumption that the prespecified point that should become
a 1-median does not coincide with a given point in the plane. Galavii [9] showed in
his Ph.D. thesis that the 1-median on a path with pos/neg weights lies in one of the
vertices with positive weights or lies in one of the end points of the path. This property
allows to solve the inverse 1-median problem on a path with negative weights in O(n)
time. Gassner [11] considered an inverse version of the convex ordered median problem
and showed that this problem is NP-hard on general graphs, even on trees. Further,
it was shown that the problem remains NP-hard for unit weights or if the underlying
problem is a k-centrum problem (but not, if both of these conditions hold). The inverse
unit-weight k-centrum problem with unit cost coefficients on a tree can be solved in
O(n3k2) time. Recently, Yang and Zhang [23] proposed an O(n2 log n) time solution
method for the inverse vertex center problem on a tree provided that the modified edge
lengths always remain positive. Dropping this condition, they mention that the general
problem can be solved in O(n3 log n) time.

This article develops novel combinatorial solution methods for the inverse absolute
(or vertex) 1-center location problem where the edge lengths of a given tree network
are modified at minimum total cost with respect to modification bounds such that a
prespecified vertex s becomes an absolute (or a vertex) 1-center. The article is organized
as follows: In the next section, we state the inverse absolute (or vertex) 1-center location
problem on tree networks and show that the problem can be formulated as a nonlinear
semi-infinite (or nonlinear) optimization model. By recalling basic properties from the
classical absolute (or vertex) 1-center location problem we discuss the main ideas of
purely combinatorial solution algorithms for solving the inverse absolute (or vertex)
1-center location problem on unweighted tree networks. In Section 3 the tree height
reduction problem is considered where the height of a given rooted tree is to be reduced
at minimum cost by a prespecified amount. The solution method for this problem is
applied in Section 4 to develop an exact algorithm for balancing the heights of two
rooted trees by increasing the height of one tree and decreasing the height of the second
tree under minimum cost. The latter algorithm is used in Subsection 5.1 to solve the
inverse absolute 1-center location problem in O(n2) time where we assume that no
topology change is admitted. Dropping this condition, we develop an exact algorithm
for the general case with O(n2r) time complexity in Subsection 5.2 where r, r < n, is
the compressed depth of the given tree rooted in the vertex s. Finally, in Section 6,

3

the height balancing algorithm is again used in a novel solution method for the inverse
vertex 1-center location problem on a tree. It yields improved time complexities for
both cases, when the modified edge lengths remain positive and the general case.

2 Problem statement and main solution ideas

2.1 Problem statement

Let an undirected tree network T = (V (T), E(T)) with vertex set V (T), |V (T)| = n+1,
and edge set E(T) be given such that every edge e ∈ E(T) has a positive length `(e). We
assign a nonnegative weight w(v) to every vertex v ∈ V (T). Let s is a prespecified vertex
of T . We want to modify the edge lengths at minimum total cost such that s becomes
the absolute (or vertex) 1-center. Suppose that we incur nonnegative cost c+(e), if `(e)
is increased by one unit and we incur nonnegative cost c−(e), if `(e) is reduced by one
unit. Moreover, we assume that it is not possible to increase and reduce the edge lengths
arbitrarily. Namely, every edge length `(e) can only be changed between a lower bound
`low(e) ≥ 0 and an upper bound `upp(e). Therefore, we can state the inverse absolute
(or vertex) 1-center location problem on the given tree network T as follows:

Modify the edge lengths `(e), e ∈ E(T), to ˜̀(e) such that the following three state-
ments hold:

(i) The vertex s becomes an absolute (or a vertex) 1-center of T with respect to ˜̀,
i.e., for all p ∈ T (or p ∈ V (T)),

max
v∈V (T)

w(v)d˜̀(v, s) ≤ max
v∈V (T)

w(v)d˜̀(v, p).

(ii) The linear cost function
∑

e∈E(T)

(c+(e)x(e) + c−(e)y(e))

becomes minimum, where x(e) and y(e) are the amounts by which the edge length
`(e) is increased and reduced, respectively.

(iii) The new edge lengths lie within given modification bounds

`low(e) ≤ ˜̀(e) ≤ `upp(e) for all e ∈ E(T).

Hence, based on the problem statement mentioned above, the inverse absolute (or
vertex) 1-center location problem on the tree network T can be formulated as the
following nonlinear semi-infinite (or nonlinear) optimization model :

4

minimize
∑

e∈E(T)

(c+(e)x(e) + c−(e)y(e))

subject to max
v∈V (T)

w(v)d˜̀(v, s) ≤ max
v∈V (T)

w(v)d˜̀(v, p) for all p ∈ T (or p ∈ V (T)),

˜̀(e) = `(e) + x(e)− y(e) for all e ∈ E(T), (2)
x(e) ≤ `+(e) for all e ∈ E(T),
y(e) ≤ `−(e) for all e ∈ E(T),
x(e), y(e) ≥ 0 for all e ∈ E(T),

where `+(e) = `upp(e)−`(e) and `−(e) = `(e)−`low(e) are the maximum feasible amounts
by which `(e) can be increased and reduced, respectively. Every feasible solution (x, y)
with x = {x(e) : e ∈ E(T)} and y = {y(e) : e ∈ E(T)} is also called a feasible
modification of the inverse absolute (or vertex) 1-center location problem.

2.2 Main solution ideas based on optimality criteria for the classical
center location problems

The solution methods for the inverse 1-center problems are based on optimality criteria
for 1-center problems. Handler [12] showed:

Theorem 2.1 (midpoint-property)
In an unweighted tree network the midpoint of a longest path is an absolute 1-center.
The closest vertex to the absolute 1-center is a vertex 1-center of the given network.

Moreover, Handler [12] proved the following Lemma:

Lemma 2.2 The absolute 1-center of an unweighted tree network is unique.

Lemma 2.2 means that the unique absolute 1-center of an unweighted tree is the
midpoint of all longest paths. Therefore, the main idea for solving the inverse absolute
1-center location problem on a tree network T is the following: the given tree T is
split into two subtrees L and R where L is given by a longest path from s to a leaf
together with all its adjacent vertices, whereas the subtree R rooted in s contains all
other vertices (see Fig.1). If the heights of L and R are not equal, then the length
of some edges in L have to be reduced and the length of some edges in R has to be
increased. The edge lengths are modified at minimum total cost with respect to the
given modification bounds until the prespecified vertex s fulfills the midpoint-property
on T .

The splitting of T into two subtrees L and R is done in the following way. Let deg(s)
be the degree of the prespecified vertex s. If deg(s) = 1, then we set

L = T , R = s. (3)

5

Otherwise we partition T into nontrivial subtrees T1, T2, ... , Tdeg(s) such that

deg(s)⋃

i=1

Ti = T and Ti ∩ Tj = s for 1 ≤ i, j ≤ deg(s), i 6= j.

Let Puv denote the unique path between two arbitrary vertices u, v ∈ V (T) and let
`(Puv) be the length of Puv with respect to `. Without loss of generality a longest path
Psz∗ from s to the leaves of T is contained in T1. Then we define

L = T1 , R =
deg(s)⋃

i=2

Ti. (4)

Figure 1 illustrates the partitioning of the tree T into subtrees L and R for the case
deg(s) ≥ 2.

 s

*z

R

L

2T
)(e�

4T

3T 1T

*sz
P

T

1s
2s

2z

1z

3z
4z 5z

6z

7z

8z

Figure 1: Illustration for partitioning the given tree network T into subtrees L and R
where deg(s) ≥ 2. The path Psz∗ is a longest path from s to the leaves of T

If subtree L is not a path let s1 denote the nearest vertex to s in the subtree L with
deg(s1) ≥ 3. We say that an essential topology change occurs if the length `(Pss1) is
reduced to zero, i.e., if vertex s1 coincides with vertex s in the reduced tree. In this case
some vertices of L move to the right tree R. Thus we get new left and right trees. For
example, consider the tree T given in Figure 1. After reducing the edge length `(Pss1)
to 0, the leaf z3 moves in the reduced tree T 1 from the left tree L to the right tree R1 ,
see Figure 2.

Note that an essential topology change can only occur if `−(e) = `(e) for all e ∈
E(Pss1). Moreover, observe that an essential topology change never occurs if L is a
path.

Now let us turn to the inverse vertex 1-center location problem. Our solution ap-
proach for this problem relies on the following ideas:

6

 s

*z

*sz
P

1s s=

2s

2z

1z

3z
4z 5z

6z

7z

8z

1T

1L

1R

Figure 2: Tree T 1 obtained from tree T in Figure 1 by reducing the length of path Pss1

to 0. The leaf z3 which lies in T in the left tree L moves after the reduction to the right
tree R1 of T 1.

Let Z(T) denote the set of leaves of T . Consider a longest path Psz∗ , z∗ ∈ Z(T),
from the prespecified vertex s to the leaves. Let a(s) be the unique adjacent vertex to
s on this path Psz∗ and let es be the unique edge with end points s and a(s). If we
delete edge es, then the tree network T is split into two disjoint subtrees L̂ and R̂ with
a(s) ∈ V (L̂) and s ∈ V (R̂), i.e.,

L̂ ∪ R̂ = T − es , L̂ ∩ R̂ = ∅, (5)

and
a(s) ∈ V (L̂) , s ∈ V (R̂). (6)

We root subtree L̂ in vertex a(s) and subtree R̂ in vertex s. The proposed solution
algorithms for solving the inverse vertex 1-center location problem are based on the
following property, the so-called optimality-inequality, see Yang and Zhang [23]:

Theorem 2.3 (optimality-inequality)
Given a tree network T , a vertex s is a vertex 1-center location if and only if the
inequality

`(Psz∗) ≤ max{`(Pa(s)z) : z ∈ Z(R̂)}
holds where Z(R̂) is the set of leaves of the rooted subtree R̂.

Theorem 2.3 leads to the following main idea for solving the inverse vertex 1-center
problem: split T into two rooted subtrees L̂ and R̂. If the optimality-inequality is
not satisfied, then reduce the edge lengths on L̂ and increase the edge lengths on R̂
at minimum total cost with respect to the given modification bounds such that the
maximum distance from a(s) to the leaves z ∈ Z(L̂) becomes equal to the maximum
distance from s to the leaves z ∈ Z(R̂).

In the next section, we discuss the problem of reducing the height of a tree. In
Sections 5 and 6 we apply this to the subtrees L and L̂, respectively.

7

3 Tree height reduction problem

Let T = (V (T), E(T)) be a tree with vertex set V (T) and edge set E(T) which is
rooted in a vertex s. Every edge e ∈ E(T) has a positive length `(e). Reducing this
length incurs nonnegative cost c(e) per unit. Furthermore, let h`(T) denote the height
of T which is equal to the length of a longest path from the root to the leaves of T
with respect to the edge lengths `. The tree height reduction problem is concerned with
reducing h`(T) by a given amount δh, the so-called reduction argument, at minimum
total cost. Suppose that `−(e) is the maximum feasible amount by which the length `(e)
can be reduced. In the tree height reduction problem on T , the goal is to reduce the
edge lengths `(e) by amounts y(e) with respect to the given bounds 0 ≤ y(e) ≤ `−(e)
for all e ∈ E(T) such that the total cost

∑

e∈E(T)

c(e)y(e)

becomes minimum while the height of T is reduced by the amount δh.

In the following we are going to present a solution method for the tree height re-
duction problem which is an extension of the solution approach of Zhang, Liu and Ma
[24] developed for reverse center location problems. The method relies on a sequence of
minimum s− t cuts in a corresponding tree-like network.

Given the rooted tree T , we introduce a new vertex t and connect it to every leaf
z ∈ Z(T) . Then we define

V (N) = V (T) ∪ {t} and E(N) = E(T) ∪ {e = zt : z ∈ Z(T)}.

Moreover, let

`N (e) =

{
`−(e) if e ∈ E(T),
h`(T)− d`(s, z) if e = zt, z ∈ Z(T),

(7)

cN (e) =





c(e) if e ∈ E(T), `N (e) > 0,

0 if e = zt, z ∈ Z(T), `N (e) > 0,

M otherwise,

(8)

where M is a very big value. The network N = (V (N), E(N), `N , cN) is called the
corresponding tree-like network of T with vertex set V (N), edge set E(N) and edge
lengths `N . All edges are directed from s to t and have capacities cN (e), e ∈ E(N) (see
Figure 3). Furthermore, define the paths

Pz = Psz ∪ {zt} for all z ∈ Z(T),

on network N where Psz is the unique path from s to the leaf z on tree T . Thus we get
the following lemma:

8

 s

*z

*

*

()

()
N

N

e z t 0

c z t M

= =

=

�

N

t

3z

2z

1z

Figure 3: N is the corresponding tree-like network of the subtree L shown in Figure 1.

Lemma 3.1 There exists a one-to-one correspondence between feasible solutions of the
following two problems (a) and (b) with the same objective function values:

Problem (a): reduce the height h`(T) of tree T by the amount δh
Problem (b): reduce all path lengths `N (Pz), z ∈ Z(T), by the amount δh

Now we show that by finding a minimum s − t cut on network N one can reduce
all the path lengths `N (Pz), z ∈ Z(T), and consequently according to Lemma 3.1, the
height of the given tree T at minimum cost by changing the lengths of those edges which
are contained in the minimum s− t cut of N . Note that in network N we are allowed
to reduce the length of every edge to zero.

Let K = (X, Y) with s ∈ X, t ∈ Y be a minimum s− t cut in N and E(K) = {e =
uv ∈ E(N) : u ∈ X, v ∈ Y }. The capacity of K is computed by

c(K) =
∑

e∈E(K)

cN (e).

If c(K) ≥ M , then this means that there exists at least one path Pz, z ∈ Z(T),
with `N (e) = 0 for all e ∈ E(Pz). In this case the length of Pz cannot be reduced any
more and thus the tree height reduction problem is infeasible. Otherwise, let

δ(K) = min{`N (e) : e ∈ E(K)}.
The parameter δ(K) is the maximum amount by which we can reduce the length of
all edges in E(K). The following lemma is crucial for the correctness of our solution
method for the tree height reduction problem.

Proposition 3.2 Let K be a minimum s− t cut in N with c(K) < M and let 0 < δ ≤
δ(K). If we reduce the edge lengths of N by amounts

y∗(e) =

{
δ if e ∈ E(K),
0 otherwise,

then the height of tree T is reduced by the amount δ at minimum total cost.

9

Proof. Let K be a minimum s− t cut with c(K) < M . This implies that all edges
e ∈ E(K) have a positive length. Therefore δ(K) > 0. The cut contains in particular
an edge of every longest path Psz in T , since cN (zt) = M . Therefore all longest paths
in T are reduced by δ. If Psz is not a longest path in T , the cut contains the edge zt,
since cN (zt) = 0 and the cut has minimum cost. The definition of δ(K) implies that
after the reduction all reduced longest paths have a length at least as long as a second
longest path Psz in T before the reduction. Thus the height of T has been reduced by
δ at minimum cost.

Let us now assume that we have to reduce the height of tree T by the amount δh.
We determine a first minimum s − t cut K1 in network N with corresponding value
δ(K1). If δh ≤ δ(K1), the height can be reduced by using the cut K1. Otherwise,
choose in the first step δ = δ(K1), reduce the edge lengths in N by

`N (e) =

{
`N (e)− δ(K1) if e ∈ E(K1),
`N (e) otherwise.

and then update
δh = δh− δ(K1),

cN (e) =

{
cN (e) if `N (e) > 0,

M otherwise.

The resulting network is again called N = (V (N), E(N), `N , cN). Observe that after
such a transformation at least one edge e ∈ E(N) will have the new length `N (e) = 0.
Hence, by iterating this process we find a sequence of minimum s− t cuts Ki, i = 1, ...q,
with capacities c(Ki) which lead successively to the reduction of the underlying tree
T by the amounts δ(Ki), i = 1, ...q. The process terminates if either δ(Kq) ≥ δh or if
δ(Kq) ≥ M . In the latter case the problem is infeasible.

In order to solve the tree height reduction problem we generate at most n minimum
s−t cuts in N . Every minimum s−t cut in network N can be found in O(n) time, since
N − {t} is an arborescence (see e.g., Hochbaum [15] or Vygen [22]). Also the updating
of network N takes at most O(n) time. Hence we get

Theorem 3.3 The tree height reduction problem can be solved in O(n2) time where n
is the number of edges on the given tree.

In the next section the tree height reduction problem will be used as a subproblem
for balancing the heights of two rooted trees.

4 Height balancing of two rooted trees

Let T ′ and T ′′ be two trees rooted in vertices s′ and s′′, respectively. The problem to
balance the height of T ′ and T ′′ consists in modifying (increasing or reducing) the edge
lengths `(e) for all e ∈ E(T ′), E(T ′′) at minimum toal cost so that the height of T ′ and
the height of T ′′ are equal with respect to the new edge lengths. Let c+(e) and c−(e) be

10

the cost coefficients for increasing and reducing `(e), respectively. Moreover, suppose
that `+(e) and `−(e) are the maximum amounts by which the length `(e) is allowed to
be increased and reduced, respectively. Therefore, in the height balancing of T ′ and T ′′

we either increase `(e) by an amount x(e) or reduce `(e) by a amount y(e) within the
given bounds 0 ≤ x(e) ≤ `+(e) and 0 ≤ y(e) ≤ `−(e) for all e ∈ E(T ′), E(T ′′) such that
the total cost ∑

e∈E(T ′∪T ′′)

(c+(e)x(e) + c−(e)y(e))

becomes minimum and h˜̀(T ′) = h˜̀(T ′′) under the new edge lengths ˜̀.

Note that if the equality h`(T ′) = h`(T ′′) holds for the original edge lengths `, then
the two rooted trees T ′ and T ′′ are balanced. Otherwise we have to change the edge
lengths on T ′ and T ′′. Without loss of generality assume that h`(T ′) ≥ h`(T ′′). Basic
for the solution method are the following lemmas.

Lemma 4.1 In order to balance the heights of T ′ and T ′′, it is sufficient to reduce
the height of T ′ and to increase the height of T ′′ at minimum total cost subject to the
modification bounds, until T ′ and T ′′ have equal heights.

Proof. Since the cost for increasing or decreasing an edge are positive, every
increase of an edge in T ′ or decrease of an edge in T ′′ would cause avoidable cost.

Thus it is sufficient to reduce edge lengths in T ′ and to increase edge lengths in T ′′.
In particular we get the following lemma:

Lemma 4.2 If (x∗, y∗) is an optimal edge length modification needed for the height
balancing of T ′ and T ′′, then there exists exactly one path Ps′′z from s′′ to a leaf z ∈
Z(T ′′) that contains all the edges e ∈ E(T ′′) with x∗(e) > 0.

Proof. Since for every e ∈ E(T ′′) the cost coefficients c+(e) are positive, increasing
the edge lengths on more than one path Ps′′z, z ∈ Z(T ′′), implies additional cost.

From Lemma 4.1 and Lemma 4.2 we conclude that for balancing the heights of T ′

and T ′′ it is required to reduce the height of the tree T ′ and to find one path Ps′′z0 from
s′′ to a leaf z0 in T ′′, the so-called best candidate path, whose length is increased such
that the heights of T ′ and T ′′ become equal.

The minimum height of tree T ′ can be computed in the following way. Let Z(T ′)
be the set of leaves of T ′. Every path Ps′z from s′ to a leaf z ∈ Z(T ′) can be reduced at
most by the amount

`−(Ps′z) =
∑

e∈E(Ps′z)

`−(e).

Therefore, the shortest possible height hmin of T ′ is given by

hmin = max
z∈Z(T ′)

{`(Ps′z)− `−(Ps′z)}

11

This means that the tree T ′ can be reduced by an amount δ ≤ δmax where δmax is given
by

δmax = h`(T ′)− hmin. (9)

On the other hand, Lemma 4.1 implies that it is not necessary to reduce the height of
the tree T ′ below the height of the tree T ′′. Thus we define

∆(T ′, T ′′) = min(δmax, h`(T ′)− h`(T ′′)). (10)

We reduce the height of tree T ′ by the amount ∆(T ′, T ′′) by generating q minimum s−t
cuts K1, ..., Kq. Obviously, we have

∆(T ′, T ′′) ≤
q∑

j=1

δ(Kj).

Recall that for every j = 1, ..., q, the corresponding capacity c(Kj) of the minimum s− t
cut Kj is the minimum cost for reducing the height of T ′ by the amount δ(Kj). The
problem to equalize the height of T ′ with the length `(Ps′′z) of a path from s′′ to a
leaf z in the tree T ′′ under minimum cost Cz can be formulated as the following linear
optimization problem:

(LPz) minimize
q∑

j=1

c(Kj)τ(Kj) +
∑

e∈E(Ps′′z)

c+(e)x(e)

subject to
q∑

j=1

τ(Kj) +
∑

e∈E(Ps′′z)

x(e) = h`(T ′)− `(Ps′′z),

0 ≤ τ(Kj) ≤ δ(Kj) for j = 1, · · · , q,

0 ≤ x(e) ≤ `+(e) for all e ∈ E(Ps′′z),

where τ(Kj) is the amount by which all the edges of the cut set E(Kj) are reduced.
Without loss of generality we may assume that `+(e) > 0 for every e ∈ E(Ps′′z). If

there exists an edge e with `+(e) = 0, then its corresponding variable is removed from
problem (LPz). On the other hand we know that the cut values δ(Kj), j = 1, · · · , q,
are positive. This allows us to reduce (LPz) to a continuous knapsack problem by
introducing the following new variables

ξ−(Kj) =
τ(Kj)
δ(Kj)

for j = 1, ..., q, (11)

ξ+(e) =
x(e)
`+(e)

for all e ∈ E(Ps′′z), (12)

c̃−(Kj) = δ(Kj)c(Kj) for j = 1, ..., q,

c̃+(e) = `+(e)c+(e) for all e ∈ E(Ps′′z),

Thus we get

12

(KPz) minimize
q∑

j=1

c̃−(Kj)ξ−(Kj) +
∑

e∈E(Ps′′z)

c̃+(e)ξ+(e)

subject to
q∑

j=1

δ(Kj)ξ−(Kj) +
∑

e∈E(Ps′′z)

`+(e)ξ+(e) = h`(T ′)− `(Ps′′z),

0 ≤ ξ−(Kj) ≤ 1 for j = 1, · · · , q,

0 ≤ ξ+(e) ≤ 1 for all e ∈ E(Ps′′z).

If the inequality

q∑

j=1

δ(Kj) +
∑

e∈E(Ps′′z)

`+(e) ≥ h`(T ′)− `(Ps′′z) (13)

is satisfied, then problem (KPz) is feasible. Its optimal objective function value Cz can
be obtained in linear time time by using the solution algorithm of Balas and Zemel,
see e.g., [1], [17], [19]. Through the transformations (11) and (12) an optimal solution
(x, τ) of the problem (LPz) with the same objective value Cz is obtained. Otherwise, if
inequality (13) does not hold, then problem (KPz) has no solution. In this case we set
Cz = +∞. The best candidate path Ps′′z0 is obtained by

z0 ∈ argmin{Cz : z ∈ Z(T ′′)}.

If Cz0 = +∞, then the given problem is not feasible. Otherwise, we derive an optimal
solution of the height balancing problem on trees T ′ and T ′′ from the optimal solution
(ξ̃+, ξ̃−) of the continuous knapsack problem (KPz0) as follows: For j = 1, ..., q let

yj(e) =

{
ξ̃−(Kj)δ(Kj) if e ∈ E(Kj) ∩ E(T ′ ∪ T ′′),
0 otherwise.

Now define

y∗(e) =
q∑

j=1

yj(e) for all e ∈ E(T ′ ∪ T ′′), (14)

and

x∗(e) =

{
ξ̃+(e)`+(e) if e ∈ E(Ps′′z0),
0 otherwise.

(15)

Then (x∗, y∗) is an optimal solution of the height balancing problem on the trees T ′ and
T ′′. The preceding considerations are summarized in Algorithm 1.

The solution algorithm has the following complexity: Let n = |E(T ′)| + |E(T ′′)|.
The reduction argument δmax is computed in at most O(|E(T ′)|) time, if we traverse
the tree network T ′ in a depth-first manner. Furthermore, according to Theorem 3.3,
the reduction of the height h`(T ′) is performed in O(|E(T ′)|2) time. On the other hand,

13

Algorithm 1 balances the heights of two rooted trees T ′ and T ′′.
begin
compute the maximum reduction value ∆(T ′, T ′′) according to (10);
reduce the height of tree T ′ by ∆(T ′, T ′′); this yields the reduction values
δ(K1), ..., δ(Kq), the edge sets E(K1), ..., E(Kq), and the capacities c(K1), ..., c(Kq);
for every z ∈ Z(T ′′) do

solve the knapsack problem (KPz) and obtain the objective value Cz; if (KPz) is
infeasible, set Cz = +∞ ;

end for
choose z0 ∈ argmin{Cz : z ∈ Z(T ′′)};
if Cz0 = +∞ then

T ′ and T ′′ can not be balanced, stop;
else

an optimal solution (x∗, y∗) of the height balancing problem can be derived from
the optimal solution (ξ̃+, ξ̃−) of the problem (KPz0) by (14) and (15);

end if
end

during the execution of Algorithm 1 we solve at most |E(T ′′)| continuous knapsack prob-
lems (KPz), z ∈ Z(T ′′). A continuous knapsack problem can be solved in O(|E(T ′′)|)
time. Moreover, an optimal solution vector (x∗, y∗) of the height balancing problem is
obtained from the optimal solution of (KPz0) in O(n2) time. Thus we conclude that the
time complexity of the algorithm is bounded by O(n2). Altogether we get

Theorem 4.3 The height balancing of two rooted trees T ′ and T ′′ can be performed in
O(n2) time by Algorithm 1 where n is the number of edges in T ′ and T ′′.

In the next sections we use the balancing of two rooted trees as a subproblem for
solving the inverse absolute (and vertex) 1-center location problems.

5 Inverse absolute 1-center location problem

5.1 Inverse absolute 1-center location problem without essential topol-
ogy change

In the following we propose a combinatorial algorithm for the inverse absolute 1-center
location problem on the tree network T in which we assume that the given bounds for
reducing the edge lengths obey the condition

∃e ∈ E(Pss1) such that `−(e) < `(e), (16)

where Pss1 is the unique path from the prespecified vertex s to the nearest vertex
s1 ∈ E(L) with deg(s1) ≥ 3 as introduced in Subsection 2.2. This condition implies
that an essential topology change never occurs on the tree T . We want to modify the
edge lengths of T at minimum total cost within given bounds such that s becomes the
absolute 1-center under the new edge lengths.

14

Let deg(s) ≥ 2 and consider the subtrees L and R of T as explained in Subsection
2.2. We root L and R in vertex s. If

h`(L) = h`(R),

then s is the midpoint of all longest paths on T and therefore the wanted absolute
1-center. Otherwise we have to change the edge lengths in T . The following lemma is
the basic for the solution method.

Lemma 5.1 In order to solve the inverse absolute 1-center location problem without
essential topology change on the given tree network T , it is sufficient to balance the
heights of the subtrees L and R both rooted in the prespecified vertex s.

Proof. The lemma is an immediate consequence of Theorem 2.1 and the fact that the
topology of the tree T does not change by virtue of condition (16).

Based on all considerations above we can state the following algorithm (Algorithm
2).

Algorithm 2 finds an optimal solution of the inverse absolute 1-center location problem
on a nontrivial tree network T without essential topology change, vertex s being the
new absolute 1-center.

begin
if deg(s) = 1 then

the problem is infeasible, stop;
else

partition T into subtrees L and R according to (4);
root L and R in vertex s;
execute Algorithm 1 in order to balance the heights of L and R;

end if
end

Algorithm 2 has the following time complexity: The longest paths from s to the
leaves z ∈ Z(T) are found in O(n) time. Thus the partition of T into subtrees L and R
takes O(n) time. Based on Theorem 4.3 the heights of subtrees L and R can be balanced
in O(n2) time. Therefore, Algorithm 2 runs in O(n2) overall time. Summarizing, we
get

Theorem 5.2 The inverse absolute 1-center location problem with edge length modifi-
cation can be solved in O(n2) time on a tree network (with n edges) by Algorithm 2,
provided that no essential topology change occurs in the given tree.

5.2 The general inverse absolute 1-center location problem

In this subsection, we drop condition (16), i.e., an essential topology change may occur
in the tree T during the height reduction of the left tree L. This means, after a length

15

reduction in the left tree L some vertices of L move to the right tree R, see Figure 1
and Figure 2.

We start our investigation with the definition of the compressed depth of T . Let
Z ⊆ Z(T) be the set of all leaves of T with maximum distance d`(s, z). Consider
the value ∆(L,R) which can be obtained according to (10). On every path Psz let
s1, s2, ..., si(z) with s 6= s1 be the sequence of vertices from s to z with the following
three properties

deg(sk) ≥ 3, (17)

`(Pssk
) = `−(Pssk

), (18)

and
`(Pssk

) ≤ ∆(L,R) (19)

for all k = 1, 2, ..., i(z).

Definition 5.3 The compressed depth of T is given by

r = min{i(z) : z ∈ Z}+ 1.

Moreover, a path Psz, z ∈ Z, with i(z) = r − 1 is called compressed longest path in T .

Observe that if r = 1, then the left tree L is a path or at least one of the properties
`(Pss1) = `−(Pss1) and `(Pss1) ≤ ∆(L,R) does not hold, where s1 is the nearest vertex
to s with deg(s1) ≥ 3 on the left tree L as introduced in Section 2. In this case an
optimal solution of the problem can be found without an essential topology change on
the underlying tree T . Hence, Algorithm 2 can be applied. Otherwise we consider a
compressed longest path Psz∗ of T . Let s1, ..., sr−1 be the sequence of its vertices from
s to sr−1 with properties (17), (18) and (19). Moreover, let s0 = s.

For any k, 0 ≤ k < r, let T k be the tree obtained from T by reducing the length
`(Pssk

) to zero. Moreover, let Lk and Rk be the two subtrees of T k which are rooted in
s = si, i = 0, ..., k, and are determined by (3) or (4). For example, Figure 4 illustrates
the resulting tree T 2 with the two corresponding subtrees L2 and R2 which is obtained
from the tree T in Figure 1 by reducing the length of the path Pss2 to zero.

For every tree T k, k = 0, 1, ..., r− 1 we determine the cost Cs,k incurred by reducing
the length of path Pssk

to 0 and the minimum cost C(T k) incurred by changing the
edge lengths of tree T k such that s becomes an absolute 1-center of T k. Thus the total
cost of subproblem (SPk) is given by

Ck = Cs,k + C(T k), (20)

where
Cs,k =

∑

e∈E(Pssk
)

c−(e)`(e), (21)

and C(T k) is the optimal value obtained by Algorithm 2 applied to tree T k. The
minimum cost Ck0 with

k0 ∈ argmin{Ck : k = 0, ..., r − 1} (22)

16

 s

*z

2R

2L

()2 e�

*sz
P

is s ,=

2T

i 0,1,2=

1z

2z

3z
4z 5z

6z

7z

8z

Figure 4: T 2 is obtained from the tree T of Figure 1 by reducing the length of Pss2 to
zero. Psz∗ is a compressed longest path of T .

yield the optimum objective function value of the general inverse absolute 1-center
location problem on tree T . In the case that Ck0 is a finite value, an optimal solution
of the problem is obtained by

y∗(e) =

{
`0(e) if e ∈ E(Pssk0

),
yk0(e) otherwise,

(23)

x∗(e) =

{
0 if e ∈ E(Pssk0

),
xk0(e) otherwise.

(24)

where (xk0 , yk0) is the optimal solution obtained by Algorithm 2 applied to tree T k0 ,
and `0(e) maintains the original length `(e) on the underlying tree T .

The cost Cs,k can be computed in a recursive way by

Cs,k := Cs,k−1 +
∑

e∈E(Psk−1sk
)

c−(e)`(e). (25)

Moreover, if ∑

e∈E(Psk−1sk
)

c−(e)`(e) ≥ min
0≤i≤k−1

C(T i), (26)

we can skip the computation of Ci, i ≥ k, since none of these problems can improve
the best objective function value already found. Note that the tree T k is obtained from
T k−1 by reducing the length `(Psk−1sk

) to 0.
Further we can observe that after performance of any optimal modification the

path Psz∗ remains as a longest path from s to the leaves. Therefore, if for a given

17

k ∈ {1, ..., r − 1} the inequality

`(Psk−1sk
) > h`(Lk−1)− h`(Rk−1) (27)

holds with respect to the edge lengths of T k−1, then an optimal solution never contains
the reduction of `(Psk−1sk

) to 0. In this case we also skip the computation of Ci, i ≥ k.
The previous considerations lead to the following Algorithm 3 which solves the

general inverse absolute 1-center location problem on a tree T .

Algorithm 3 finds an optimal solution of the general inverse absolute 1-center location
problem on a tree network T , vertex s being the new absolute 1-center.

begin
find the compressed depth r and a compressed longest path Psz∗ , z

∗ ∈ Z(T);
let T 0 = T ; obtain the optimal objective value C0 = C(T 0) of the inverse absolute
1-center problem on T 0 by executing Algorithm 2;
if r = 1 or C0 = 0 then

stop: the original problem has been solved;
else

let sk, k = 1, ..., r − 1, be the sequence of vertices on Psz∗ with three properties
(17), (18) and (19); set s0 = s, k = 1 and Cs,0 = 0;
while k < r do

if (26) or (27) do not hold then
construct the tree T k from T k−1; execute Algorithm 2 on T k due to obtain the
optimal objective value C(T k);
compute the cost Cs,k and then Ck according to (25) and (20), respectively;
else set Ci = +∞ for all i = k, ..., r − 1; break while loop;

end if
set k = k + 1;

end while
choose the index k0 by (22);
if Ck0 is finite then

an optimal solution (x∗, y∗) of the original problem can be found according to
(23) and (24); else stop: the original problem is infeasible;

end if
end if
end

The discussion above shows that Algorithm 3 finds an optimal solution of the general
inverse absolute 1-center location problem on the tree network T if the problem is
feasible. Now we are going to compute the running time of this algorithm. A compressed
longest path of T is found in O(n) time if T is traversed in a depth-first search manner.
The total time needed to construct the trees T k, k = 1, ..., r − 1, is O(n). Moreover,
due to Theorem 5.2 we know that Algorithm 2 runs in O(n2) time. On the other hand,
during execution of Algorithm 3 we recall Algorithm 2 at most r times where r < n

2 +1.

18

Therefore the overall time complexity of Algorithm 3 is bounded by O(n2r). Observe
that r ≤ log(n) when the underlying tree T is a complete binary tree with root s. Thus
we have shown

Theorem 5.4 The general inverse absolute 1-center location problem with edge length
modification can be solved in O(n2r) time on a tree network by performing Algorithm 3
where r is the compressed depth of the given tree and n is the number of the edges.

6 Inverse vertex 1-center location problem

This section considers the inverse vertex 1-center location problem on the given tree
network T . Recently Yang and Zhang [23] investigated a solution method which solves
the problem in O(n2 log n) time provided that the modified edge lengths always remain
positive, i.e., ˜̀ > 0. Moreover, they pointed out that the general problem, i.e., in
case of ˜̀ ≥ 0, can be solved in O(n3 log n). However, a solution procedure was not
discussed in this case. In the following we derive new solution methods with improved
time complexities for the inverse vertex 1-center problem using the tree height balancing
algorithm.

6.1 Inverse vertex 1-center location problem with positive modified
edge lengths

In this subsection we investigate the inverse vertex 1-center location problem in which
we assume that

`−(e) < `(e) for all e ∈ E(T). (28)

This condition describes that during solving the problem the modified edge lengths al-
ways remain positive, i.e., ˜̀> 0. Let L̂ and R̂ be two subtrees of T which are determined
according to (5) and (6) and are rooted in the vertices a(s) and s, respectively. From
Theorem 2.3 and according to Assertion 4 in [23], we immediately get the following
lemma .

Lemma 6.1 For solving the inverse vertex 1-center location problem in a given tree T ,
it is sufficient to balance the heights of the subtrees L̂ and R̂ provided that the condition
(28) is satisfied.

Therefore, an optimal solution of the problem can be obtained in the following way:
We execute Algorithm 1 in order to balance the heights of L̂ and R̂. If these two
subtrees could not be balanced, then the original problem is infeasible. Otherwise,
an optimal solution of the inverse vertex 1-center location problem can be obtained
from the optimal solution (x∗, y∗) of the height balancing problem together with fixed
x∗(es) = y∗(es) = 0.

Note that the subtrees L̂ and R̂ can be determined in O(n) time if we traverse the
tree T in a depth-first search manner. On the other hand, based on Theorem 4.3 the
balancing the heights of L̂ and R̂ is performed in O(n2) time. Thus we get

Theorem 6.2 The inverse vertex 1-center location problem with positive modified edge
lengths can be solved in O(n2) time on a tree with n edges.

19

6.2 The general inverse vertex 1-center location problem

In the following we describe a solution method with improved time complexity for the
general inverse vertex 1-center location problem on the given tree network T dropping
condition (28).

We start with defining the minimal repeat number rv on tree T . On every path Psz,
z ∈ Z(T), let s1, s2, . . . , sj(z) with s 6= s1 denote the sequence of all vertices from s to
the leaf z which satisfy the properties (18) and (19) for all k = 1, 2, . . . , j(z).

Definition 6.3 Given a tree T , the minimal repeat number rv is defined as

rv = min{j(z) : z ∈ Z}+ 1.

Observe that if r = 1, then an optimal solution of the problem can be found if we
apply the solution method developed in Subsection 6.1 to the tree T . Otherwise we
consider a path Psz∗ of T with j(z∗) = rv − 1. Let s1, s2, . . . , srv−1 be the sequence of
its vertices from s to z∗ with properties (18) and (19). Further, we set s0 = s. Recall
that T k is the tree obtained from T by reducing the length `(Pssk

) , 0 ≤ k < rv, to
0. Moreover, let L̂k and R̂k be two subtrees of T k which are determined according to
(5)–(6) and are rooted in a(sk) and s = si, i = 0, ..., k, respectively.

For every tree T k we determine a corresponding total cost Ck according to

Ck = Cs,k + Ĉ(T k) (29)

where the cost Cs,k is incurred by reducing the length `(Pssk
) to 0 and Ĉ(T k) is the

optimal value obtained by applying the solution method developed in Subsection 6.1 to
T k. If we choose the index k0 by (22), then Ck0 is the minimum objective function value
of the general inverse vertex 1-center location problem on the given tree network T . In
the case that Ck0 is a finite value (i.e., the problem is feasible), then an optimal solution
of the problem under investigation can be obtained by (23) and (24) where (xk0 , yk0)
is the optimal solution obtained by the solution method developed in Subsection 6.1 to
T k0 and `0(e) is the original length of the edge e on the underlying tree T . Note that if

∑

e∈E(Psk−1sk
)

c−(e)`(e) ≥ min
0≤i≤k−1

Ĉ(T i), (30)

or
h`(L̂k−1) ≤ h`(R̂k−1), (31)

hold, then we can skip the computation of Ci, i ≥ k, and assign immediately Ci = +∞
for all i ≥ k.

Since for solving the general inverse vertex 1-center location problem one needs to
execute the solution method developed in Subsection 6.1 at most rv times (i.e., solve
the inverse vertex 1-center problem under the condition ˜̀ > 0 on trees T 0, ..., T rv−1),
then based on Theorem 6.2 we conclude that the overall time complexity of the solution
method is bounded by O(n2rv) where rv < n

2 + 1. Altogether we get

Theorem 6.4 The general inverse vertex 1-center location problem with edge length
modification can be solved in O(n2rv) time on a tree network where rv is the minimal
repeat number of the given tree and n is the number of the edges.

20

7 Concluding remarks

In this article, we investigated the inverse absolute (or vertex) 1-center location problem
with variable edge lengths on tree networks and showed that the problem is formulated
as a nonlinear semi-infinite (or nonlinear) programming model. We developed exact
combinatorial solution algorithms for the problem in the special and general cases with
fast running times.

In case that the underlying tree network is a star graph, then the inverse absolute
(or vertex) 1-center location problem can be solved efficiently in O(n) time in straight-
forward approaches.

In the extensive absolute (or extensive vertex) 1-center location problem on a net-
work G, the demand points lie on edges of the network as well as in vertices. Therefore,
a point p∗ ∈ G (or p∗ ∈ V (G)) is called an extensive absolute (or extensive vertex)
1-center of G if and only if p∗ minimizes the maximum shortest distance to all points
x ∈ G, i.e., the point p∗ is a solution of the problem

min
p∈G

(or p∈V (G))

max
x∈G

d`(p, x).

Note that in a tree network the absolute (or vertex) 1- center location problem is
equivalent with the extensive absolute (or extensive vertex) 1-center location problem.
Hence the newly developed algorithms in this article also solve the inverse extensive
absolute (or extensive vertex) 1-center location problem on tree networks correctly.

Acknowledgments The authors thank Elisabeth Gassner and Ulrich Pferschy for their
constructive suggestions.

References

[1] E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems, Operations
Research 28(1980), 1130–1154.

[2] R.E. Burkard, M. Galavii and E. Gassner, The inverse Fermat-Weber problem,
Technical Report 2008-14, Graz University of Technology, Graz, 2008.

[3] R.E. Burkard, C. Pleschiutschnig and J. Zhang, Inverse median problems, Discrete
Optimization 1(2004), 23–39.

[4] R.E. Burkard, C. Pleschiutschnig and J. Zhang, The inverse 1-median problem on
a cycle, Discrete Optimization 5(2007), 242–253.

[5] M.C. Cai, X.G. Yang and J.Z. Zhang, The complexity analysis of the inverese center
location problem, Journal of Global Optimization 15(1999), 213–218.

[6] M.S. Daskin, Network and Discrete Location: Modeles, Algorithms and Applica-
tions, John Wiley, New York, 1995.

[7] Z. Drezner and H.W. Hamacher, Facility Location, Applications and Theory,
Springer Verlag, Berlin, 2004.

21

[8] R.L. Francis, L.F. McGinnis and J.A. White, Facility Layout and Location, An
Analytical Approach, Prentice Hall, Englewood Cliffs, 1992.

[9] M. Galavii, Inverse 1-Median Problems, Ph.D. Thesis, Institute of Optimization
and Discrete Mathematics, Graz University of Technology, Graz, 2008.

[10] E. Gassner, The inverse 1-maxian problem with edge length modification, J. Com-
binatorial Optimization 16(2007), 50–67.

[11] E. Gassner, An inverse approach to convex ordered median problems in trees,
Technical Report 2008-16, Graz University of Technology, Graz, 2008.

[12] G.Y. Handler, Minimax location of a facility in an undirected tree graph, Trans-
portation Science 7(1973), 287–293.

[13] J. Hatzl, personal communication, 2006.

[14] C. Heuberger, Inverse combinatorial optimization: A survey on problems, methods,
and results, Journal of Combinatorial Optimization 8(2004), 329–361.

[15] D.S. Hochbaum, The pseudoflow algorithm: A new algorithm for the maximum
flow problem, Operations Research, to appear.

[16] O. Kariv and S. L. Hakimi, An algorithmic approach to network location problems.
I: The p-centers, SIAM J. Appl. Math. 37(1979), 513–538.

[17] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer Verlag,
Berlin, 2004.

[18] R.F. Love, J.G. Morris and G.O. Wesolowsky, Facilities Location: Models and
Methods, North-Holland, New York, 1988.

[19] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Imple-
mentations, John Wiley, Chichester, 1990.

[20] N. Megiddo, Linear-time algorithms for linear programming in R3 and related prob-
lems, SIAM J. Comput. 6(2007), 5–16.

[21] B.P. Mirchandani, R.L. Francis, Discrete Location Theory, John Wiley, New York,
1990.

[22] J. Vygen, On dual minimum cost flow algorithms, Mathematical Methods of Oper-
ations Research 56(2002), 101–126.

[23] X. Yang and J. Zhang, Inverse center location problem on a tree, Journal of Systems
Science and Complexity 21(2008), 651–664.

[24] J. Zhang, Z. Liu and Z. Ma, Some reverse location problems, European Journal of
Operational Research 124(2000), 77–88.

22

