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ARITHMETIC OF SUPERSINGULAR KOBLITZ CURVES IN

CHARACTERISTIC THREE

ROBERTO MARIA AVANZI, CLEMENS HEUBERGER, AND HELMUT PRODINGER

Abstract. We consider digital expansions of scalars for supersingular Koblitz curves in
characteristic three. These are positional representations of integers to the base of τ , where
τ is a zero of the characteristic polynomial T 2 ± 3 T + 3 of a Frobenius endomorphism.
They are then applied to the improvement of scalar multiplication on the Koblitz curves.

A simple connection between τ -adic expansions and balanced ternary representations
is given.

Windowed non-adjacent representations are considered whereby the digits are elements
of minimal norm. We give an explicit description of the elements of the digit set, allowing
for a very simple and efficient precomputation strategy, whereby the rotational symmetry
of the digit set is also used to reduce the memory requirements. With respect to the
current state of the art for computing scalar multiplications on supersingular Koblitz
curves we achieve the following improvements: (i) speed-ups of up to 40%, (ii) a reduction
of memory consumption by a factor of three, (iii) our methods apply to all window sizes
without requiring operation sequences for the precomputation stage to be determined
offline first.

Additionally, we explicitly describe the action of some endomorphisms on the Koblitz
curve as a scalar multiplication by an explicitly given integer.

1. Introduction

Let m be a natural number coprime to 6, µ ∈ {±1} and E3,µ be the elliptic curve

(1) E3,µ : Y 2 = X3 −X − µ

defined over F3. Koblitz [18] studied this curve for cryptographic applications, where one
is interested in the group E3,µ(F3m) of rational points over a field extension F3m of F3.

In this paper we study the question of computing scalar multiplications on this family
of curves.

The motivation comes from pairing-based cryptography, as pairing-based protocols also
call for the use of scalar multiplication, often in computationally restricted environments
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(an important example being Direct Anonymous Attestation [9]). Indeed, the curves (1)
are known to be supersingular with embedding degree 6. This makes them less secure
than ordinary curves for purely discrete logarithm-based application, but it makes them
attractive for pairing-based cryptography. Indeed, most of the current research about these
curves is devoted to the optimization of the pairing operation: some recent references
are [1, 7, 5, 6].

Now, whereas it used to be common to evaluate the performance of a pairing-based
protocol by simply counting the number of required pairings, the recent algorithmic ad-
vancements in pairings imply that the performance of the two primitives is now similar.
Therefore there is still need for more efficient, streamlined, and memory-saving scalar mul-
tiplication algorithms for the curves (1).

In this paper we provide a comprehensive answer to this question.
Our approach, following Koblitz, consists in using a τ -adic expansion of the scalar, where

τ is a root of the characteristic polynomial of the Frobenius endomorphism of the curve, and
then use a Horner scheme to perform the actual scalar multiplication. A similar approach
is used for Koblitz curves in characteristic two as well [24, 25, 4].

The following is a summary of our results:

(i) We describe a method to immediately derive some τ -adic expansions from balanced
ternary representations (Theorem 1 on page 6).

(ii) A compact and explicit representation of digit sets formed by elements of minimal
norm is given in Theorem 2 on page 8. This guarantees that windowed expansions
terminate and at the same time yields a very simple precomputation strategy for the
scalar multiplication (Remark 4.4 on page 9). Our precomputation strategy is general
in the sense that it works for all window sizes, whereas the previous methods require
ad-hoc operation sequences for each window size to be determined offline.
This is also a stark difference with respect to the case of Koblitz curves in charac-
teristic two, where no explicit description of a minimal norm digit set is currently
available.

(iii) We reduce the memory requirements by a factor three with respect to all the previ-
ously published techniques based on windowed τ -adic expansions. This follows from
the rotational symmetry of the minimal norm digit sets that we build (Remark 4.2
on page 7) and Algorithm 3 on page 8 shows how to use this fact.

(iv) The computational cost of scalar multiplication for some cryptographically relevant
parameters is analyzed in Section 5. Performance gains between 12 % and 40 % with
respect to previously known scalar multiplication algorithms for the same types of
curves are common (see Remarks 5.2, 5.3 and 5.4).

(v) In Theorem 3 on page 18 (Section 6) we provide explicit expressions for the eigenvalues
of the Frobenius operation and of an endomorphism of E3,µ corresponding to a sixth
root of unity in Z[τ ]. In particular we give values of the scalar t such that τ(P ) = t ·P
for a point in a large prime order subgroup on E3,µ(F3m).
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2. Background

We collect some known facts on the curves that are the object of our investigation. From
[18] we know that the cardinality Nm of E3,µ(F3m) is given by

Nm := |E3,µ(F3m)| = 3m + µ ·
(m

3

)
(−3)

m+1

2 + 1

where
( ·
·
)

is the Legendre symbol. (Koblitz used a Jacobi symbol instead and obtained the

slightly more complex expression Nm := |E3,µ(F3m)| = 3m−µ ·
(

3
m

)
3

m+1

2 +1.) In particular
it is

(m

3

)
=

{
1 , if m ≡ 1 (mod 3) ,

−1 , if m ≡ −1 (mod 3) .

The Frobenius endomorphism

τ : E3,µ(F3m)→ E3,µ(F3m) , (x, y) 7→ (x3, y3)

can be evaluated very efficiently because cubing is a linear operation in F3m and thus
its evaluation takes only a fraction of the time required for a field multiplication (cf. for
instance [11, 1]). Furthermore, it satisfies the relation

(2) τ 2 − 3 µ τ + 3 = 0 .

It is an easy consequence of (2) that τ 6 = −33. Indeed, τ may be identified with the
imaginary quadratic number

(3)
3µ +

√
−3

2
=
√
−3 · 1− µ

√
−3

2
,

which we will also call τ . This identification induces a ring isomorphism between Z[τ ] and

the endomorphism ring of E3,µ. Hence, if an integer n can be written in the form
∑ℓ

i=0 diτ
i,

the scalar multiple n ·P can be computed by evaluating
∑ℓ

i=0 diτ
i(P ) via a Horner scheme.

Let

(4) ζ :=
1− µ

√
−3

2
,

such that ζ ∈ Z[τ ] is a primitive sixth root of unity and

(5) τ =
√
−3 ζ .

The set {ζk : 0 6 k < 6} of sixth roots of unity is denoted by U6. Note that multiplication
by ζ corresponds to a rotation of the complex plane by π/3 that leaves Z[τ ] globally
invariant.
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The ring Z[τ ] is factorial with τ prime. The complex conjugate of τ will be denoted by
τ̄ . We list a few useful relations between τ , τ̄ and ζ :

τ = 2 µ− µζ ,(6)

τ̄ = 3 µ− τ = τζ ,(7)

τ τ̄ = τ 2ζ = 3 ,(8)

where (5) and (6) are easy consequences of (3) and (4), whereas (7) and (8) follow from
the minimal polynomial (2).

These complex numbers correspond to functions in the endomorphism ring of E3,µ, that
act on the curve as follows

ζ : (x, y) 7→ (x + µ,−y) ,

τ̄ : (x, y) 7→ (x3 + µ,−y3) .

These operations, as well as tripling

3 : (x, y) 7→ (x9 + µ,−y9)

can thus be computed efficiently.

3. Digit Sets

We shall denote by N( ) the norm from Q(ζ) to Q. This function is equal to to the
square of the absolute value of its argument and on Z[τ ] it takes integer values.

Definition 3.1. Let D be a finite subset of Z[τ ] and w a positive integer. A word
ηℓ−1 . . . η0 ∈ D∗ is called a D-w-NAF of a z ∈ Z[τ ], if

(1) value(ηℓ−1 . . . η0) :=
∑ℓ−1

j=0 ηjτ
j = z,

(2) Each factor ηj+w−1 . . . ηj , i.e., each block of length w, contains at most one non-zero.

A D-2-NAF is also simply called a D-NAF.
We call D a w-Non-Adjacent-Digit-Set (w-NADS), if every integer z ∈ Z[τ ] admits a

D-w-NAF.

Definition 3.2. A reduced residue system modulo τw is a set containing exactly one
representative for each residue class of Z[τ ] modulo τw that is not divisible by τ .

Now, suppose that the digit set D consists of the zero and a reduced residue system
modulo τw. Since τ is a prime element of Z[τ ], each z ∈ Z[τ ] is either divisible by τ or
congruent modulo τw to exactly one element d of the digit set D. From this it is easy to
conclude that if D contains the zero and D \ {0} is a reduced residue system, then the D-
w-NAF of an integer, if it exists, is uniquely determined. Furthermore, a simple algorithm
to compute it is given by Algorithm 1 (for some details, such as the implementation of the
division by τ , see [8]).

Just using a digit set which consists of 0 and a reduced residue system does not imply
that Algorithm 1 terminates. This has been observed in the binary case for NAF-like
expansions of rational integers to the base of 2 by Muir and Stinson [21] and for τ -adic
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Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[τ ], an integer w > 1 and a reduced residue systemD′ modulo τw .

OUTPUT: AD-w-NAF εℓ−1εℓ−1 . . . ε0 of the integer z, if it exists. Otherwise, the algorithm does not terminate.

1. j ← 0, u← z

2. while u 6= 0 do

3. if τ | u then

4. εj ← 0 [Output 0]

5. else

6. Let εj ∈ D′ s.t. εj ≡ z (mod τw) [Output εj ]

7. u← u− εj

8. u← u/τ

9. j ← j + 1

10. ℓ← j

11. return εℓ−1εℓ−1 . . . ε0

expansions for Koblitz curves in characteristic 2 by [4]. As pointed out by Blake, Kumar
Murty and Xu [8], the set {0, 1,−1} is not even a 1-NADS: Indeed, we have

ζ(τ 2 − 1) = µτ + 1 ,

which implies that ζ does not admit a {0, 1,−1}-1-NAF, cf. the characterization of digit
sets by Matula [20].

Remark 3.3 (due to Christiaan van de Woestijne). For µ = −1, {0, 1, 2} is a 1-NADS,
as τ is a basis of a canonical number system in the sense of Kátai and Szabó [15], cf.
the characterisation of quadratic integers which are bases of canonical number systems by
Kátai and Kovács [14] and by Gilbert [10].

For µ = 1, τ is not a basis of a canonical number system. Even worse, there exists no
1-NADS of the “right” cardinality, i.e., containing one representative for every residue class
modulo τ : To see this, we use an argument used by Kátai and Kovács [14]: The crucial
observation is that N(1− τ) = 1. Assume that D is a 1-NADS. For some d ∈ D \ {0}, we
consider the D-1-NAF ηℓ−1 . . . η0 of d(1− τ̄ ). Multiplying by (1− τ) yields

d = d(1− τ)(1− τ̄) =
ℓ−1∑

j=0

ηjτ
j(1− τ) = η0 +

ℓ−1∑

j=1

(ηj − ηj−1)τ
j − ηℓ−1τ

ℓ.

Considering this equation modulo τk for k = 1, . . . , ℓ, we obtain η0 = d, η1 = η0 = d, . . . ,
ηℓ−1 = d. This results in

0 = −dτ ℓ,

a contradiction.
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However, allowing the non-integer digits D = {−1/2, 1/2, 3/2}, every element of Z[τ ]
can be represented by a D-1-NAF whose length is divisible by 3. All these D-1-NAFs of
length divisible by 3 indeed have a value in Z[τ ].

On the other hand, Koblitz [18] proved the following result. We set D2 = U6 ∪ {0},
which can also be seen as the set of all integers in Z[τ ] of norm at most 1.

Theorem (Koblitz [18]). D2 is a 2-NADS, i.e., every element in Z[τ ] admits a D2-NAF.

Our first result concerns a connection between balanced ternary expansion and D2-NAFs
of rational integers.

About balanced ternary integer representations, Knuth [17, § 4.1] wrote: Perhaps the
prettiest number system of all is the balanced ternary notation, which consists of radix-3
representation using −1, 0, and +1 as “trits” (ternary digits) instead of 0, 1, and 2.

It turns out that a D2-NAF of an integer can be constructed directly from its balanced
ternary expansion, it is not necessary to use any complex computations.

Theorem 1. Let n be a rational integer given by its balanced ternary expansion n =∑ℓ−1
j=0 xj3

j for xj ∈ {0, 1,−1}. Then the D2-NAF of n is given by η2ℓ−2 . . . η0, where

(9) ηj =

{
0 , if j is odd ,

xj/2ζ
(j/2) mod 6 , if j is even .

Proof. By (8), we have n =
∑ℓ−1

j=0(xjζ
j)τ 2j . Since ζ6 = 1, we simply obtain (9). �

We refer to Knuth’s book for many further properties of the balanced ternary number
system and references.

Once we know the τ -adic D2-NAF of a scalar n, we can perform the corresponding scalar
multiplication on a curve E2,µ by means of Algorithm 2.

The following lemma characterizes divisibility by τ , cf. for instance Blake, Kumar Murty
and Xu [8].

Lemma 3.4. Let α ∈ Z[τ ] be written as α = a + bτ for some rational integers a and b.
Then α is divisible by τ if and only if 3 divides a.

4. Minimal Norm Representatives and Scalar Multiplication

In what follows w > 2 is an integer.

Definition 4.1. Let α ∈ Z[τ ] be not divisible by τ and assume that

(10) N(α) 6 N(β) for all β ∈ Z[τ ] with β ≡ α (mod τw).

Then α is called a representative of minimum norm of its residue class.

In analogy to Solinas [24, 25], Blake, Kumar Murty and Xu [8] propose to choose one
representative of minimal norm from each residue class modulo τw which is not divisible
by τ . They show that such representatives (together with 0) form a w-NADS, which we
denote by Dw. The purpose of this section is to better understand this digit set and give
explicit formulæ.



ARITHMETIC OF SUPERSINGULAR KOBLITZ CURVES IN CHARACTERISTIC THREE 7

Algorithm 2. Scalar Multiplication on Koblitz curves in characteristic 3 using theD2-NAF

INPUT: A point P ∈ E3,µ(F3m) and an integer n =
∑ℓ

i=0 ηiτ
i where ηi = 0 or ηi = ζj(i), 0 6 j(i) < 6

OUTPUT: The point Q = n · P =
∑ℓ

i=0 ηiτ
iP

1. Q← 0 ∈ E3,µ(F3m)

2. for i = ℓ downto 0 do

3. Q← τ Q

4. if ηi 6= 0 then

Write ηi = ζj(i), 0 6 j(i) < 6

5. let (x, y)← P

6. switch j(i)

7. case 0: Q← Q + (x, y)

8. case 1: Q← Q + (x + µ,−y)

9. case 2: Q← Q + (x− µ, y)

10. case 3: Q← Q + (x,−y)

11. case 4: Q← Q + (x + µ, y)

12. case 5: Q← Q + (x− µ,−y)

13. return Q

Remark 4.2. An important observation is that any reduced residue system modulo τw and
thus also the corresponding digit set D can be constructed to be invariant under multipli-
cation by ζ.

To prove this, we first observe that for each d 6= 0 with τ ∤ d, the elements ζℓd with
0 6 ℓ 6 5, are pairwise not congruent to each other modulo τw. In fact, suppose that
ℓ < ℓ′ and τw divides dℓ − dℓ′ = d

(
1− ζℓ′−ℓ

)
ζℓ. Since the norm of 1− ζℓ′−ℓ is at most 4 it

follows that τ can divide 1 − ζℓ′−ℓ at most once, and since w > 2, we must have τ | d, a
contradiction.

Now, when an element d is chosen to represent its residue class, it suffices to include
the elements ζℓd for 1 6 ℓ 6 5 in the reduced residue system to represent their respective
residue classes.

Remark 4.3. As a consequence of the previous remark, if there were a unique representative
of minimal norm in each residue class modulo τw, like in the characteristic two case, we
would have that the digit set Dw formed by taking the zero and a reduced residue system
of minimal norm representatives has a rotational symmetry. In fact, all the ζℓd have the
same norm, hence one of these element has minimal norm in its class if and only if all of
them satisfy the same property.

It turns out that in some cases there are two elements of minimal norm in a residue class
modulo τw coprime to τ , hence one must decide which orbits of minimal norm elements
under the action of 〈ζ〉 to include in the digit set.
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Algorithm 3. Scalar Multiplication on Koblitz curves in characteristic 3 with a sixpartite digit set

INPUT: A point P ∈ E3,µ(F3m) and an integer n =
∑ℓ

i=0 ηiτ
i where ηi = ζj(i)di, 0 6 j(i) < 6, and di ∈ Dw,0

OUTPUT: The point Q = n · P =
∑ℓ

i=0 ηiτ
iP

1. for all di ∈ Dw,0

2. Precompute di · P [store in a table]

3. Q← 0 ∈ E3,µ(F3m)

4. for i = ℓ downto 0 do

5. Q← τ Q

6. if ηi 6= 0 then

7. let (x, y)← di · P [Retrieve from precomputed table]

8. switch j(i)

9. case 0: Q← Q + (x, y)

10. case 1: Q← Q + (x + µ,−y)

11. case 2: Q← Q + (x− µ, y)

12. case 3: Q← Q + (x,−y)

13. case 4: Q← Q + (x + µ, y)

14. case 5: Q← Q + (x− µ,−y)

15. return Q

The following theorem gives an explicit description of such a digit set with rotational
symmetry in all cases. Its proof explains when in a given residue class modulo τw the
minimum with respect to the norm may not be unique.

Theorem 2. Let w > 2 and set
(11)

Dw,0 =

{
a + bµτ : a ∈ Z, b ∈ Z, 3 ∤ a, 1 6 a 6 3w/2 − 2 and − a

3
< b < 3w/2−1 − 2a

3

}

if w is even and

(12) Dw,0 =
{
a + bµτ : a ∈ Z, b ∈ Z, 3 ∤ a,−3⌊

w

2
⌋ + 2 6 b 6 0, 1− 2b 6 a 6 3⌊

w

2
⌋ − b− 1

}

∪
{

(3⌊
w

2
⌋ − b) + bµτ : b ∈ Z, 3 ∤ b,−3⌊

w

2
⌋ − 1

2
6 b 6 0

}

if w is odd. Set

Dw := {0} ∪
⋃

06k<6

ζkDw,0 .

Then Dw consists of 0 and exactly one representative of minimum norm of every residue
class modulo τw. In particular, Dw is a w-NADS.

Before giving a proof of Theorem 2, we briefly discuss its practical implications.
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Remark 4.4. The explicit constructions (11) and (12) make it easy to give an efficient
precomputation strategy for a scalar multiplication algorithm. Such an algorithm would
be similar to Algorithm 2 but would be based on a D-w-NAF of the scalar. Hence, the first
step would be to precompute dP for d ∈ Dw. In fact, it is only necessary to precompute
dP for d ∈ Dw,0, as all other dP for d ∈ Dw follow from this by multiplication by ζ –
similarly to Steps 5 to 12 of Algorithm 2. The result is Algorithm 3.

The remaining question is how to compute Dw,0 in general. First, we observe that 1, 2,
and 4− µτ are in Dw,0 for all w > 3.

It is easy to observe that all elements of Dw,0, w > 4 can be reached from 1 by repeatedly
adding 1 or 2 or ±τ . It is trivial to see this in the case of even w, but still easy in the case
of odd w, where we must consider the two sets in (12) separately. Hence, let w > 5 be
odd. Consider the first set: for any two consecutive values of b with −3⌊

w

2
⌋ +2 6 b 6 0 the

a-ranges, i.e. the intervals 1− 2b 6 a 6 3⌊
w

2
⌋ − b− 1 overlap, even if we remove the values

of a that are multiples of 3. The elements of the second set just add another element at
the “end” of the a-range for about a half of the values of b already considered. The only
exception to this latter fact takes place for w = 3, where the set consists just of the element
4 − µτ (for b = −1) whereas the first set contains 1 and 2 (corresponding to the a-range
for b = 0) – but we are considering w > 5 here.

Hence one doubling and one application of τ are needed, and then 3w−2 − 2 group
additions.

Proof of Theorem 2. We set

V = {z ∈ C : |z| 6 |z − u| for all u ∈ Z[τ ]} ,

i.e., V is the Voronoi cell for 0 corresponding to the set Z[τ ]. The set V is shown in Figure 1

on the following page. It is a hexagon with vertices vk, k ∈ {0, . . . , 5}, where v0 =
√
−3
3

and vk = v0ζ
−µk = v0e

kπi/3. This latter fact mirrors the fact that Z[τ ] is invariant under
multiplication by ζ (i.e., invariant under rotation by π/3), thus V also has to be invariant
under multiplication by ζ . We have |vk| = 1/

√
3, which implies that |z| 6 1/

√
3 for all

z ∈ V .
Consider now an α ∈ Z[τ ] which is not divisible by τ . Condition (10) can be rewritten

as ∣∣∣
α

τw

∣∣∣ 6

∣∣∣
α

τw
− u

∣∣∣ for all u ∈ Z[τ ] ,

which is equivalent to
α

τw
∈ V .

Thus α is a minimum norm representative if and only if α/τw ∈ V . It is the unique
minimum norm representative of its residue class if and only if α/τw is in the interior of
the region V .

Assume that α/τw equals one of the vertices of V . This means that α/τw = ζkv0 for an
appropriate k. This is equivalent to

α = τw−1ζkv0τ = −τw−1ζk+1
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V

0 1

1+
√
−3

2

v0

v1

v2

v3

v4

v5

Figure 1. Voronoi cell V for 0 corresponding to the set Z[τ ]

by (5). As we assume that w > 2, α is divisible by τ , contradiction.
Assume now that α/τw is on that part of the boundary of V which lies on the perpen-

dicular bisector of the line segment from 0 to ζk for some k. After a rotation induced
by multiplication by ζ−k, we may assume without loss of generality that α/τw lies on
the perpendicular bisector of the line segment from 0 to 1, i.e., |α/τw| = |α/τw − 1| and
Re(α/τw) = 1/2 and α/τw = 1/2 + iy for an appropriate y ∈ R. We note that it cannot
happen that α/τw = 1/2, because this would imply that N(α) = 3w/4, which is impossible.
The other representative of minimum norm of the residue class of α is β := α − τw. We
consider β/τw, which is given by β/τw = −1/2 + iy.

We denote the midpoint of the line segment vk, vk+1 by vk+1/2 and adopt the convention
that the indices of the points vk are always meant modulo 6. We conclude that if there are
two distinct representatives α and β of minimum norm of the same residue class modulo
τw, then one of the “normalized points” α/τw and β/τw lies on the line segment vk, vk+1/2,
i.e., the first half of vk, vk+1, for an appropriate integer k, whereas the other normalized
point lies on the segment vk+3+1/2, vk+4, i.e., the second half of vk+3, vk+4.

To enforce uniqueness, we can therefore pass to a slightly smaller set Ṽ , which consists
of the interior of V and the line segments vk+1/2 (excluded), vk+1 (included) for all integers
k, as shown in Figure 2 on the next page (in the case µ = 1, in the case µ = −1 we take
the complex conjugate in order to get results which can be written down without case
distinction). We may now define

Dw := {0} ∪ {α ∈ Z[τ ] : α/τw ∈ Ṽ and τ ∤ α} .

Then Dw consists of 0 and exactly one minimum norm representative from every residue
class modulo τw not divisible by τ .

The set Ṽ has been chosen in such a way that it is still invariant under rotation by π/3,
i.e., multiplication by ζ . Therefore, the set Dw is also invariant under multiplication by ζ .
We only need to construct one representative of every orbit under this action. This means
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Ṽ

0

v0

v1

v2

v3

v4

v5

v0.5

v1.5

v2.5 v3.5

v4.5

v5.5

Figure 2. Restricted Cell Ṽ for µ = 1

that we may restrict ourselves to the set Ṽ0 defined to be the interior of the triangle 0, v4,
v5 plus the line segment v4.5 (excluded), v5 (included), 0 (excluded), cf. Figure 3 (again for
µ = 1, in the other case, we take the complex conjugate).

Ṽ00

v4

v4.5

v5

Figure 3. Representatives modulo rotation Ṽ0 for µ = 1

We set Ṽk := ζkṼ0, where the indices are again meant modulo 6, thus Ṽ \ {0} is the

disjoint union of the sets Ṽk, k ∈ {0, . . . , 5}. Similarly, we partition the set Dw into the six
sets

Dw,k :=
{
α ∈ Dw :

α

τw
∈ Ṽk+⌊w/2⌋+[w is odd] 3µ−1

2

}
, k ∈ {0, . . . , 5} .

Here, we use Iverson’s notation [ ] for conditional expressions (1 if true, 0 if false). We

required the quotient to be in Ṽk+⌊w/2⌋+[w is odd] 3µ−1

2

instead of the more natural choice Ṽk

in order to get 1 ∈ Dw,0 in the end. By construction, the sets Dw,k can be written as
Dw,k = ζkDw,0, i.e., they are rotations of the set Dw,0.

Now, we head for an explicit description of Dw,0. Using (5), ζ3 = −1 and the definition

of Ṽj gives

Dw,0 = {α ∈ Z[τ ] ∩ τwṼ⌊w/2⌋+[w is odd] 3µ−1

2

: τ ∤ α}

= {α ∈ Z[τ ] ∩ i[w is odd]3w/2ζw−3⌊w/2⌋Ṽ⌊w/2⌋+[w is odd] 3µ−1

2

: τ ∤ α}

=

{
{α ∈ Z[τ ] ∩ 3w/2Ṽ0 : τ ∤ α} , if w is even ,

{α ∈ Z[τ ] ∩ µi3w/2ζ2Ṽ0 : τ ∤ α} , if w is odd .
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The set 3w/2Ṽ0 can be described as

3w/2Ṽ0 =
{
x +
√
−3y : 0 < x <

3w/2

2
and − x

3
< µy 6

x

3

}
∪

∪
{

3w/2

2
+
√
−3y : 0 < µy 6

3w/2−1

2

}
.

We first consider the case of even w. Writing α = a + bµτ for rational integers a and b
yields

(13) Dw,0 =

{
a + bµτ : a ∈ Z, b ∈ Z, 3 ∤ a, 0 < a and − a

3
< b < 3w/2−1 − 2a

3

}
.

We note that the equality case Re(a + bµτ) = 3w/2/2 cannot occur, because 3 ∤ a, which
simplifies the formulæ in this case.

To see which values of a actually admit valid values of b, we reformulate the condition
on b in (13) as ⌊

−a

3

⌋
+ 1 6 b 6 3w/2−1 +

⌈
−2a

3

⌉
− 1 .

Such b exist if and only if the upper bound is greater to or equal than the lower bound,
which yields

−
⌈a

3

⌉
+

⌊
2a

3

⌋
6 3w/2−1 − 2 .

If a ≡ 1 (mod 3), we have ⌈a/3⌉ = (a + 2)/3 and ⌊2a/3⌋ = (2a− 2)/3 and we obtain

−(a + 2) + (2a− 2) 6 3w/2 − 6 ,

which is equivalent to a 6 3w/2 − 2. If a ≡ 2 (mod 3), we have ⌈a/3⌉ = (a + 1)/2 and
⌊2a/3⌋ = (2a− 1)/3, which results in

−(a + 1) + (2a− 1) 6 3w/2 − 6 ,

which is equivalent to a 6 3w/2 − 4. Thus (13) is equivalent to (11).
Next, we consider the case of odd w. In this case, we have to deal with another rotation

induced by the factor µiζ2 and obtain (12). In this case, the second set in the union

corresponds to points on the boundary of Ṽ , i.e., residue classes modulo τw containing two
representatives of minimum norm.

It has already been shown by Blake, Kumar Murty and Xu [8] that any set D consisting
of 0 and one minimum norm representative of every residue class modulo τw not divisible
by τ is a w-NADS, for convenience, we repeat the argument. Such a proof requires showing
that the right-to-left Algorithm 1 constructing a D-w-NAF terminates.

This algorithm is entirely determined by how it chooses the least significant digit(s) of
its input. If the input z is divisible by τ , the least significant digit is 0 and the remaining
digits are those of z/τ , that clearly has smaller norm than z. Otherwise, a digit d ∈ D
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is chosen which is congruent to z modulo τw and the w least significant digits of z are
0 0 . . . 0 d, with w − 1 zeros; the most significant digits of z are those of (z − d)/τw. Now

N

(
z − d

τw

)
=

∣∣∣∣
z − d

τw

∣∣∣∣
2

6

( |z|
|τw| +

1√
3

)2

6 |z|2
(

1

3
+

1√
3

)2

< |z|2 = N(z) ,

i.e. the norm is decreasing in this case as well. The norms yield thus a strictly decreasing
sequence of non-negative integers. Hence the algorithm must terminate after finitely many
iterations, and the proof of the NADS-property of D is complete. �

One of the frequently considered questions about w-NADS with respect to various
bases is that of optimality. In the case of binary expansions, the digit set {−2w−1 +
1, . . . ,−3,−1, 0, 1, 3, . . . , 2w−1 − 1} is known to be a w-NADS and it minimizes the Ham-
ming weight (i.e., the number of nonzero digits) over all expansions with the same digit
set, but without the w-NAF condition, cf. [2, 22, 23].

In the case of expansions to the base of the Frobenius endomorphism of Koblitz curves
in characteristic 2 and various digit sets, this optimality result is only true for w 6 3; for
larger values of w, optimal expansions cannot even be described as a regular language, cf.
[12].

In our case, optimality is true for moderate values of w:

Proposition 4.5. Let w ∈ {2, . . . , 7}, z ∈ Z[τ ] and ηℓ−1 . . . η0 be the Dw-w-NAF of z.
Then

W (ηℓ−1 . . . η0) = min{W (dk−1 . . . d0) : dk−1 . . . d0 ∈ D∗
w with value(dk−1 . . . d0) = z},

where W (dk−1 . . . d0) = #{j : dj 6= 0} denotes the Hamming weight of dk−1 . . . d0.

The proof runs along the lines of [13, Lemma 19] and uses heavy symbolic calculations,
cf. Kröll [19] for technical details.

For w > 7, no information on optimality is available yet.

5. Evaluation of Costs for simple τ-adic Scalar Multiplication

We do not discuss here how to reduce a given scalar modulo τm− 1 or the details of the
computation of a τ -adic expansion: for these details we refer the reader to [8]. From now
on we shall thus assume that an arbitrary scalar is first reduced modulo τm − 1 and then
expanded as a w-NAF.

5.1. Choosing the Coordinate System. Similarly to elliptic curves over fields of charac-
teristic two or of large characteristic, different coordinate systems can be used to represent
an elliptic curve over a field of characteristic three, its points, and to describe explicit
computations on it (see for instance [3, Ch. 13] as a reference).

Affine coordinates use equation (1) and a point is represented by a pair of elements (x, y)
from F3m .

Koblitz [18] has suggested to use projective coordinates, whereas a point (x, y) is repre-
sented by a triple [X:Y :Z] with x = X/Z and y = Y/Z. The corresponding homogenized
curve equation is E3,µ : Y 2Z = X3 −XZ2 − µZ3 .



14 ROBERTO MARIA AVANZI, CLEMENS HEUBERGER, AND HELMUT PRODINGER

Coordinates →
Affine Projective Jacobian

Modified
↓ Operation Jacobian

ADD 1 I + 3 M 14 M+ 1 C 12 M + 4 C 11 M + 4 C
mixADD — 9 M + 2 C 8 M + 3 C 7 M+ 3 C
DBL 1 I + 2 M 11 M+ 1 C 7 M + 2 C 6 M+ 4 C
TPL 4 C 6 C 1 M + 6 C 8 C
τ 2 C 3 C 3 C 4 C

Table 1. Costs of various group operations in terms of field multiplications

Harrison, Page and Smart in [11] have proposed a different kind of projectivisation of the
curve, whereby the affine point (x, y) is represented as 〈X:Y :Z〉 = (x, y), where x = X/Z2

and y = Y/Z3. Their curve equation is E3,µ : Y 2 = X3 − XZ4 − µZ6 . In order to
distinguish these coordinates from those described by Koblitz and in accordance with the
rest of the literature on elliptic curves we call them instead Jacobian coordinates.

Finally, Kim and Negre [16] observe that some computational time can be saved if
T = Z2 is saved along with the Jacobian coordinates. They therefore introduce a modified
Jacobian coordinate system, in which an affine point (x, y) on E3,µ is represented by the
quadruple 〈X:Y :Z:T 〉, where x = X/Z2, y = Y/Z3, and T = Z2.

In Table 1 the costs of several operations on an elliptic curve E3,µ in these coordinate
systems are given. There, ADD, DBL, TPL, and τ denote addition of two different points,
doubling, tripling, and computation of the Frobenius image of a point, respectively. mixADD
is used to denote a mixed addition of a point given in affine coordinates to a point in
another coordinate system (i.e. Z2 = 1), with a result expressed in the same coordinate
system of the second point. M, I and C denote a field multiplication, inversion and cubing,
respectively.

We did not find gains with repeated additions, i.e. when a given point is added to several
inputs, except with standard Jacobian coordinates, where one M can be saved in the ADD.
In Jacobian and modified Jacobian coordinates we save a cubing for the generic addition
and nothing for the mixed addition.

Remark 5.1. The modified Jacobian coordinate system seems to be the fastest system, as
long as a field inversion is slow. In fact, according to [11] and [1], a field inversion is in excess
of ten field multiplication already for relatively small fields, if an efficient representation of
the field is used.

5.2. Operation Counts for Scalar Multiplication. In order to estimate the cost of a
scalar multiplication, we therefore use modified Jacobian coordinates system for the curve,
but we keep the base point P in affine coordinates in order to exploit mixed additions. Note
that for any point Q in affine coordinates, the point ζℓQ can be computed in essentially
no time and is also given in affine coordinates.
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We shall determine the cost of a scalar multiplication on E3,µ in terms of field mul-
tiplications in F3m . We assume that the expected length of a w-NAF is approximately
m.

By an easy generalization of Koblitz’ arguments (cf. the end of the proof of Theorem 1
in [18]) it can be proved that the expected density of a w-NAF expansion is 2

2w+1
.

In our notation, Koblitz’ τ -adic expansion is a D2-NAF. A τ -adic Horner scheme based
on the D2-NAF, i.e. Algorithm 2, takes

(
2

5
m− 1

)
mixADD + (m− 1)τ =

(
14

5
m− 7

)
M +

(
26

5
m− 7

)
C

to compute a scalar multiplication.
With w = 3 we consider the digit set

D3 := {0} ∪
⋃

06k<6

ζk{1, 2, 4− µτ}

so we need to precompute 2P and (4−µτ)P in affine coordinates. This takes two doublings
(the first one being of an affine point, with a modified Jacobian result), an application of
τ to an affine point and a mixed addition. Now, the Kim-Nègre’s DBL takes the form

Z3 = −Y1Z
3
1 , T3 = Z2

3 , X3 = (T 3
1 )2 + (X3

1 − Y 2
1 )Y 2

1 − µT3 , Y3 = T 9
1 + Y 2

1 T3 .

and, assuming Z1 = T1 = 1 the cost becomes 4 M + 1 C. We do not need to compute the
T -coordinate of (4−µτ)P , so we save a M here. We then need to invert two Z-coordinates
in order to convert 2P and (4− µτ)P to affine coordinates, and using Montgomery’s trick
this costs 1 M + 7 M in total. So we have
(
“first” DBL + DBL + 2 C + mixADD− M + (1 I + 7 M)

)
+ (m− 1)τ +

(
2

7
m− 1

)
mixADD =

= (2 m + 16) M+ I +

(
34

7
m + 3

)
C .

For larger w, i.e. w > 4, we have to devise a precomputation strategy. As already
observed, the triangular “slices” of the hexagon containing the minimal norm digits contain
1 and 2, and then we can compute all other digits simply by further additions of 1, 2 and
±τ . So we perform an affine doubling to get 2P , a single application of τ to obtain τ(P )
and (3w−2 − 2) further mixADDs.

At this stage we can decide whether to convert these (3w−2−2) points to affine coordinates
as well, or to leave them in modified Jacobian coordinates.

Hence, for arbitrary w > 3 we have the following cost
(
affine (DBL + τ) + 1 I + (5 · 3w−2 − 6) M + (3w−2 − 2) mixADD

)
+

+ (m− 1)τ +

(
2

2w + 1
m− 1

)
mixADD =

=

(
14

2w + 1
m− 32 + 4 · 3w−1

)
M + 2 I +

((
4 +

6

2w + 1

)
m− 11 + 3w−1

)
C
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w = 2 w = 3 w > 4 gain
m Affine Pre. Mixed Pre.

97 339.2 296.1 327.2 (w=4) 346.6 (w=4) 12.7%

163 533.5 436.5 437.2 (w=4) 502.5 (w=4) 18.2%

239 748.7 595.5 562.0 (w=4) 679.9 (w=4) 24.9%

509 1537.0 1185.4 1035.4 (w=4) 1327.9 (w=5) 32.6%

773 2305.9 1761.0 1498.4 (w=5) 1958.0 (w=5) 36.3%

1223 3608.0 2720.3 2137.4 (w=5) 2921.4 (w=5) 40.7%

Table 2. Cost (expressed in field multiplications) of scalar multiplication
on curves over fields represented in polynomial basis

in the case we convert the last 3w−2 − 2 points to affine coordinates. If we leave these
points in modified Jacobian coordinates, the cost is

(
affine (DBL + τ) + (3w−2 − 2) mixADD

)
+

+ (m− 1)τ +

(
2

2w + 1
m− 1

)(
2

3w−2
mixADD +

3w−2 − 2

3w−2
ADD

)
=

=

(
2 m

2w + 1

(
11− 8

3w−2

)
− 23 +

8

3w−3
+ 7 · 3w−2

)
M+

+

(
4 m

2w + 1

(
2 +

1

3w−3

)
+ 4 m− 12 +

2

3w−3
+ 3w−1

)
C + I .

The probability that an addition in the Horner scheme is a mixed addition is taken into
account, under the assumption that all non-zero digits occur with equal probability.

5.3. Comparisons. In Tables 2 and 3 on the facing page we express the costs of scalar
multiplication for different values of w and m. In the first table it is assumed that a
polynomial basis is used to represent the field, in the second table a normal basis.

In our comparisons we consider six field (and curve) sizes: m = 97, 163, 239, 509, 773 and
1223. We also consider two different representations of the fields: with a normal basis and
with a polynomial basis. The first four are fields already considered in the literature, and
the last two have been chosen to see how the various methods scale with the field size. We
consider here the simple scalar multiplication Algorithms 2 and 3 with the precomputation
strategies described in § 5.2 for w > 3.

The cost of a field inversion is taken to be equal to 15, 15, 20, 40, 60 and 80 multipli-
cations, respectively for the six chosen values of m, and a cubing is equal to 0.15, 0.10,
0.07, 0.045, 0.037 and 0.03 multiplications, respectively. These values are approximate
distillates of the values found in other scientific literature (for instance [11, 1]) and our
own implementation experiments.

The optimal value of w in the case w > 4 is given in parentheses.
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w = 2 w = 3 w > 4 gain
m Affine Pre. Mixed Pre.

97 264.6 225.0 256.9 (w=4) 273.8 (w=4) 15.0%

163 449.4 357.0 359.6 (w=4) 422.1 (w=4) 20.6%

239 662.2 514.0 482.7 (w=4) 602.9 (w=4) 27.1%

509 1418.2 1074.0 927.7 (w=4) 1216.9 (w=5) 34.5%

773 2157.4 1622.0 1365.8 (w=5) 1820.7 (w=5) 36.7%

1223 3417.4 2542.0 1988.5 (w=5) 2746.4 (w=5) 41.8%

Table 3. Cost (expressed in field multiplications) of scalar multiplication
on curves over fields represented in normal basis

Remark 5.2. The gains are significant and are between 20 % and 35 % for curves used
in actual cryptographic applications. For larger curves, which could be interesting as
security requirements increase, and are significant anyway for implementation in computer
algebra systems, the gains are even higher. It is clear, as expected, that using a windowed
representation of the scalar brings noticeable speed gains.

Remark 5.3. We note that in the comparison from [8] only the number of group additions
is considered, whereas we consider all the costs. If we counted only the number of group
operations, our results would be very similar to the ones in [8]. We note that the techniques
described in [8] are not generic in the sense that for each value of w the precomputation
sequence has to be determined anew, whereas our uniform description of the digit set yields
a precomputation sequence for each w (Remark 4.4 on page 9).

Furthermore, our memory requirements are only one third of those in [8] because we
explicitly make use of the rotational symmetry of the digit sets of minimal norm represen-
tatives, whereas Blake, Kumar and Xu just use a signed representation in [8, Section 4.2].
The explicit description of these digit sets (Theorem 2 on page 8) permits a very stream-
lined implementation of the scalar multiplication for all values of w, whereas in previously
published results an ad-hoc operation sequence had to be devised for each w.

Remark 5.4. A comparison to expansions to the base of three, such as those used, for
instance in [11], seems due.

(i) A tripling requires twice as many cubings as a Frobenius operation. Since the density
of a simple base-three expansion is 1/2 – higher than the 2/5 of a D2-NAF – and its
length is m, the method is slower than Koblitz’ τ -adic method.
The nonary method from [11] uses a base 9 expansion, that has density 7/8, hence
yielding an expected 7

16
m = 0.4375 m group additions in the Horner scheme. This

method requires 7 precomputations (and 7 operations).
For a τ -adic method the value of w giving the closest amount of precomputations to 7,
is w = 4, which gives 9 precomputations. With this parameter we have about 2

9
m =
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0.2̄m group additions in the Horner scheme. Taking w = 3, with 3 precomputations,
already gives an expected 2

7
m = 0.285714m group operations in the Horner scheme.

(ii) With the exception of the derivation of the D2-NAF from the balanced ternary ex-
pansion (Theorem 1), in general computing the τ -adic expansion used in the methods
by Koblitz [18], Blake, Kumar and Xu [8], and us is slightly more complex than
computing a base three representation.

Hence, replacing a base-three {0, 1, 2}-expansion with a balanced ternary expansion or,
even better, with the D2-NAF obtained from Theorem 1, brings already significant im-
provements. The methods studied in this paper further improve over the D2-NAF.

6. Eigenvalues

Let us assume in this section that the chosen Koblitz curve is good for cryptographic
applications. In particular, the rational point group E3,µ(F3m) contains a large cyclic sub-
group G of prime order. The index of G in E3,µ(F3m) should be as small as possible. Since
E3,µ(F3m) > E3,µ(F3), the order of E3,µ(F3m) is always divisible by the order of E3,µ(F3),
which is 1 if µ = 1 and 7 if µ = −1.

Furthermore, since Nm is divisible by N ′
m whenever m′ | m, we may want to consider

only m prime in order to increase the likelihood that Nm has a large prime factor. For
example, when µ = 1 we have that N163 = 3163 + 382 + 1 is a prime of 259 bits; and when
µ = −1 we have that N97 = 397 + 349 + 1 is 7 times a prime of 154 bits.

Ideally, the index of G in E3,µ(F3m) should be then as small as possible, however it
suffices to assume that the order of G is a prime number ℓ and to require that ℓ divides
the order of E3,µ(F3m) only once – then G is also the only subgroup of order ℓ of E3,µ(F3m).
In particular, all endomorphisms of E3,µ(F3m) that operate non trivially on G map G onto
itself.

Being G cyclic, τ , ζ , etc. operate on G by multiplication by a constant, i.e., there exist
integers t, s such that

τP = t · P and ζP = s · P
for all P ∈ G. These integers are defined modulo ℓ.

In order to get a general expression, as we cannot make assumptions about ℓ, we compute
here t and s modulo Nm instead, i.e., we find t such that

t2 − 3 µ t + 3 ≡ 0 mod Nm , and tm ≡ 1 mod Nm

and similarly for s. Then, to determine the eigenvalues s, t of ζ , τ operating on G, we
shall reduce these integers modulo ℓ.

Theorem 3. The two congruences

(14) (i) t2 − 3 µ t + 3 ≡ 0 (mod Nm) , and (ii) tm ≡ 1 (mod Nm)

for m > 5 odd, integer, and coprime to 3, always admit a unique solution, namely

(15) t ≡ (−3)
m+1

2 + 3 µ [m ≡ 1 (mod 3)] (mod Nm) .
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If

s ≡ 3

t2
(mod Nm)

then

(16) s ≡ 2− µt (mod Nm) .

Proof. We use relation t6 ≡ (−3)3 (mod Nm) that follows from (14,i) (without even using
the actual value of Nm) to simplify (14,ii).

If m ≡ 1 (mod 3) then it is necessarily m ≡ 1 (mod 6) and

tm ≡ 1 ≡ (−3)
m−1

2 · t (mod Nm) .

It is readily verified that this linear congruence admits the unique solution t ≡ (−3)
m+1

2 +3µ.
If, on the other hand m ≡ −1 (mod 6) then

tm ≡ 1 ≡ (−3)
m+1

2 · t−1 (mod Nm)

whence it follows at once that t ≡ (−3)
m+1

2 .
The statement (16) about s is a direct consequence of the fact that ζ = 2 − µτ , which

is just another form of (6). �

Remark 6.1. In fact it can now be easily seen that Equation (14,i) has two distinct solutions
mod Nm:

t1 = (−3)
m+1

2 + 3µ[m ≡ 1 (mod 3)] and t2 = −(−3)
m+1

2 + 3µ[m ≡ 2 (mod 3)] .
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