
FoSP
FoSPAlgorithmen &

mathematische
Modellierung Forschungsschwerpunkt

Algorithmen und mathematische Modellierung

Optimality of Digital Expansions to the Base of the

Frobenius Endomorphism on Koblitz Curves in

Characteristic Three

Markus Kröll

Project Area(s):

Analysis of Digital Expansions with Applications in Cryptography

Institut für Optimierung und Diskrete Mathematik (Math B)

Report 2010-9, August 2010

Optimality of Digital Expansions to the Base of the Frobenius

Endomorphism on Koblitz Curves in Characteristic Three

Markus Kröll

August 11, 2010

Contents

1 Introduction 2

2 τ-adic Expansions 3
2.1 Background . 3
2.2 Properties of τ . 4
2.3 Digit Sets . 5
2.4 Optimality . 9
2.5 Examples for Optimality . 11

3 The Transducer 11
3.1 Basic Idea of the Transducer . 11
3.2 Buildup in detail . 15
3.3 Correctness of the Transducer . 18

4 Fast algorithmic realization of the Transducer 19
4.1 Reducing the graph to a sixth part . 19
4.2 Adjustment of the Bellman-Ford algorithm 21

5 Arithmetic in Z[τ] 24
5.1 Reducing to elements in Dw . 24
5.2 Needful Operations . 27

6 Results 30

1

1 Introduction

Since both Koblitz [7] and Miller [9] suggested the use of elliptic curve cryptography in 1985,
it has become a more and more popular cryptosystem. Elliptic curve cryptography is based
on the algebraic structure of elliptic curves over finite fields. One can introduce an addition
law for two points on the elliptic curve E in a certain way. By appending the set of points of
an elliptic curve E(F) by a special point which represents the point ’at infinity’, E(F) turns
into an additive abelian group. Because an elliptic curve E over a finite field has finitely many
points, the discrete logarithm problem (DLP) can be applied to the points on E . The discrete
logarithm problem is to find a number n ∈ N for given points P and Q on E(F), such that

nP = Q.

Because it is believed that there is no fast algorithm for solving the DLP, there are a few
cryptosystems which rely on the problem of finding a number n as above. For both encryption
and decryption in such systems many scalar multiplications of points on the elliptic curve are
performed.

Based on the goal of making the usage of elliptic curve cryptosystems as efficient as
possible, there have been several attempts in accelerating the computation of group operations
on the group of points of an elliptic curve over a finite field. Koblitz showed in [8] that the
elliptic curve

E3,µ : Y 2 = X3 −X − µ, with µ ∈ {−1, 1}
defined over F3 offers an alternative approach for scalar multiplication of its points, by taking
a special digit expansion of the scalar. The approach of Avanzi, Heuberger and Prodinger
[1] is motivated by the work of Koblitz. By using a τ -adic expansion of the scalar, where τ
is a root of the characteristic polynomial of the Frobenius endomorphism, a Horner scheme
is used to make a scalar multiplication. In this thesis, I present a method how to show the
optimality of a τ -adic expansion under certain aspects.

First of all, the Frobenius Endomorphism τ is introduced, which maps points on an ellip-
tic curve. This endomorphism can be identified with a complex number, which will also be
denoted by τ . It is shown that with a τ -adic digital expansion the scalar multiplication on
elliptic curves can be performed in an efficient way when choosing an adequate digit set.

Next a digit set Dw is introduced. It is shown that every integer admits a Dw-w-NAF,
which is a digital expansion with only one non-zero element in every factor of length w. To
determine whether the set Dw is a proper digit set for the goal of fast scalar multiplication,
optimality has to be defined. There is also an example of non-optimality when introducing τ
on an elliptic curve in characteristic 2.

To prove optimality, it is shown that the buildup of a transducer T is needed, where a
transducer is a finite automaton with one input and one output tape. Based on empirical
observations, such a transducer grows very fast for growing w. Because of that, two ways are
introduced for a fast algorithmic implementation. On the one hand, the transducer can be
reduced to a sixth part, on the other hand, the Bellman-Ford algorithm for finding shortest
paths can be modified to achieve better results.

2

To make evaluations in Z[τ], it is crucial to know facts about the arithmetic in this ring.
In chapter 5, efficient ways for reducing elements a+bτ in Z[τ] to elements in Dw or to reduce
elements αkτk + αk−1τ

k−1 + · · ·+ α1τ + α0 to their shortest possible form are presented.

In the end numerical results and the set of w for which it was proven that the Dw-w-NAF is
optimal are presented.

2 τ-adic Expansions

2.1 Background

Let E3,µ(F3m) be the group of points of the elliptic curve E3,µ, where m is a natural number
coprime to 6. The Frobenius endomorphism

ϕ : F3m → F3m , x 7→ x3

is also a function on the points of the elliptic curve

ϕ : E3,µ(F3m)→ E3,µ(F3m), (x, y) 7→ (x3, y3), with (x, y) = P ∈ E3,µ(F3m), (2.1)

One can show that ϕ satisfies the relation

ϕ(ϕ(P))− 3µϕ(P) + 3P = 0

⇐⇒ (ϕ2 − 3µϕ+ 3id)(P) = 0 for every P ∈ E3,µ(F3m),

and thus it follows that
ϕ2 − 3µϕ+ 3id = 0 . (2.2)

The key step in creating an alternative way for scalar multiplication is to introduce the
complex number τ ∈ C with the same minimal polynomial as the one of ϕ in (2.2):

τ2 − 3µτ + 3 = 0 leads to τ =
3µ+

√−3
2

=
√−3

1− µ√−3
2

.

By defining a group action from Z[τ] to E3,µ(F3m) where

(a+ bτ)P = aP + bϕ(P), a, b ∈ Z,

the Frobenius endomorphism ϕ can be identified with the imaginary quadratic number τ .
If now an integer z can be written in a τ -adic expansion

z =
l∑

j=0

ajτ
j , where aj ∈ D ⊆ Z[τ] and l ∈ N, (2.3)

the scalar multiplication of z with a point P ∈ E3,µ(F3m) can be evaluated by

zP = (
l∑

j=0

ajτ
j)P =

l∑
j=0

ajϕ
j(P) = ϕ(. . . (ϕ(alP) + al−1P) + . . .).

3

−2 −1 0 1 2
x

−2

−1

0

1

2

y

(a) µ = −1

0 1 2 3
x

−2

−1

0

1

2

y

(b) µ = 1

Figure 1: The elliptic curve E : Y 2 = X3 −X − µ over R

The right hand side of the equation is the Horner scheme of the sum, which is used for efficiency
reasons. Making a first rough breakdown of the time costs of the scalar multiplication in this
way, it can be stated that the Frobenius endomorphism has to be applied l times, which is
a cheap operation (see (2.1)). The other operation that has to be done is to add points on
the elliptic curve H(alal−1 . . . a1a0) times, where H is the Hamming weight function, which
is defined as

H(alal−1 . . . a1a0) := #{j ∈ N : aj 6= 0} .

Here we can see the basic approach in improving the performance of scalar multiplication on
an elliptic curve. In contrary to the double-and-add algorithm for example, where O(log z)
additions are needed to evaluate zP , the number of additions to be done depends on the
number of non-zero digits aj in the expansion (2.3), and thus on the digit set D ⊆ Z[τ] that
is chosen.

2.2 Properties of τ

First of all some basic properties of τ have to be stated.
Let ζ ∈ C be the complex number with

ζ :=
1− µ√−3

2
. (2.4)

ζ is also an element of Z[τ] and a primitive sixth root of unity, because

1− µ√−3
2

= 2− −3− µ√−3
2

= 2− µτ .

A multiplication ζz with z ∈ Z[τ] corresponds to a rotation of the point z in the complex
plane by π

3 , where the direction is positive with negative µ and negative with µ = 1. Because
every z ∈ Z[τ] is still in Z[τ] after such a rotation, it leaves Z[τ] globally invariant. Directly

4

from the definition of ζ in (2.4), it follows that ζ is related to τ in the following way:

τ =
√−3

1− µ√−3
2

=
√−3ζ

Moreover if we denote the complex conjugate of τ by τ̄ , τ̄ = ζτ is imperative. Thus both ζ
and τ̄ are beneficial, because it can be shown that they correspond to the functions on the
endomorphism ring of E3,µ

ζ : (x, y) 7→ (x+ µ,−y) and

τ̄ : (x, y) 7→ (x3 + µ,−y3)

and so these operations can be computed efficiently. One can evaluate that τ τ̄ = 3 holds.
Another fact about τ has to be stated in the following proposition, which appears in [1]:

Proposition 2.1. Let z = a+ bτ be an element of Z[τ], where a and b are rational integers.
Then τ | z if and only if 3 | a.

Proof.

“=⇒” Let z by divisible by τ . Then there are some integers ā,b̄ with

a+ bτ = z = (ā+ b̄τ)τ = āτ + b̄τ2 = āτ + 3µb̄τ − 3b̄.

Because
a+ bτ = −3b̄+

(
ā+ 3µb̄

)
τ

the integer a has to be divisible by 3.

“⇐=“ Let a = 3α for an integer α. Then

a+ bτ = 3α+ bτ =
(
3µτ − τ2

)
α+ bτ = τ(3µα− τα+ b).

2.3 Digit Sets

The number of non-zero digits in τ -adic digit expansions depends on the chosen digit set
D ⊂ Z[τ]. To make further investigations, the following definitions have to be made:

Definition 2.1. Let D be a finite subset of Z[τ] and w ∈ N. A word ηl−1ηl−2 . . . η0 ∈ D∗ is
called a D-w-NAF of a z ∈ Z[τ], if

(1) value(ηl−1 . . . η0) :=
l−1∑
j=0

ηjτ
j = z

(2) Each factor ηj+w−1 . . . ηj contains at most one non-zero.

D is called a w-Non-Adjacent-Digit-Set (or simply w-NADS), if every integer z ∈ Z[τ] admits
a D-w-NAF.

5

Definition 2.2. A reduced residue system modulo τw is a set containing exactly one repre-
sentative for each residue class of Z[τ] modulo τw that is not divisible by τ .

If the digit set D consists of 0 and a reduced residue system modulo τw, each z ∈ Z[τ] is
either divisible by τ or congruent modulo τw to exactly one element of the digit set, because τ
is a prime element in Z[τ]. So if there is a D-w-NAF for z, it is uniquely determined. Further
Solinas [12, 13], Blake, Kumar Murty and Xu [2] show that a digit set, which consists of 0
and so-called representatives of minimal norm from each residue class modulo τw which are
not divisible by τ , is a w-NADS.

Definition 2.3. Let η ∈ Z[τ] be not divisible by τ , w ∈ N and assume that

|η| ≤ |λ| for all λ ∈ Z[τ] with λ ≡ η mod τw.

Then η is called a representative of minimum norm of its residue class modulo τw.

The following theorem from [1] gives an explicit description of a digit set Dw, which
consists of 0 and one representative of minimal norm from each residue class modulo τw

which is not divisible by τ .

Theorem 2.1. Let w ≥ 2 and set

Dw,0 =
{
a+ bµτ : a ∈ Z, b ∈ Z, 3 - a, 1 ≤ a ≤ 3w/2 − 2 and − a

3
< b < 3w/2−1 − 2a

3

}
(2.5)

if w is even and

Dw,0 =
{
a+ bµτ : a ∈ Z, b ∈ Z, 3 - a,−3bw2 c + 2 ≤ b ≤ 0, 1− 2b ≤ a ≤ 3bw2 c − b− 1

}
(2.6)

∪
{

3bw2 c − b+ bµτ : b ∈ Z, 3 - b,−3bw2 c − 1
2

≤ b ≤ 0

}
if w is odd. Set

Dw := {0} ∪
⋃

0≤k≤5

ζkDw,0 .

Then Dw consists of 0 and exactly one representative of minimum norm of every residue
class modulo τw. Moreover, Dw is a w-NADS.

Proof. In [1] a proof is given, but the set Dw,0 is not derived in detail for the case of an odd
w. It is shown that

Dw,0 =

{
{α ∈ Z[τ] ∩ 3w/2Ṽ0 : τ - α} if w is even,
{α ∈ Z[τ] ∩ µi3w/2ζ2Ṽ0 : τ - α} if w is odd.

where

3w/2Ṽ0 =

{
x+
√−3 : 0 < x <

3w/2

2
and − x

3
< µy ≤ x

3

}
∪

∪
{

3w/2

2
+
√−3y : 0 < µy ≤ 3w/2−1

2

}
.

6

The second set in the union corresponds to points on the outer boundary of 3w/2Ṽ . The cell
Ṽ0 for µ = 1, which is the plot of the set Ṽ0 in the complex plane, is given by

Ṽ0
0

v4

v5

v4.5

Figure 2: The cell Ṽ0 for µ = 1

where v0 =
√−3

3 , vk = v0ζ
−µk and vk+1/2 lies on the line from vk to vk+1. For the odd case,

a rotation induced by the factor µiζ2 is needed. To simplify matters, we assume that µ = 1
(the other case can be treated analogously). We obtain the rotated points ṽ4 and ṽ5 with

ṽ4 = v4iζ
2 =
√

3
6
− 1

2
i and ṽ5 = v5iζ

2 =
1√
3

and with a multiplication by 3w/2

3w/2ṽ4 =
3w/2
√

3
6

− 3w/2

2
i and 3w/2ṽ5 =

√
33w/2−1 = 3bw/2c.

This leads to the cells Ṽ ′0 for positive µ and Ṽ ′′0 for negative µ.

Ṽ ′′0

Ṽ ′0

Figure 3: Rotated cells for µ ∈ {−1, 1}

Because the set Ṽ ′0 is bounded by an equilateral triangle, where the endpoint of one side
is the origin and this side is congruent with the axis of the real numbers, 3w/2Ṽ ′0 without the
outer boundary is given by{

x+ iy : −3w/2

2
< y ≤ 0 and −

√
3

3
y < x <

√
3

3
y + 3bw/2c

}
. (2.7)

Because

a+ bτ =
(
a+

3
2
b

)
+ i

(√
3

2
b

)
,

7

we can plug in a+ 3
2b for x and

√
3

2 b for y. This leads to

−3w/2

2
<

√
3

2
b ≤ 0 ⇐⇒ −3bw/2c < b ≤ 0 ⇐⇒ −3bw/2c + 1 ≤ b ≤ 0

for the first inequality in the set given in (2.7) and

−
√

3
2 b
√

3
3

< a+
3
2
b <

√
3

2 b
√

3
3

+ 3bw/2c ⇐⇒ − b
2
< a+

3
2
b <

b

2
+ 3bw/2c

⇐⇒ − 2b < a < 3bw/2c − b ⇐⇒ 1− 2b ≤ a ≤ 3bw/2c − b− 1

for the second one. There are no possible values for a if b = −3bw/2c + 1, so the first set in
the union of both 3w/2Ṽ ′0 and the set Dw,0 in (2.6) are the same. Because a is bounded to the
right by 3bw/2c − b and −3bw/2c + 1 ≤ b ≤ 0, the line from ṽ5 to ṽ4.5, without the point ṽ4.5,
is given by {

3bw2 c − b+ bµτ : b ∈ Z, 3 - b,−3bw2 c − 1
2

≤ b ≤ 0

}
.

Example 2.1. Set w = 4. Then

Dw,0 = {−1 + 2τ,−2 + 3τ, 1 + 3τ, 1, 1 + τ, 1 + 2τ, 2, 2 + τ, 4} .

For further investigation, it is very useful to know how many elements a certain set Dw
contains.

Theorem 2.2. Let w be a natural number greater or equal 2. Then |Dw| = 6· 3w−2 + 1.

Proof. There is a direct way for proving the theorem above:
The set Dw\{0} evolves of the set Dw,0 defined in (2.5) for even and in (2.6) for odd w, by
making the union of all sets ζkDw,0 for k ∈ {0, . . . , 5}. Because of the construction of Dw,0
there is an α ∈ [0, 5π

3

)
so that for every element z ∈ Dw,0 the argument of z is in

[
α, α+ π

3

)
.

Thus it is only needed to show that |Dw,0\{0}| = 3w−2, because the sets ζkDw,0 are disjoint
for distinct values of k. Let w be even. For an element a+ bτ ∈ Dw,0, where a and b are both
in Z, the values of a are in {1 ≤ a ≤ 3

w
2 − 2 : 3 - a} := A. For every a ∈ A a possible b is

bounded by

−a
3
< b < 3

w
2
−1 − 2a

3
⇐⇒ −a < 3b < 3

w
2 − 2a.

For a = 1, there are 3
w
2
−1 different values for b and for a = 2 there are 3

w
2
−1 − 1 values. Let

K be the number of values for b for a fixed a = 3n+ 1. For a = 3n+ 2, the inequality is

−3n− 2 < 3b < 3
w
2 − 6n− 3− 1,

so the number of values for b is K − 1. The next value for a is 3n+ 4. Because the inequality
is

−3(n+ 1)− 1 < 3b < 3
w
2 − 6n− 6− 2,

the number of values for b is also K − 1. Because there is a m ∈ N with 3n+ 4 = 3m+ 1, the
number of values for b, starting with a = 3n+ 1, are

K,K − 1,K − 1,K − 2,K − 2,K − 3,K − 3, . . .

8

For both a = 3
w
2 − 2 and a = 3

w
2 − 1 there is exactly one value for b which satisfies the

inequality, so the number of values for a+ bτ is

3
w
2
−1 + 2(3

w
2
−1 − 1) + 2(3

w
2
−1 − 2) + · · ·+ 4 + 2 =

= 3
w
2
−1 + 2

(3
w
2
−1 − 1)3

w
2
−1

2
= 3w−2 .

Now let w be odd. The two sets in (2.6) have to be treated separately. The number of
elements in the first set, counted in the way above is

2 · 3bw/2c−1 + 6
3k−1∑
j=1

j = 2 · 3bw/2c−1 + 3 · 3bw/2c−1(3bwc/2−1 − 1) =

= 32bw/2c−1 − 3bw/2c−1 = 3w−2 − 3bw/2c−1.

The second set in (2.6) has 3bw/2c−1 elements, so the theorem is also true for odd w.

2.4 Optimality

The question is, if the Dw-w-NAF is the best choice of a digit expansion with the given digit
set Dw. The goal to achieve is to minimize the number of non-zero digits in an expansion.
To formalize this, we define the following:

Definition 2.4. A D-w-NAF is called optimal, when for every word W = ηkηk−1 . . . η1η0

which is a D-w-NAF with z = value(W), W has minimum Hamming weight among all words
with digits in Dw and value z.

Here is an example of two such words:

Example 2.2. Suppose that w = 3 and set W = (−2)(−1)(4− τ). Then

value(W) = 10− 8τ = value((−1)00(1− 2τ)) .

Because W has 3 non-zero digits, and the equivalent D-3-NAF has only 2, this is not a
counterexample for the optimality. In fact, there is none, because it can be shown that the
D-3-NAF is optimal.

Although there is no proof for the optimality for all possible w ∈ N known yet, there is a
way in proving the optimality of a fixed w once at a time, by the use of extensive computations.
For this, the following definitions have to be made.

Definition 2.5. A finite state transducer is a finite state machine with one input and one
output tape.

To simplify matters, a finite state transducer is called transducer in this work. Moreover,
the state transitioning function of a transducer is seen as the edges between states.
Another definition is needed:

Definition 2.6. Let T be a transducer, where every edge from a state Si to a state Sj has
a unique pair (α, β), where α is the digit read when going from state Si to state Sj , and β is
the word written. Then a graph G(T) is called the related graph to T , if the states of T are

9

the nodes of G(T) and the edges are those of the transducer. Each edge (Si, Sj) has weight
w, where

w = H(α)−H(β),

and H is the Hamming weight function.

Now we have everything we need for the following theorem. It shows how to test the
optimality of a D-w-NAF for a certain w ∈ N in an intuitively easy accessible way:

Theorem 2.3. Let T be a transducer, transforming any word with digits in Dw into a D-w-
NAF, with related graph G(T). Then

The D-w-NAF is optimal ⇐⇒ All paths from the start to the accept state in G(T)
have non-negative weight.

Proof. A D-w-NAF is optimal for a certain w, when it has the smallest Hamming weight
among all possible digit expansions with digits in Dw. This is equivalent to the property that
the difference H(A) −H(B) is greater or equal 0, where A is any word in D∗w, and B is the
D-w-NAF of the value of A. When translating a word W ∈ D∗w with T into W̃, the finite
automaton runs along a certain path (the transition function of T corresponds to edges in
G(T)). The sum of the weights related to this edges in G(T) is∑

digits λ∈W
[H(λ)−H(λ̃)], where λ̃ := digit-block written by T when λ is read.

Because the output finally written by T (without overwriting something) is W̃, the sum
above is equal ∑

digits λ∈W
H(λ)−

∑
blocks λ̃∈W

H(λ̃) = H(W)−H(W̃).

Hence the weight of a path in G(T) which occurs when translating a word with T gives the
difference of the Hamming weights of the original and computed word.
So on the one hand, if there are no paths with negative weight, there can not be any word
A ∈ D∗w with smaller Hamming weight than B, which is the D-w-NAF of value(A). On the
other hand, if there is a path with negative weight, there is a word triggering this translation
into one word with a higher Hamming weight. Hence the D-w-NAF is not optimal.

The theorem, useful as it is, has a much more handy corollary that follows directly out of
it:

Corollary 2.1. Let T be a transducer, transforming any word with digits in Dw into a
D-w-NAF, with related graph G(T). Then

The D-w-NAF is optimal ⇐⇒ The shortest paths from the start to the accept state
have non-negative weight.

So given a transducer T translating any word, the optimality of the D-w-NAF for a
certain w ∈ N can be proved by showing that a shortest path has non-negative weight. There
are several algorithms for doing this; the real problems are how to construct the transducer,
and how to check for optimality in a fast way.

10

2.5 Examples for Optimality

So far τ and the digit set Dw were based on the elliptic curve

E3,µ : Y 2 = X3 −X − µ, with µ ∈ {−1, 1}

in characteristic three. In [5], Heuberger gives attention to the number τ ∈ C by looking at
the elliptic curve

Ea : Y 2 +XY = X3 + aX2 + 1, with a ∈ {0, 1},

which is defined over F2 and with point group Ea(F2n). The Frobenius endomorphism ϕ in
characteristic 2 satisfies the equation

ϕ2 − µϕ+ 2 = 0 with µ = (−1)1−a.

Similar to our approach, ϕ is identified with the root τ of this equation and this τ is again
used for scalar multiplication. With a digit set D, which is a w-NADS, the question arises
again for which w ∈ N the D-w-NAF is optimal.
Unlike the binary case, where the digit set of minimal norm representatives consists of zero
and all odd integers of absolute value less than 2w−1 and where w-NAFs with this digit
set minimises the Hamming weight, see Phillips and Burgess [10], there is no optimality for
w ∈ {4, 5, 6}.

3 The Transducer

3.1 Basic Idea of the Transducer

Let z ∈ Z[τ], z not divisible by τ , be an element with the two different digit representations

value(λnλn−1 . . . λ1λ0) = z = value(ηkηk−1 . . . η1η0) with λi, ηj ∈ Dw,
and let ηkηk−1 . . . η1η0 be a D-w-NAF. Further assume that n, k > w. We can write the
equation above as

z = λnτ
n + λn−1τ

n−1 + · · ·+ λ1τ + λ0 = ηkτ
k + ηk−1τ

k−1 + · · ·+ η1τ + η0 (3.1)

and take a look at z mod τw:

λw−1τ
w−1+λw−2τ

w−2+· · ·+λ1τ+λ0 ≡ ηw−1τ
w−1+ηw−2τ

w−2+· · ·+η1τ+η0 (mod τw).

Because τ - z and the η-digits are representing a D-w-NAF, η0 has to be an element in
Dw\{0}. Hence ηw−1, ηw−2, . . . , η2, η1 have to be 0, and the above equation becomes

λw−1τ
w−1 + λw−2τ

w−2 + . . .+ λ1τ + λ0 ≡ η0. (mod τw). (3.2)

Thinking of a finite state machine or rather a transducer, the first digit of the D-w-NAF can
be computed by reading the first w digits of a given digit representation one-by-one, going
from one state to another, where each of those states represents a value a+ bτ ∈ Z[τ]. When
the w-th digit is read, the calculated value has to be reduced modulo τw to determine η0.
Although a finite state machine could be built to make all evaluations, a plain transducer is

11

all we need, because there are only finitely many possibilities for the coefficients λ0, . . . , λw−1

and therefore finitely many values for λw−1τ
w−1 + · · ·+ λ0.

The important step is to write Equation (3.2) in its equivalent form

∃δw ∈ Z[τ] with δwτ
w = λw−1τ

w−1 + λw−2τ
w−2 + . . .+ λ1τ + λ0 − η0.

We now define such δ ∈ Z[τ] in general:

Definition 3.1. Let λnλn−1 . . . λ1λ0 be a word in D∗w with value z ∈ Z[τ] and ηkηk−1 . . . η1η0

the D-w-NAF of z. Then define

δj :=

(
j−1∑
i=0

λiτ
i −

j−1∑
i=0

ηiτ
i

)
1
τ j

for 1 ≤ j ≤ max{n, k}+ 1,

with λr := 0 for r > n and ηs := 0 for s > k.
Further the set ∆ is defined as the union of all sets of δj for every word in D∗w without

zero.

For the general case, a lemma is needed:

Lemma 3.1. Let z ∈ Z[τ] with z = ηnτ
n + ηn−1τ

n−1 . . . η1τ + η0 + δ, ηi ∈ Dw, δ ∈ ∆. Then

z is divisible by τ ⇐⇒ η0 + δ is divisible by τ

Proof. This follows directly from the basic principles of divisibility.

Now the following theorem can be stated:

Theorem 3.1. Let λnλn−1 . . . λ1λ0 be a word in D∗w with value z ∈ Z[τ] and ηkηk−1 . . . η1η0

the D-w-NAF of z where the first m digits of the D-w-NAF are known. There are two different
cases an unknown value ηm can be derived from a given δm:

1. τ | δm + λm
Then ηm = 0 and δm+1 = 1

τ (δm + λm)

2. τ - δm + λm
Then ηm 6= 0,

ηm ≡
w−1∑
j=0

λm+jτ
j + δm (mod τw),

the digits ηm+1 = . . . = ηm+w−1 = 0 and

δm+w =
1
τw

w−1∑
j=0

λm+jτ
j + δm − ηm

Proof. From (3.1) we conclude that

value(ηk . . . ηm) =
1
τm

z − m−1∑
j=0

ηjτ
j

 =
1
τm

 n∑
j=m

λjτ
j

+ δm =
n∑

j=m

λjτ
j−m + δm.

12

Let δm + λm ≡ 0 modulo τ . Because of Lemma 3.1, ηm has to be zero. So

δm+1 =

(
m∑
i=0

λiτ
i −

m∑
i=0

ηiτ
i

)
1

τm+1
=

(
m−1∑
i=0

λiτ
i −

m−1∑
i=0

ηiτ
i + τm(λm − ηm)

)
1
τm

1
τ

=

= (δm + λm − ηm)
1
τ

= (δm + λm)
1
τ
.

Now assume that τ - (δm + λm). By the definition of δm we have

δmτ
m :=

m−1∑
i=0

λiτ
i −

m−1∑
i=0

ηiτ
i.

So δm+w can be evaluated by

δm+w =

(
m+w−1∑
i=0

λiτ
i −

m+w−1∑
i=0

ηiτ
i

)
1

τm+w
=

w−1∑
j=0

λm+jτ
j −

w−1∑
j=0

ηm+jτ
j + δm

 τm

τm+w
=

=

w−1∑
j=0

λm+jτ
j + δm − ηm

 1
τw

because the η digits form a w-NAF. Further ηm, which has to be in Dw\{0} because of Lemma
3.1, can be obtained by

m+w−1∑
j=0

λjτ
j ≡

m+w−1∑
j=0

ηjτ
j ⇐⇒

m+w−1∑
j=0

λjτ
j −

m−1∑
j=0

ηjτ
j ≡

m+w−1∑
j=m

ηjτ
j (mod τm+w),

which leads to

τm

w−1∑
j=0

λm+jτ
j + δm

 ≡ τm
w−1∑
j=0

ηm+jτ
j

 (mod τm+w).

Because the η digits form a w-NAF, dividing this equation by τm leads to the second part of
the theorem.

In Theorem 3.1 we can see that the δi are evaluated recursively. Because a transducer
automaton built with the idea described above must have finitely many states and hence
finitely many possible values for λm−1τ

w−1 +λm−2τ
w−2 + . . .+λm−w+2τ+λm−w+1 +δm−w+1,

it is crucial that the set of all δs is finite.

Theorem 3.2. The set ∆ ⊂ Z[τ] is finite.

Proof. For each bound M ∈ N, there are only finitely many a+ bτ ∈ Z[τ] with |a+ bτ | ≤M ,
and because Dw is finite, there is a Lw ∈ N for each w, such that |λj | ≤ Lw for all λj ∈ Dw. It
can be shown by induction, that 3Lw is an upper bound for the absolute values of all δi ∈ ∆:

13

Let W ∈ D∗w be a word of arbitrary length, where the first digit (from right) is λ0 and for
any digit λi, the next digit is λi+1. Further let the w-NAF of value (W) have digits ηi. Then

δ1 = (λ0 − η0)
1
τ

is bounded by

|δ1| =
∣∣∣∣(λ0 − η0)

1
τ

∣∣∣∣ ≤ 1√
3

(|λ0|+ |η0|) < 3Lw

because of the triangle inequality and the fact that |τ | = √3. Now suppose that

|δi| ≤ 3Lw for all i ∈ {1, . . . , n}.

Then

|δn+1| =
∣∣∣∣∣
(

n∑
i=0

λiτ
i −

n∑
i=0

ηiτ
i

)
1

τn+1

∣∣∣∣∣ =

∣∣∣∣∣
(
n−1∑
i=0

λiτ
i −

n−1∑
i=0

ηiτ
i + λnτ

n − ηnτn
)

1
τnτ

∣∣∣∣∣ ≤
≤
∣∣∣∣∣
(
n−1∑
i=0

λiτ
i −

n−1∑
i=0

ηiτ
i

)
1
τnτ

∣∣∣∣∣+
∣∣∣∣(λn − ηn)

1
τ

∣∣∣∣ ≤ |δn−1| 1√
3

+
2√
3
Lw < 3Lw.

Now we have to show that ∆ ⊆ Z[τ]. Because of (3.1), for any k ∈ N

λk−1τ
k−1 + λk−2τ

k−2 + · · ·+ λ1τ + λ0 ≡ ηk−1τ
k−1 + ηk−2τ

k−2 + · · ·+ η1τ + η0 (mod τk),

which implies that there is an element γ ∈ Z[τ] such that

τkγ =
k−1∑
i=0

λiτ
i −

k−1∑
i=0

ηiτ
i ⇐⇒ γ =

1
τk

(
k−1∑
i=0

λiτ
i −

k−1∑
i=0

ηiτ
i

)

and because γ = δk it follows that δk ∈ Z[τ].

14

3.2 Buildup in detail

By putting all together from the previous section, the following sketch of the transducer T
can be drawn. The states of this transducer are partitioned in w− 2 different so called levels,
which are Level 0, Level 1,. . .,Level (w− 2) and the ∆ Level. Each state is given by a unique
pair (z, j), where z is an element in Z[τ], and j ∈ {0, 1, 2, . . . , w − 3, w − 2, ∆}, which stands
for one of the possible levels.

Level 0
Values:
∆+Dw

Level 1
Values:

∆+Dw + τDw

Level 2
Values:

∆+Dw + τDw + τ2Dw

.

.

.

Level w − 3
Values:

∆+Dw + τDw + . . .+ τw−3Dw

Level w − 2
Values:

∆+Dw + τDw + . . .+ τw−2Dw

∆
-L

evel

Start

0

0 | 0

λ 6= 0 | ε
λ | ε

λ | ε

λ | ε

λ | ε

λ | ε

λ | 00 . . . 00η︸ ︷︷ ︸
w digits

, (δ = 0)

λ | 0

λ | 00 . . . 00η︸ ︷︷ ︸
w digits

λ | ε

λ | 0

Figure 4: Sketch of transducer T

To take a closer look at the sketch of the transducer T , it has to be stated that ∆ +
Dw + τDw + . . . + τ jDw := {δ + η0 + η1τ + . . . + ηjτ

j |δ ∈ ∆, ηi ∈ Dw}. Moreover the node
which is the start and accept state in one can also be reached without the transducer to be
halted. The transducer can be stuck at this state arbitrarily, when it is on this state and the
following input values are zeros.

15

The assembling of two consecutive levels Level (j − 1) and Level j is as follows:

Node σ in Level (j − 1)

Successors of node σ in Level j

z

z +

ηiτ
j

z +

ηi−1τ
j. . .z +

η1τ
jz z +

ηi+1τ
j . . . z +

ηk-1τ
j

z +

ηkτ
j

0

η 1

η i
−1 η

i

η
i+

1

η
k−

1

η
k

Figure 5: Node in Level (j − 1) and its successors

Level (j − 1) contains nodes with certain values, obtained by reading in a word. From
every node in Level (j − 1), there are |Dw| many edges, one for every possible input digit
read, going out and leading into a node in Level j. In Figure 5, only the edges going out of
the node with value z are shown. One can see that the values on the next level are the old
one plus all possible elements ητm, where η ∈ Dw and m is the number of the new level.
The weights of nearly all the edges of the related graph G(T) are one; all possible η ∈ Dw
are read, whereas nothing is written at all. The only edges with weight 0 are those with
the same values in the head and tail of it. Hence there are exactly |Level (j − 1)| edges with
weight 0 in G(T) between Level (j−1) and Level j, and (|Dw|−1)|Level (j−1)| with weight 1.

The maybe most interesting part of T is the ∆ Level, which can be seen as a sort of switch-
man between two blocks of length w of the input-word. It has ingoing edges from Level w−2,
which are those where the transducer T is writing something on its output tape. There is an
edge from a node in Level w− 2 with value λ to a node in the ∆ Level with value zs, if there
is an ηk ∈ Dw so that zs is evaluated as in Figure 6 and is not zero.

z1 z2 . . . zi . . . zj . . . zs−1 zs Level w − 2

λ+ ηkτ
w−1 ≡ η mod τw

zs = 1
τw (λ+ ηkτ

w−1 − η)

Figure 6: ∆ Level: Ingoing edges

16

The outgoing edges lead to two different levels. There is an edge from the state with value
z1 in the ∆ Level to Level 0, if there is an element ηk ∈ Dw with τ - (z1 + ηk).

Level 0

z1 z2 . . . zi . . . zj . . . zs−1 zs

τ - (z1 + ηk)

Figure 7: ∆ Level: Edges to Level 0

There are also edges from the ∆ Level to the start/accept state. Such an edge is an
outgoing edge of a node with value z2, and there is a ηk ∈ Dw with ηk + z2 = 0.

z1 z2 . . . zi . . . zj . . . zs−1 zs

Start

0
z2 + ηk = 0

Figure 8: ∆ Level: Edges to start/accept state

When the value a + bτ ∈ Z[τ] of a block of length w is divisible by τ after reducing it
modulo τw, subtracting the outcome from it, dividing it by τw and adding the new read digit
ηk ∈ Dw to it, a situation to the new input block would appear as stated in Proposition 3.1.
This is handled by edges within the ∆ Level, as shown in the following figure.

z1 z2 . . . zi . . . zj . . . zs−1 zs

τ | (zi + ηk),
zj = 1

τ
(zi + ηk)

Figure 9: ∆ Level: Elements divisible by τ

17

3.3 Correctness of the Transducer

The description of the transducer does not imply that it translates any word in D∗w in the
way it has to. To prove its correctness, we unite the start/accept state and the ∆ Level to
one level, which we denote Level −1.

Theorem 3.3. Let W = 0∗λnλn−1 . . . λ1λ0 be a word in D∗w and ηkηk−1 . . . η1η0 the w-NAF
of value(W). Further let λmλm−1 . . . λ1λ0 be the digits read by the transducer T and (z, j)
the current state. Then ηm−j−1 . . . η0 are the digits written and

z = δm−j +
j∑
i=0

λm−j+iτ i.

Proof. We prove this by induction:
Let m = 0, which means that (z, j) is the first state of the transducer T after the start state.
There are two different cases for λ0:

1. If λ0 = 0, W is divisible by τ and the first digit of the w-NAF has to be 0. The
transducer stays in Level −1, η0 = 0 is written and z = 0.

2. If λ0 6= 0, the current level is Level 0, which means that nothing is written and z = λ0.

Now assume that the theorem holds for all states before the state (z, j), in particular the
state when λm−1 is read. We denote the predecessor state of (z, j) as (z̃, j̃). The number of
the current level is either −1 or in {0, 1, . . . , w − 2}. First assume that j = −1. There are
two different ways in reaching Level −1:

• The state which leads to (z, j) is in Level −1. Then z̃ = δm and ηm−1 . . . η0 is on the
output tape. The transducer stays in Level −1, because

δm + λm ≡ 0 (mod τ),

and it follows by Theorem 3.1, that z = 1
τ (δm + λm) = δm+1. Further ηm has to be 0

because of Lemma 3.1.

• The state (z̃, j̃) is in not in Level −1. Then it has to be in Level w − 2, which means
that

z̃ = δm−w+1 +
w−2∑
i=0

λm−w+1+iτ
i.

Because of Theorem 3.1, the next digits of the w-NAF are written and

z =

(
δm−w+1 +

w−1∑
i=0

λm−w+1+iτ
i − ηm

)
1
τw

= δm.

Now assume that the state (z, j) is given with j ∈ {0, . . . , w − 2}. At the transition to state
(z, j), nothing was written, so by the induction hypothesis, the digits ηm−j−1 . . . η0 are from
the w-NAF. The value z is given by

z = δm−1−j+1 +
j−1∑
i=0

λm−1−j+1+iτ
i + λmτ

j = δm−j +
j∑
i=0

λm−j+iτ i,

and hence the proof is complete.

18

4 Fast algorithmic realization of the Transducer

When trying to show the optimality of a D-w-NAF for a certain w, it is crucial to be very
efficient when implementing the evaluation of the finite automaton, and certainly when com-
puting the paths from the start to the accepting state. Based on empirical observations, the
time needed for the proof of the optimality for w + 1 is about 40-80 times higher than the
time needed for w. The cardinality of Dw\{0} grows exactly by a factor 3, and the number
of states of T by a factor of about 10.

4.1 Reducing the graph to a sixth part

The first step that can be realised when trying to lower the time needed to show the optimality
of a D-w-NAF for a certain w, is to simplify the graph G(T) of the transducer as much as
possible. The smaller the graph is, the less time is needed for evaluating the length of paths
from the start to the accept state. In fact, there is a very basic way for making the graph
smaller, based on the structure of Dw.

Theorem 4.1. Let T be a Transducer built like shown in Figure 4. Then the values of the
nodes of the related graph G(T), which are not the start/accept state, are symmetric under
a rotation of π

3 .

Proof. First we can show that the set Dw+τDw+. . .+τnDw = {η0+η1τ+. . .+ηnτn|ηi ∈ Dw}
is symmetric under a rotation of π

3 by induction:
Dw is symmetric because of its construction, as done in Theorem 2.1. Now assume that the
assumption holds for Dw + . . .+ τn−1Dw. So this set can be written as

Dw + . . .+ τn−1Dw =
⋃

0≤k≤5

ζkD̃wn−1, (4.1)

for some set D̃wn−1. Adding τnDw leads to⋃
0≤k≤5

ζkD̃wn−1 + τnDw =
⋃

0≤k≤5

ζkD̃wn−1 + {0} ∪
⋃

0≤j≤5

ζjDw,0 =

=
⋃

0≤k≤5

ζk(D̃wn−1 + {0} ∪
⋃

0≤j≤5

ζjDw,0).

Hence Dw + τDw + . . .+ τnDw is symmetric.
The next thing to show is that ∆1 is symmetric, which is the set of all deltas constructed like
in chapter 3.1 out of the set Dw + τDw + . . . + τnDw. Like in 4.1, Dw + τDw + . . . + τnDw
consists of sets ζkD̃wn . Let λ0 ∈ D̃wn , and let δ0 in ∆1 be

δ0 =
λ0 − η0

τw
for η0 ∈ Dw with λ0 ≡ η0 mod τw.

For k ∈ {1, . . . 5} we get

ζkλ0 ≡ ζkη0 mod τw and δk =
ζkλ0 − ζkη0

τw
= ζk

λ0 − η0

τw
= ζkδ0

and therefore ∆1 is symmetric. Because it has been shown above that the sum of sets which
are symmetric under a rotation of π

3 is symmetric, Dw + . . .+ τnDw +∆1 has this property,

19

and because the ∆l sets are evaluated iteratively like above, ∆ +
m∑
k=0

τkDw is symmetric for

every m ∈ {0, . . . , n}, and so are the values of the nodes of G(T).

Because of the theorem above, for every node with value λ0 in Level i with i ∈ {0, . . . , w−
2} or the ∆ Level, there are the nodes with values ζλ0, ζ

2λ0, ζ
3λ0, ζ

4λ0, ζ
5λ0 in the same

level. Suppose that the transducer T is in the state λ0 and the next digit that is read is a η,
the output of T at this single input is an a ∈ D∗w, and the next state is a node with value λ1

in a following level. Then for every j ∈ {1, . . . 5}, when T is in in the state with node-value
ζjλ and the input digit is ζjη, the output is ζja and the next state is ζjλ1, which is in the
same level as λ1. This follows directly from the fact that

ζjλ0 + ζjη = ζj(λ0 + η) and ζε = ε when a = ε,

and λ0 + η ≡ η̃ mod τw ⇒ ζj(λ0 + η) ≡ ζj η̃ mod τw.

The cases when one of the two levels is the start/accept state, or both levels are the
∆-Level can be treated in the same way.
The left hand side of figure 10 is a sketch of the described feature:

λ0 ζλ0 ζ2λ0 ζ3λ0 ζ4λ0 ζ5λ0

λ1 ζλ1 ζ2λ1 ζ3λ1 ζ4λ1 ζ5λ1

Values:
ζkλ0, k ∈ {0, . . . , 5}

Values:
ζkλ1, k ∈ {0, . . . , 5}

η
|
a

ζ
η
|
ζ
a

ζ
2η
|
ζ
2a

ζ
3η
|
ζ
3a

ζ
4η
|
ζ
4a

ζ
5η
|
ζ
5a

w
eig

h
t
:
H

(η
)−

H
(a

)

Figure 10: Compression of nodes

The related graph G(T) has no information about input and output, instead the weights
of the edges are the differences of the Hamming weights. For a single input digit η 6= 0, and
thus for the input we get at each step of the finite automaton, the Hamming weight H(η) is
1, which is the same as H(ζkη) for any k ∈ N. For η = 0, it is clear that the product ζkη and
η both have Hamming weight of 0. So the Hamming weights of the input digits of the above
Figure 10 is the same. The two possible outputs that can occur are 0 and a word 00 . . . 0η̄,
and they too have the same Hamming weight when rotated by π

3 . So when interested in a
shortest path from the start to the accept state, the graph G(T) can be compressed to a
sixth part as in Figure 10, because the difference H(η) −H(a) is invariant under a rotation
of π

3 .
To realize this simplification, a representative for each tuple (λ, ζλ, . . . , ζ5λ) has to be chosen.
An easy way to do this is to take only the nodes for V (G(T)), whose arguments of the
values of the nodes seen as a complex number are in [0, π3). Numerical inaccurateness and

20

nonessential additional computing time when evaluating the arguments with the arctan can
be avoided by finding the representatives with discrete equations:

Proposition 4.1. Let z = a+ bτ be an element in Z[τ], and define the left-closed, right-open
intervals Ak := [k π3 , (k+ 1)π3) with k ∈ {−3,−2,−1, 0, 1, 2}. Further set c := 2a+ 3µb. Then

arg(z) ∈ A−1 ⇔ −c ≤ b < 0 arg(z) ∈ A0 ⇔ 0 ≤ b < c

arg(z) ∈ A−3 ⇔ c < b ≤ 0 arg(z) ∈ A1 ⇔ c ≤ b, c ≥ 0 or b > −c, c ≤ 0
arg(z) ∈ A2 ⇔ 0 < b ≤ −c arg(z) ∈ A−2 ⇔ b ≤ c, c ≤ 0 or b < −c, c ≥ 0

where arg(z) is the argument of z ∈ Z[τ] ⊂ C.

Proof. Looking at z as a complex number rather than an element of Z[τ], z can be written as

z = a+ bτ = a+ b
3µ+

√−3
2

= a+
3µb
2

+ i

√
3b
2
.

Now assume that Re(z) ≥ 0 (the other case can be treated analogously). The argument of z
is

arg(z) = arctan

(√
3b
2

a+ 3µb
2

)
= arctan

(√
3b

2a+ 3µb

)
.

Let b ≥ 0 (again, the case b < 0 can be treated analogously). For a positive numerator x,

ϕ ∈ A0 ⇔ x

y
∈ [0,

√
3), ϕ ∈ A1 ⇔ x

y
∈ (−∞,−

√
3) ∪ [

√
3,∞), ϕ ∈ A2 ⇔ x

y
∈ [−
√

3, 0),

where ϕ := arctan
(
x
y

)
. The theorem follows directly by plugging in

√
3b for x and 2a+ 3µb

for y.

4.2 Adjustment of the Bellman-Ford algorithm

The optimality of a Dw-w-NAF can be checked by searching a graph for paths with negative
weight from the start to the accept state. This can be reduced to following equivalent problem:

Proposition 4.2. Let T be the transducer of a D-w-NAF with related graph G(T). Then

The D-w-NAF is optimal⇐⇒ There is no negative cycle in G(T).

Proof.

• Suppose that the D-w-NAF is optimal. If G(T) had a negative cycle, there would be
a path from the start state of the transducer to it, because there is a path from it to
every single node. So there would be a negative path from the start to the accept state
of G(T), in contradiction to Theorem 2.3.

21

• Suppose that the D-w-NAF is not optimal. There is a word W = ηkηk−1 . . . η1η0 which
is a D-w-NAF and a Word V = λmλm−1 . . . λ1λ0 with value(W) = value(V) and W has
a higher Hamming weight than V. Thus the transducer T would work along a negative
path with weight N . With the word λmλm−1 . . . λ1λ000 . . . 00λmλm−1 . . . λ1λ0 as input,
where the number of zeros has to be large enough to be finished with writing W when
reading λ0 for the second time, the path would have weight 2N . Because the word V can
be extended arbitrarily long in this way, there is a path with arbitrary large negative
weight, and so there has to be a negative cycle.

A common algorithm for finding shortest paths in a graph with negative weights and also
for revealing negative cycles is the Bellman-Ford algorithm. The usual algorithm is shown in
Algorithm 1, which can be found in [3]. By scanning every single edge in a graph G at every
single loop run, the node potentials, which are equivalent with the distance, are updated when
a certain inequality applies. The check for a negative cycle of G is in the end of the algorithm.
Obviously, the algorithm can answer the question of optimality of a D-w-NAF. However it is
not very fast in the present form. With a direct implementation of Algorithm 1, there are
n·m if-queries needed, where n is the number of nodes and m is the number of edges in G.
This is based on the fact that the primal version of the algorithm finds a shortest path from
a root to all nodes in G, thus a shortest-path-arborescence. But the result we are interested
in is only whether there is a negative path from the start to the accept state in G(T). Also,
if a negative path exists, the path itself is worth knowing.

Input A graph G = (V,E), with a node s as the source and weighted edges

Initialize:
Set distance(s) := 0 and predecessor(s) := null
For all v ∈ V \{s} set distance(v) :=∞ and predecessor(v) := null

for i ∈ {1, . . . , |V | − 1} do
for (u, v) ∈ E do

if distance(u) + weight((u, v)) < distance(v) then

distance(v) := distance(u) + weight((u, v))
predecessor(v) := u

for v ∈ V do
for (u, v) ∈ E do

if distance(u) + weight((u, v)) < distance(v) then

return ’Negative cycle detected!’

Algorithm 1: Bellman-Ford

When looking at the distance function of the Bellman-Ford algorithm, it is evident that
it is monotonically decreasing for each node in G. So it is sufficient to take notice of the
distance of the start/accept state. When it is negative at any time, there is a negative cycle
in G, and the algorithm can stop. Another step in the algorithm that can be improved is the
selection of edges in the main loop. Every single edge is scanned, even if the distance doesn’t

22

change. In fact, if there is a valid assignment for the node potentials, there are nodes in every
level from Level 1 to Level w − 2 with a potential that is already known:

λ0 λ0 λ0 . . . λ0 λ0

Start

0

λ0 | ε =̂ 1 0 | 00 . . . 0λ0 =̂ − 1

0 | ε

=̂ 0
0 | ε

=̂ 0
0 | ε

=̂ 0
0 | ε

=̂ 0
0 | ε

=̂ 0

Level
0

Level
1

Level
2

Level
w − 3

Level
w − 2

Figure 11: A priori node potentials

For Figure 11 let λ0 be in Dw/{0}. Every level from Level 0 to Level w − 2 contains a
node with value λ0, because there is the possibility of a word as an input that is just the
digit λ0, which corresponds to 00 . . . 0λ0, where the number of zeros is arbitrarily long. The
path of the executions of the transducer for exactly this input is shown above. Now define
the following node potentials:

π(s) := 0, potential of start/accept state
πj(λ0) ∈ R, potential of the node in level j with value λ0.

For valid node potentials in a graph G, following inequality has to hold:

π(u) + weight((u, v)) ≤ π(v) for all edges (u, v) ∈ E(G).

In figure 11, the weights of the edges are given. It follows directly from this:

π(s) + 1 ≤π0(λ0) ≤ π1(λ0) ≤ . . . ≤ πw−2(λ0) and πw−2(λ0)− 1 ≤ π(s)
=⇒ π(s) + 1 = π0(λ0) = π1(λ0) = . . . = πw−2(λ0) .

Thus for every level of the relating graph of the transducer, there are |Dw| many nodes with
known node potential. The node potential of the start/accept state can be chosen arbitrarily,
eg. 0.
This means for the Bellman-Ford algorithm, that there are at least (w− 3)|Dw|2 edges which
do not have to be checked more than once. Every single node in a certain level has |Dw| many
outgoing edges. When π(u) does not change, the inequality π(u) + weight((u, v)) < π(v) can
only apply once, because π is a monotonically decreasing function.
A feasible solution for this problem of inefficiency is to let the main loop of the Bellman-Ford
algorithm only check edges which have the possibility of changing node potentials. This is
done in Algorithm 2. The idea is that an edge (u, v) ∈ E(G) is relevant, if π(u) has recently
changed. Therefore two stacks K0 and K1 are introduced for storing nodes. In one of them,

23

nodes of the current run of the main-loop are stored. When a node is tested for all its out-
going edges, it can be removed from the stack. Whenever the potential of a node changes,
the node itself is stored in the stack which is not used at the time. In the beginning, only
the start/accept node is stored in K1. This causes the modified Bellman-Ford algorithm to
execute in the same order as the transducer can be built (by starting with the Dw set on
Level 1, and adding elements to the ∆-Level iteratively).

Input A graph G = (V,E), with a node s as the source and weighted edges

Initialize:
K1 = {(start/acceptstate)}, K0 = ∅
Set distance(s) := 0 and predecessor(s) := null
For all v ∈ V \{s} set distance(v) :=∞ and predecessor(v) := null

i = 1
while True do

if distance(s) < 0 then
return ’Negative cycle detected!’

if K0 = ∅ and K1 = ∅ then
return

while Ki 6= ∅ do
u = pop(Ki)
for every edge (u, v) in δ+(u) do

if distance(u) + weight((u, v)) < distance(v) then

distance(v) := distance(u) + weight((u, v))
predecessor(v) := u
push(v,Kj)

j = i
i = i+ 1 mod 2

Algorithm 2: Modified Bellman-Ford

The last instance that changes to the original Bellman-Ford algorithm is to check if both
K1 and K2 are empty before an execution of the main loop. If both are empty, no element was
added to the current appropriate set Ki in the last loop run, which means that not a single
node potential has changed. This is the case when the Bellman-Ford algorithm is finished,
and thus there can be an early break.

5 Arithmetic in Z[τ]

5.1 Reducing to elements in Dw
Plenty depends on the reduction of elements in Z[τ] modulo τw to an element in Dw. One
way to do this is based on the division of an element in Z[τ] by τk.

Proposition 5.1. Let α ∈ Z[τ] and k ∈ N. Then

α

τk
=

1
3k
ατ̄k

24

Proof. This is trivial due to the fact that

α

τk
=

α

τk
τ̄k

τ̄k
=

ατ̄k

(τ̄ τ︸︷︷︸
=3

)k
=

1
3k
ατ̄k .

For an element α ∈ Z[τ], an element η ∈ Dw with α ≡ η (mod τw) can be determined by
dividing α − ηi by τw for every ηi ∈ Dw. If z = (α − ηi)/τw is an element a + bτ with both
a and b in Z, z is an element in Z[τ] and thus α ≡ ηi (mod τw) holds. The drawback of this
method is its worst case running time: To find an appropriate ηi, it can happen that every
element in Dw has to be checked.
However, there is a more efficient way in reducing, deduced from following theorem:

Theorem 5.1. Let a + bτ be an element of Z[τ], τ - (a + bτ), with balanced ternary repre-
sentation

a+ bτ =
n∑
j=0

aj3j +

(
m∑
i=0

bi3i
)
τ, a0 6= 0, aj , bi ∈ {−1, 0, 1} and n,m ∈ N.

Then

a+ bτ ≡ c+ dτ (mod τw)⇐⇒ ai = ci ∀i ∈ {0, 1, . . .
⌈w

2

⌉
− 1},

bj = dj ∀j ∈ {0, 1, . . .
⌊w

2

⌋
− 1},

where ci, dj are digits from the balanced ternary representation of c+ dτ ∈ Dw.

To make a proof, the following lemma is needed:

Lemma 5.1. Let a+ bτ ∈ Z[τ] with a, b ∈ Z[τ] and w ≥ 1. Then

τw | (a+ bτ) ⇐⇒ 3dw/2e | a and 3bw/2c | b.

Proof. The proof can be made by induction. For w = 1, the lemma is the same as Proposition
2.1. Further it can be shown that a ∈ Z is divisible by 3 iff a is divisible by τ2. This is due
to the fact that 3 = τ2ζ. Now assume that the lemma holds for n ∈ N. Then

τn+1 | (a+ bτ)⇐⇒ ∃ã+ b̃τ ∈ Z[τ] with a+ bτ = (ã+ b̃τ)τn−1τ2

⇐⇒ ∃a′ + b′τ ∈ Z[τ] with a+ bτ =
(

3d(n−1)/2ea′ + 3b(n−1)/2cb′τ
)
τ2

and

a+ bτ =
(

3d(n−1)/2ea′ + 3b(n−1)/2cb′τ
)
τ2 =

= −3d(n+1)/2e(a′ + 3[2-n]µb′) + 3b(n+1)/2c(3[2|n]µa′ + 2b′)τ

where [expr] denotes the Iversonian notation, cf. Graham, Knuth and Patashnik [4].

Proof of Theorem 5.1.

25

“=⇒” Because c + dτ ∈ Dw, c + dτ is a representative of minimum norm of its residue class
modulo τw. So a+ bτ can be written as

a+ bτ = c+ dτ + eτw for an element e ∈ Z[τ].

With the balanced ternary representation of c+ dτ ,

c+ dτ =
u∑
j=0

cj3j +

(
v∑
i=0

di3i
)
τ, cj , di ∈ {−1, 0, 1} and u, v ∈ N,

it follows that

a+ bτ =
dw/2e−1∑
j=0

aj3j +

bw/2c−1∑
i=0

bi3i

 τ + ẽτw = c+ dτ + eτw =

=
dw/2e−1∑
j=0

cj3j +

bw/2c−1∑
i=0

di3i

 τ + fτw + eτw for ẽ, f ∈ Z[τ]

Because of the lemma above, there is a balanced ternary representation for ẽτw and
(f + e)τw:

ẽτw =
E1∑

i=dw/2e
ẽi,13i +

 E2∑
i=bw/2c

ẽi,23i

 τ for E1, E2 ∈ N

(f + e)τw =
F1∑

i=dw/2e
f̃i,13i +

 F2∑
i=bw/2c

f̃i,23i

 τ for F1, F2 ∈ N

We obtain the implication by comparing the coefficients of the balanced ternary repre-
sentations of

dw/2e−1∑
j=0

aj3j +
E1∑

i=dw/2e
ẽi,13i =

dw/2e−1∑
j=0

cj3j +
F1∑

i=dw/2e
f̃i,13i

and
bw/2c−1∑
i=0

bi3i +
E2∑

i=bw/2c
ẽi,23i =

bw/2c−1∑
i=0

di3i +
F2∑

i=bw/2c
f̃i,23i.

“⇐=”

a+ bτ =
dw/2e−1∑
j=0

aj3j +

bw/2c−1∑
i=0

bi3i

 τ +
n∑

j=dw/2e
aj3j +

 m∑
i=bw/2c

bi3i

 τ ≡

≡
dw/2e−1∑
j=0

aj3j +

bw/2c−1∑
i=0

bi3i

 τ =
dw/2e−1∑
j=0

cj3j +

bw/2c−1∑
i=0

di3i

 τ ≡

≡ c+ dτ (mod τw)

26

Remark. Knuth [6] wrote about balanced ternary integer representations: Perhaps the pret-
tiest number system of all is the balanced ternary notation, which consists of radix-3 repre-
sentation using −1, 0, and +1 as “trits” (ternary digits) instead of 0, 1, and 2.

So there is also the way of reducing an element in Z[τ] to one in Dw by computing the
balanced ternary digit expansions and comparing them. The following corollary states that
there is still an easier way:

Corollary 5.1. Let z ∈ Z[τ] with z = a+ bτ and a, b are rational integers. Then

z ≡ η mod τw with η ∈ Dw ⇐⇒ η = c+ dτ and a ≡ c mod 3dw/2e

b ≡ d mod 3bw/2c

Proof. This follows directly from the theorem above. The first few digits of a balanced ternary
expansion have to be the same, and thus the numbers reduced by 3 raised to a certain power,
which is in this case either

⌈
w
2

⌉
or
⌊
w
2

⌋
.

From the corollary above a possible way in evaluating z modulo τw is given. A dictionary
D̄w can be computed with

D̄w =
{

(c̃+ d̃τ, c+ dτ) ∈ Z[τ]2 : (c+ bτ) ∈ Dw with c ≡ c̃ (mod 3dw/2e)

and d ≡ d̃ (mod 3bw/2c)
}
,

where for every element c+ dτ ∈ Dw exactly one pair (c̃+ d̃τ, c+ dτ) with 0 < c̃ < 3dw/2e and
0 < d̃ < 3bw/2c is stored. An element z = a+ bτ can be reduced modulo τw by computing

a ≡ c̃ mod 3dw/2e

b ≡ d̃ mod 3bw/2c,

and finding the element (c̃+ d̃τ, c+ dτ) in D̄w. Then

a+ bτ ≡ c+ dτ (mod τw) with c+ dτ ∈ Dw.

5.2 Needful Operations

When computing the set Dw, it is crucial to make evaluations of the form ζz, where z is
an element in Z[τ]. Of course this can be done without great effort because both ζ and z
are complex numbers. With the following proposition, there is a way of making this kind of
multiplication and staying with elements a+ bτ , where both a and b are integers.

Proposition 5.2. Let z = a+ bτ be in Z[τ]. Then z̃ = zζk is

z̃ = a+ bτ for m = 0 z̃ = 2a+ 3µb+ (−µa− b)τ for m = 1
z̃ = a+ 3µb+ (−µa− 2b)τ for m = 2 z̃ = −a− bτ for m = 3
z̃ = −2a− 3µb+ (µa+ b)τ for m = 4 z̃ = −a− 3µb+ (µa+ 2b)τ for m = 5

for k ∈ N and k ≡ m mod 6.

27

Proof. It is clear that ζk = ζk (mod 6) because ζ is a sixth root of unity. Because ζ = 2− µτ ,

(a+ bτ)(2− µτ) = 2a+ 2τb− µτa− µτ2b

and with τ2 = 3µτ − 3 the result follows for m = 1. The other results can be computed in
the same way by simply multiplying (2− µτ).

Another computation that has to be executed more than once is the reduction from an
element z = αw−1τ

w−1 +αw−2τ
w−2 + . . .+α1τ +α0 to the shortest possible form z = a+ bτ .

This has to be done for both efficiency reasons and for the possibility of reducing z modulo
τw. A way in doing this is to go via recursions. For this purpose, the following well-known
theorem, see for example [11], can be used:

Theorem 5.2. Let (an)n∈N be a recursion with

an =
d∑
j=1

αjan−j +
k∑
j=1

pj(n)βnj , n ≥ j, n ∈ N,

where d ∈ N, αj ∈ R, j = 1, 2, . . . , d, αd 6= 0, pj(n) are polynomials of degree dj, k ∈ N0 and
βj ∈ R. Moreover let λ1, λ2, . . . , λj be the distinct roots of the polynomial

xd −
d∑
j=1

αjx
d−j ,

and let µ(λj) be the multiplicity of a root λj.
Then there are r polynomials q1(n), . . . , qr(n), where deg(qj) ≤ µ(λj) − 1 and polynomials
R1(n), . . . , Rk(n) where deg(Rj) ≤ dj, such that

an =
r∑
j=1

qj(n)λnj +
k∑
j=1

nµ(βj)βnj Rj(n) .

We obtain the following theorem:

Theorem 5.3. Let z = αw−1τ
w−1 + αw−2τ

w−2 + . . . + α1τ + α0 be in Z[τ], αj ∈ Z, and let
µ = 1. Define

f(n) :=
1

3· 2n+1

(
2i
√

3((3− i
√

3)n − (3 + i
√

3)n)αw−2 + 3
(

((1 + i
√

3)(3− i
√

3)n−

(1− i
√

3)(3 + i
√

3)n)αw−1 + 2
n−1∑
j=0

[
− 1

2j+1
3−

3j
2

(
(3− i

√
3)n(
√

3− 3i)(3 + i
√

3)j

+ (3 + i
√

3)n(
√

3 + 3i)(3− i
√

3)j
)
αw−3−j

]))
.

Then a = f(w − 2), b = −3f(w − 3) + α0, a and b are both integers and z = a+ bτ .

28

Proof. We know that τ2 = 3τ − 3, which implies that τm = 3τm−1 − 3τm−2 for any m ∈ N
which is greater or equal 2. Thus z can be written as

z = αw−1(3τw−2 − 3τw−3) + αw−2τ
w−2 + . . .+ α1τ + α0 =

= (3αw−1 + αw−2)τw−2 + (−3αw−1 + αw−3)τw−3 + αw−4τ
w−4 + . . .+ α1τ + α0 .

Now let f(n) be the coefficient of the term with τw−1−n for z =
w−1−n∑
j=1

α̃jτ
j . Then, as we can

see above, f(n) is given by the recursion

f(0) = αw−1

f(1) = 3αw−1 + αw−2

f(n) = 3f(n− 1)− 3f(n− 2) + αw−3−n ∀n ≥ 2.

The theorem follows directly with the recursive representation of f(n) and the general theorem
about recursions.

Remark. Theorem 5.3 assumes that µ has to be one. This is because the formula in this
theorem gets much more complicated with µ as a variable. With µ = −1, a very similar result
can be obtained in the same way as above.
However, the theorem above seems to be useful in theory at most. For most practical purposes,
the formulas for a + bτ has the disadvantages in both being too long and numerical risky.
Because of this, there is always the opportunity in precomputing formulas for transforming
z = αkτ

k + αk−1τ
k−1 + . . . + α1τ + α0 in a shorter form for several n ∈ N simply with the

recursion and not the formula of theorem 5.3.
Another way in transforming z to a shorter form is to evaluate τk = c + dτ for all k ∈
{2, 3, . . . , w − 1}. Both approaches are demonstrated in the following example:

Example 5.1. When building the transducer for w = 5 with µ = 1, the only z ∈ Z[τ] that
appear have the form

z = α4τ
4 + α3τ

3 + α2τ
2 + α1τ

1 + α0,

where αj ∈ Dw for j ∈ {1, 2, 3, 4} and α0 ∈ Dw\{0}. So the formulas that have to be
precomputed are

z = α4τ
4 + . . .+ α0 = (α0 − 3α2 − 9α3 − 18α4) + (α1 + 3α2 + 6α3 + 9α4)τ

z = α3τ
3 + . . .+ α0 = (α0 − 3α2 − 9α3) + (α1 + 3α2 + 6α3)τ

z = α2τ
2 + α1τ + α0 = (α0 − 3α2) + (α1 + 3α2)τ

Next we compute τk for k ∈ {2, 3, 4}:

τ2 = −3 + 3τ τ3 = −9 + 6τ τ4 = −18 + 9τ

This leads to the same formulas for z as above.

29

6 Results

Here some numerical results from evaluations that have been made are listed. First of all the
numbers of digits for digit sets Dw:

w 2 3 4 5 6 7
|Dw| 7 19 55 163 487 1459

Table 1: Size of digit set Dw

Here we can see that the formula

|Dw| = 6· 3w−2 + 1

holds.
The next table shows the size of each level of the transducer T , and the number of states of
the whole transducer. Here we can observe that the number of states for a specific level rises
by a factor of ≈ 3 for growing w (except w = 2). The number of states for Tw, which denotes
the transducer for a certain w, seems to be

Tw ≈ 10Tw−1 .

Level start ∆ 0 1 2 3 4 5
∑

w = 2 1 6 12 - - - - - 19
w = 3 1 60 102 282 - - - - 445
w = 4 1 150 282 792 2280 - - - 3505
w = 5 1 492 942 2766 8172 24330 - - 367043
w = 6 1 1428 2784 8190 24258 72300 215976 - 324937
w = 7 1 4404 8658 25794 76956 230340 689700 2067540 3103393

Table 2: Number of states of transducer T

Every node of G(T) has |Dw| outgoing edges, which leads to

|E(T7)| = 3103393· 1459 = 4, 528· 109.

The transducer T8 has not been built yet because of storage reasons. If the factor of the
number of states from Tw to Tw+1 is approximative 10, we can make a guess for the number
of edges for T8, because we know that |D8| = 4375:

|E(T8)| ≈ 31000000· 4375 = 1, 356· 1011.

The transducer and the relating graph G(T) were built for w ∈ {2, 3, 4, 5, 6, 7}. There are
no non-negative paths from the start- to the end states in these graphs, which proves the
following theorem:

Theorem 6.1. The D-w-NAF is optimal for w ∈ {2, 3, 4, 5, 6, 7}.

30

References

[1] Roberto M. Avanzi, Clemens Heuberger, and Helmut Prodinger. Arithmetic of Supersin-
gular Koblitz Curves in Characteristic Three. Technical Report 2010-8, Graz University
of Technology, 2010. http://www.math.tugraz.at/fosp/pdfs/tugraz_0166.pdf.

[2] Ian F. Blake, V. Kumar Murty, and Guangwu Xu. Efficient algorithms for Koblitz curves
over fields of characteristic three. Discrete Algorithms 3, 1294:113–124, 2005.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 3rd edition, 2009.

[4] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics.
Addison-Wesley, Reading, MA, 1989.

[5] C. Heuberger. Redundant τ -Adic Expansions II: Non-Optimality and Chaotic Behaviour.
Mathematics in Computer Science, 3:141–157, 2010.

[6] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley
Longman Publishing Co., third edition, 1997.

[7] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209,
1987.

[8] Neal Koblitz. An elliptic curve implementation of the finite field digital signature algo-
rithm. Lecture Notes in Computer Science, 1462:327–337, 1998.

[9] Victor S. Miller. Use of Elliptic Curves in Cryptography. Lecture Notes in Computer
Science, 218:417–426, 1985.

[10] B. Phillips and N. Burgess. Minimal weight digit set conversions. IEEE Trans. Comput.,
53:666–677, 2004.

[11] Keneth H. Rosen. Discrete Mathematics and its Applications. McGraw-Hill, fourth
edition, 1999. Chinese Edition.

[12] J.A Solinas. An improved algorithm for arithmetic on a family of elliptic curves. Advances
in Cryptology - CRYPTO ’97, 1294:357–371, 1997.

[13] J.A Solinas. Efficient arithmetic on Koblitz curves. Des. Codes Cryptography, 19:195–249,
2000.

31

