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LIPSCHITZ CLASS, NARROW CLASS, AND COUNTING LATTICE
POINTS

MARTIN WIDMER

Abstract. A well known principle says that the number of lattice points in a

bounded subsets S of Euclidean space is about the ratio of the volume and the lattice
determinant, subject to some relatively mild conditions on S. In the literature one

finds two different types of such conditions; one asserts the Lipschitz parameteriz-

ability of the boundary ∂S, and the other one is based on intersection properties of
lines with S and its projections to linear subspaces. We compare these conditions

and address a question, which we answer in some special cases. Then we give some

simple upper bounds on the number of lattice points in a convex set, and finally, we
apply these results to obtain estimates for the number of rational points of bounded

height on certain projective varieties.

1. Introduction

The counting of lattice points in a given bounded subset of the Euclidean space Rn is

an important issue in many parts of number theory and other branches of mathematics.

If the set, say S, behaves nicely then the ratio VolS/ det Λ of the volume and the lattice

determinant is a good estimate for the cardinality |S ∩Λ|. In the literature there are two

different approaches to formally define the term “nicely”. The older one is associated

with the name of Lipschitz. Roughly speaking it says that the boundary ∂S of S can

be parameterized by a Lipschitz map with a reasonably small Lipschitz constant. The

second approach goes back to Davenport and was further developed by Schmidt. Here

one has to control the diameter of S and the number of connected components of the

intersection of each line with S and with all of its projections on linear subspaces. Both

conditions yield similar counting results and it is therefore natural to ask how they are

related. Masser and Vaaler [9] pointed out that the Lipschitz condition certainly does

not imply the Davenport condition but that the other implication possibly holds in some

form. One aim of this note is to render this “question” precise and to answer it in the

case where S is convex or when n = 2 and some extra conditions hold. The proof of the

first assertion rests on John’s Theorem for convex sets and simple planimetrical argu-

ments, the proof of the second assertion relies on results from integral geometry such as

Poincaré’s formula.
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Masser Vaaler [9], and the author [15], [13] have introduced Lipschitz heights and

adelic Lipschitz heights and proved general counting results regarding these. This led to

asymptotic estimates for the number of: algebraic points of fixed degree and bounded

Weil height in projective space [9], [13] and on linear varieties [14], algebraic numbers of

bounded Weil height satisfying certain subfield conditions [16], and connected algebraic

subgroups of the torus of bounded degree [9]. It is likely that further applications will

follow. But to apply the general counting results from [9], [15], [13] one needs to ver-

ify that certain balls, associated to the distance functions of the heights, have Lipschitz

parameterizable boundaries. In many applications these balls are convex. Therefore it

is convenient to have a general result, such as Theorem 2.3, which proves the required

assertion of Lipschitz parameterizability in all of these cases.

Moreover, we prove an estimate for |S ∩ Λ| when S is convex. Estimates of this

type are well known and follow immediately from a result of Blichfeldt, but we will give

another proof, again relying on John’s Theorem. Finally, we illustrate the use of such

estimates by an example on counting rational points on certain algebraic varieties.

2. Definitions and Results

Throughout this article n denotes an integer with n ≥ 2, M and s will always stand

for a positive integer while L will denote a non-negative real number. By a lattice in Rn

we mean the Z-span of n linearly independent vectors v1, ..., vn in Rn. The determinant of

the lattice is then given by the modulus of the determinant of the matrix whose columns

are v1, ..., vn. For a vector x in Rn we write |x| for the Euclidean length of x. We will

use vector and point synonymously. For a point P in Rn and a real R > 0 we write

BP (R) for the closed Euclidean ball with radius R centered at P . The successive minima

λ1, ..., λn of a lattice Λ in Rn are understood in Minkowski’s sense with respect to the

unit ball B0(1), i.e. for i = 1, ..., n

λi = inf{λ;B0(λ) ∩ Λ contains i linearly independent vectors}.

The following definition has its origin in a paper of Davenport [4], in which a counting

theorem for lattice points of Zn was proved. Later Schmidt [12] p.347 adjusted the defi-

nition to handle more general lattices, and finally Gao [5] p.14 slightly refined Schmidt’s

definition, replacing “compact” by “bounded and measurable”. The definition in [5] is

as follows.

Definition 1. A subset S of Rn is called of narrow class s if

(a) S is bounded, measurable and intersects every line in at most s intervals or single
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points.

(b) The same is true for any projection of S on any linear subspace of Rn.

Note that a set of narrow class 1 is simply a bounded convex set, and that a connected

subset of R2 is of narrow class s if it satisfies condition (a). The Lipschitz approach

requires the following condition.

Definition 2. We say that a set S is in Lip(n,M,L) (or of Lipschitz class (n,M,L))

if S is a subset of Rn, and if there are M maps φ1, ..., φM : [0, 1]n−1 −→ Rn satisfying a

Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]n−1, i = 1, ...,M,(2.1)

such that S is covered by the images of the maps φi.

We call L a Lipschitz constant for the maps φi. The following theorem was proved by

Schmidt; first in a simpler version ([12] Lemma 1) and then (see [5] p.15.) in the stated

form.

Theorem 2.1 (Schmidt). Let Λ be a lattice in Rn with successive minima λ1, ..., λn. Let

S be a set in Rn of narrow class s and assume S ⊆ B0(R). Then we have

||S ∩ Λ| − VolS
det Λ

| ≤ c1(n, s) max
0≤i<n

Ri

λ1 · · ·λi
.

For i = 0 the expression in the maximum is to be understood as 1. Moreover, one can

choose c1(n, s) = (s+ 2√
3
3nn)n.

Unfortunately, the author is not aware of any published reference for Theorem 2.1.

Therefore we will not make use of it. However, an analogous result was obtained in [15]

(Theorem 5.4) when the boundary of the set lies in Lip(n,M,L).

Theorem 2.2. Let Λ be a lattice in Rn with successive minima λ1, ..., λn. Let S be

a bounded set in Rn such that the boundary ∂S of S is in Lip(n,M,L). Then S is

measurable and moreover,

||S ∩ Λ| − VolS
det Λ

| ≤ c2(n)M max
0≤i<n

Li

λ1 · · ·λi
.

For i = 0 the expression in the maximum is to be understood as 1. Furthermore, one can

choose c2(n) = n3n2/2.

It is easy to see that there are sets, which are not of narrow class s for any s, but which

have a boundary of Lipschitz class (n,M,L); e.g. take the square [0, 1/π]× [0, 1/π] in R2

where the edge on the x-axis is replaced by the curve (x, x3 sin(1/x)) for 0 < x ≤ 1/π.

On the other hand it has been pointed out in [9] p.438 that narrow class possibly implies

some type of Lipschitz class. We propose the following question.
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Question 1. Let S be a set in Rn of narrow class s, and assume S lies in a ball of radius

R. Does there exist a natural number M = M(n, s) and a real number C = C(n, s) such

that ∂S is in Lip(n,M,CR)?

Now suppose s = 1, which is equivalent to S is convex and bounded. Then it is

rather easy to see that ∂S is of Lipschitz class (n, 1, L) for some value of L, but it is not

so obvious that one can choose L = CR with a constant C = C(n). However, we have

the following affirmative answer on Question 1.

Theorem 2.3. If S is a set in Rn of narrow class 1, which lies in a ball of radius R

then ∂S is in Lip(n, 1, 8n5/2R).

If S ⊆ BP (R) is of narrow class s then one can try to find convex sets K1, ...,KM

such that ∂S is covered by the union of the boundaries ∂Ki. In this case one can apply

Theorem 2.3 with the convex sets BP (R) ∩Ki to deduce ∂S lies in Lip(n,M, 8n5/2R).

Unfortunately M can not be bounded in terms of s and n only, e.g. consider a ball with

many “equidistributed” little spikes on its surface.

For n = 2 we can apply Poincaré’s formula from integral geometry to answer a

variation of Question 1. In this note a curve means a continuous map ϕ : [0, 1] −→ R2.

We say the curve ϕ is simple if ϕ is injective on (0, 1), closed if ϕ(0) = ϕ(1). Finally,

we say the curve ϕ = (ϕ1, ϕ2) is piecewise smooth if there exist finitely many reals

0 = t0 < · · · < tN = 1 such that both components of ϕ have a continuous derivative on

(ti, ti+1) and right-sided (left-sided) derivatives in ti (ti+1) exist for all 0 ≤ i < N . We

call the image ϕ([0, 1]) the path of the curve ϕ. Let M be the group of motions φ in the

plane. Any φ ∈M has the form

φ(x, y) = (x cos θ − y sin θ + a, x sin θ + y cos θ + b),

where −∞ < a < ∞, −∞ < b < ∞, 0 ≤ θ ≤ 2π. So each motion is determined

by an element (a, b, θ) of 3-space. This space together with the equivalence relation

(a, b, θ) ∼ (a, b, θ + 2πk) (k ∈ Z) is the space of the group of motions, also denoted by

M. The exterior product

dK = da ∧ db ∧ dθ

is the unique (up to a constant factor) left and right invariant 3-form on M and is called

the kinematic density (see [11], p.85 for a reference).
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Definition 3. A subset S of R2 is called of tight class s if the following two conditions

are fulfilled.

(I) The boundary ∂S of S is the path of a simple, closed, piecewise smooth

curve.

(II) Let Γ0 be a line segment. Then the subset M0 of M defined by

|∂S ∩ φ(Γ0)| > 2s has measure zero, i.e.
∫

M0

dK = 0.

Condition (I) implies that a set S of tight class s is connected, and that ∂S has

measure zero. This in turn implies that S is measurable, but unlike a set of narrow class

s it may be unbounded. Now suppose S is of narrow class s. A “typical” line l intersects

S in j ≤ s intervals, whose endpoints are the only boundary points of S on l. Of course

it can happen that ∂S ∩ l contains more than 2s points, but it seems likely that the set

Ml of motions φ with |∂S ∩φ(l)| > 2s has measure zero. We can now state our approach

to Question 1 in dimension two.

Theorem 2.4. Let S in R2 be a set of tight class s, and assume S lies in a ball of radius

R. Then ∂S is in Lip(2, 1, 2πsR).

In fact we will prove that the arc length of ∂S is bounded by 2πsR. This is best

possible, as we can see by the following examples: for s = 1 we take S as the circle

B0(R), for s even we take S as a “worm” coiled s− 1 times around the slightly smaller

circle B0(R− ε), and for s > 1 odd the latter circle should be considered the head of the

worm and its tail is coiled s − 2 times around the head. Note also that the inequality

|∂S| ≤ 2πsR generalizes (at least for sets of tight class) the well known fact that the arc

length of the boundary of a convex set in BP (R) ⊆ R2 cannot exceed |∂BP (R)|.

Next we aim at giving some upper bounds on the number of lattice points in a

subset S of Euclidean space. Let us assume for a moment that S is a bounded convex

set in Rn, Λ is a lattice in Rn, and S ∩ Λ is not contained in an affine subspace of

dimension n − 1. For n = 2 Pick’s Theorem gives |S ∩ Λ| ≤ 2VolS/ det Λ + 2. From

an article of Henk and Wills [6] the author has learnt that Blichfeldt [2] generalized

this to arbitrary dimensions n, i.e. |S ∩ Λ| ≤ n!VolS/ det Λ + n. Unfortunately the

author was unable to get a copy of Blichfeldt’s article [2]. Henk and Wills [6] have

shown |S ∩Λ| ≤ VolS/ det Λ + cn(n− 1)!F (S)/ det Λn−1, where c is a universal constant,

F (S) denotes the surface area, and det Λn−1 is the minimal determinant of an (n − 1)-

dimensional sublattice of Λ. For our applications the concrete dependence on n is not

important. But we have to sum these estimates over an infinite set of lattices, and thus

the “+n” and even “+F (S)/ det Λn−1” may cause problems. However, in dimension 2 a
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simple triangulation argument shows that |S ∩ Λ| ≤ 6VolS/ detS. A higher dimensional

version follows easily from Blichfeldt’s result; S∩Λ is not contained in an affine subspace

of dimension n− 1 means we can find w, v1, ..., vn in S ∩ Λ, such that v1 − w, ..., vn − w
are linearly independent. Now the convex hull of w, v1, ..., vn lies in S and has volume at

least det Λ/n!. Thus |S∩Λ| ≤ (n+1)!VolS/ det Λ. We will give another proof, relying on

John’s Theorem, but first we introduce some more notation. For a nonempty subset H of

Rn we define AH to be the minimal affine subspace containing H. Note that dimAH = 0

if and only if |H| = 1. For 1 ≤ j ≤ n let us write Volj for the j-dimensional Lebesque

measure. If S is a bounded convex set in Rn then Volj(S ∩ A) is well defined for any

affine subspace A of dimension j.

Proposition 2.1. Let Λ be a lattice in Rn with successive minima λ1, ..., λn. Let S be

a bounded convex set in Rn. Suppose |S ∩ Λ| > 1 and set l = dimAS∩Λ. Then we have

|S ∩ Λ| ≤ c3(l)
Voll(S ∩ AS∩Λ)

λ1 · · ·λl
.

One can choose c3(l) = 8ll3l(l/2+1).

Now suppose |S ∩ Λ| is not contained in an (n − 1)-dimensional affine subspace.

This means dimAS∩Λ = n and thus we deduce, using Minkowski’s second Theorem, the

following corollary.

Corollary 2.1. Let Λ be a lattice in Rn and let S be a bounded convex set in Rn. Suppose

S ∩ Λ is not contained in an affine subspace of dimension n− 1. Then we have

|S ∩ Λ| ≤ c4(n)
VolS
det Λ

.

One can choose c4(n) = πn/2n!
2nΓ(n/2+1)c3(n).

Now let d be a fixed positive integer. We apply the latter result to deduce an estimate

for the number of rational points of bounded height on the algebraic variety Vd ⊆ P2×P2

defined by

x0y
d
0 + x1y

d
1 + x2y

d
2 = 0.(2.2)

Let Hn be the multiplicative Weil height on Pn(Q); so if P = (x0 : ... : xn) with

coprime integers x0, ..., xn then Hn(P ) = max{|x0|, ..., |xn|}. We define the height H on

P2(Q) × P2(Q) via the Segre embedding σ : P2 × P2 → P8 as H(P,Q) = H8(σ(P,Q)).

Then we have H(P,Q) = H2(P )H2(Q). Let N(Vd, t) be the counting function

N(Vd, t) = |{(P,Q) ∈ Vd(Q);H(P,Q) ≤ t}|.
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Corollary 2.2. For t ≥ 1 and any ε > 0 we have

t2 � N(Vd, t)�ε


t9/4 : if d = 1,
t2+ε : if d = 2,
t2 : if d ≥ 3.

(2.3)

The implicit constant in “�ε” depends on ε if d = 2 and only on d if d 6= 2.

Of course the lower bound is trivial; just fix e.g. (y0 : y1 : y2) = (1 : 0 : 0) and

count the points (0 : x1 : x2). The upper bound � t9/4 can easily be shown using only

Corollary 2.1. But for d > 1 we need also a general result of Pila.

3. Proof of Theorem 2.3

The proof of Theorem 2.3 rests on John’s Theorem and the following lemma.

Lemma 3.1. Let S in Rn be a convex set, P a point in S and r,R positive reals such

that

BP (r) ⊆ S ⊆ BP (R).

Then the boundary ∂S is in Lip(n, 1, 8
√
n− 1R2/r).

Proof. Let P = (ζ1, ..., ζn) and let

ϕ : [0, 2π]× [0, π]n−2 −→ ∂BP (r)

be the standard parameterization of ∂BP (r) via polar coordinates such that

x1 =r cos θ1 cos θ2 cos θ3 · · · cos θn−1 + ζ1

x2 = r sin θ1 cos θ2 cos θ3 · · · cos θn−1 + ζ2

x3 = r sin θ2 cos θ3 · · · cos θn−1 + ζ3

...

xn = r sin θn−1 + ζn.

Of course for n = 2 this is to be understood as a map ϕ : [0, 2π] −→ ∂BP (r). Let A,B

be different points in Rn then we denote by [A,B] the line segment between A and B

(A,B are included). Similarly (A,B) denotes the line segment without the points A,B.

We claim that intersecting the ray, starting in P and containing ϕ(θ), with ∂S, gives a

parameterization ϕ̃ of ∂S. It suffices to show that each such ray contains no more than

one boundary point of S. So assume such a ray contains two distinct boundary points,

say A and B, where A is closer to P . Now consider the union of all line segments (B,F )

starting in B and ending on any boundary point F of BP (r). Then each point of the line

segment (B,P ) lies in the interior of this union. Due to the convexity of S this union

of line segments is a subset of the topological closure of S, and since A lies in (B,P ) we

conclude that A lies in the interior of S, a contradiction. This argument will be used
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once more at the end of the proof.

The next step of the proof is to show that ϕ̃ is a Lipschitz parameterization with

Lipschitz constant (4/π)
√
n− 1R2/r, so that after normalizing properly to get a map as

in (2.1) one gets the Lipschitz constant 8
√
n− 1R2/r.

Let us write AB for the length of the line segment [A,B]. Let A,B,C be three

different points. Let β be the angle between the line segments [A,B] and [A,C], that is

the value in [0, π] such that cosβ = 〈B − A,C − A〉/(AB · AC), where 〈·, ·〉 denotes the

Euclidean scalar product. If the points do not lie on one line then we may consider the

triangle 4(A,B,C) with vertices A,B,C. Let ϕ̃(θ1) = A, ϕ̃(θ2) = B be two distinct

points on the boundary of S. We may assume

0 < |θ2 − θ1| <
π

2
√
n− 1

,

for otherwise we get automatically

AB ≤ 2R ≤ (4/π)
√
n− 1R|θ2 − θ1|.

Denote by α the angle between [P,A] and [P,B], and write | · |l1 for the l1-norm. Then

we have

α ≤ |θ2 − θ1|l1 ,

which is a simple consequence of the triangle inequality in the metric space Sn−1 (see

p.17 in [3]). Hence

α ≤
√
n− 1|θ2 − θ1|.(3.1)

If A,B, P lie on a common line then either α = π and so |θ2−θ1| ≥ π/
√
n− 1 or A = B;

both contradicting our assumptions. So the lines joining P,A and P,B span a plane, say

P. Write B for the interior of BP (r) and L for the line joining A and B. The line in

P perpendicular to L, which joins P , intersects L in a point denoted by C. The proof

splits into the following three cases:

(1) L does not meet B (C not in B).

(2) L meets B between A and B (C is in [A,B] and in B).

(3) The remaining case (A is in [B,C] or B is in [A,C], and C is in B).

We start with the first case. Now L does not meet B is equivalent to PC ≥ r. The

area of 4(P,A,B) is PC ·AB/2. It is clear that 4(P,A,B) does not exceed the area of
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a sector of BP (R) ∩ P with angle α, which is αR2/2. Thus

AB ≤ R2

r
α.

For the second case we have [A,B] contains C. Denote the angle between [P,C] and

[P,A] by α1, and the angle between [P,C] and [P,B] by α2, so that α = α1 + α2 and

0 ≤ α1, α2 ≤ α ≤ π/2. Hence

AC = PA sinα1 ≤ PAα1 ≤ Rα1,

and similar BC ≤ Rα2, leading to

AB ≤ Rα.

Since A,B lie on the boundary of S none of them can lie in B. Thus the remaining

case occurs if either A is in [B,C] or B lies in [A,C]. Since C is in B there is a positive

ε such that BC(ε) lies in B. But now we use the same argument as in the beginning of

the proof to show that due to the convexity either A or B lies in the interior of S, a

contradiction. Thus the remaining case is impossible.

Recalling (3.1) and R ≥ r proves that in all cases we have

|ϕ̃(θ1)− ϕ̃(θ2)| = AB ≤ (4/π)
√
n− 1

R2

r
|θ1 − θ2|.

Properly normalizing to get a map as in (2.1) gives an additional factor 2π and completes

the proof. �

We are now in position to prove Theorem 2.3.

Recall that a set of narrow class 1 is convex. Suppose the interior intS of S is empty.

Pick P0 in S; then the points of S−P0 cannot span Rn as a R-vector space, else S would

contain a small (nonempty) open parallelepiped. Hence S lies in a hyperplane, and so

∂S lies in a ball BP ′(R′) in Rn−1 for some R′ ≤ R. So it suffices to know that BP ′(R′)

lies in Lip(n, 1, 2R), which can be seen by parameterizing a (n − 1)-dimensional cube

containing BP ′(R′). From now on we may assume intS 6= ∅. Therefore we have a point

P1 in intS and a real number r > 0 such that BP1(r) lies in intS. On the other hand

there is a point P2 such that S is in BP2(R). The triangle inequality implies S lies in

BP1(2R). Applying Lemma 3.1 proves the existence of a Lipschitz parameterization of

the boundary. Unfortunately the Lipschitz constant L has a disallowed dependence on r,

and moreover, the exponent on R should be 1, not 2. We can overcome these problems

using John’s Theorem (see [7] or [1], p.242). It guarantees the existence of an ellipsoid

E, with center say P , such that

E ⊆ S ⊆ n(E − P ) + P.(3.2)
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After a translation by P and an orthogonal transformation we can assume that E is

defined by (x1/a1)2 + · · ·+ (xn/an)2 = 1 with certain real numbers 0 < a1 ≤ a2 ≤ · · · ≤
an. Moreover, S lies in a ball of radius R, and so E does. Hence

0 < a1 ≤ a2 ≤ · · · ≤ an ≤ R.(3.3)

Let Φ be the endomorphism which sends xi −→ xi/ai for 1 ≤ i ≤ n. Applying this map

to (3.2) yields

B0(1) ⊆ Φ(S) ⊆ B0(n).

Applying Lemma 3.1 with r = 1 and R = n yields a map ϕ̃ : [0, 1]n−1 −→ Rn with image

containing ∂(Φ(S)) such that

|ϕ̃(x2)− ϕ̃(x1)| ≤ 8n5/2|x2 − x1|.

Since Φ is linear and bijective the maps Φ and its inverse Φ−1 are continuous. So the

boundary of S is the image under Φ−1 of the boundary ∂Φ(S). Thus Φ−1(ϕ̃(·)) is a

parameterization of ∂S. Let us calculate a Lipschitz constant:

|Φ−1(ϕ̃(x2))− Φ−1(ϕ̃(x1))| = |Φ−1(ϕ̃(x2)− ϕ̃(x1))|

≤ sup
|z|=1

|Φ−1(z)||ϕ̃(x2)− ϕ̃(x1)|

= sup
|z|=1

(
n∑
i=1

(aizi)2

)1/2

|ϕ̃(x2)− ϕ̃(x1)|

≤ sup
|z|=1

an

(
n∑
i=1

z2
i

)1/2

|ϕ̃(x2)− ϕ̃(x1)|

= an|ϕ̃(x2)− ϕ̃(x1)|

≤ an8n5/2|x2 − x1|

≤ 8n5/2R|x2 − x1|.

This agrees with our claim and thereby completes the proof.

4. Proof of Theorem 2.4

Let Γ0,Γ1 be the paths of two simple, piecewise smooth curves of arc lengths |Γ0|, |Γ1|
(as the curves are simple the arc lengths depend only on the paths). Poincaré’s formula

tells us (see [11], p.111, eq. (7.11))∫
M

ndK = 4|Γ0||Γ1|,(4.1)

where M is the group of motions φ in the plane, n = n(φ) = |Γ1 ∩ φ(Γ0)| (possibly

infinite) is the intersection number of Γ1, and φ(Γ0) and dK is the kinematic density.

Maak [8] gave a generalization of formula (4.1), but Maak’s definition of the intersection

number n is different from ours, so that we prefer not to rely on his result. Now ∂S lies
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in a ball of radius R, say BP (R). Suppose Γ0 is a line segment. Let M1 = M1(Γ0) be

the subset of M defined by n(φ) = |∂S ∩ φ(Γ0)| ≤ 2s. Then condition (II) implies∫
M

ndK =
∫

M1

ndK.(4.2)

Moreover, n(φ) = 0 for any φ with φ(Γ0)∩BP (R) = ∅. The measure of the set of motions

φ with φ(Γ0) ∩BP (R) 6= ∅ is not hard to compute (see [11], p.90, (6.33)), and one finds∫
M

φ(Γ0)∩BP (R)6=∅

dK = 2π2R2 + 4πR|Γ0|.(4.3)

Now combining (4.1), (4.2) and (4.3) yields

4|Γ0||∂S| =
∫

M1
φ(Γ0)∩BP (R) 6=∅

ndK ≤ 2s
∫

M1
φ(Γ0)∩BP (R)6=∅

dK = 2s
∫

M
φ(Γ0)∩BP (R)6=∅

dK

= 2s(2π2R2 + 4πR|Γ0|).

Thus we have |∂S| ≤ 2πsR+π2R2s/|Γ0| for any length |Γ0|, and therefore |∂S| ≤ 2πsR.

It is well known that the path of a rectifiable curve can be parameterized by the arc

length. Let ψ be such a parameterization of ∂S, scaled from [0, |∂S|] to [0, 1], then we

have |ψ(t)− ψ(t′)| ≤ |∂S||t− t′|. This shows that ∂S lies in Lip(2, 1, 2πsR) and thereby

completes the proof.

5. Proof of Proposition 2.1

By definition AS∩Λ is the minimal affine subspace containing S ∩ Λ. For brevity let

us write A for AS∩Λ. Now we have A = span < v − w; v ∈ S ∩ Λ > +w for any w in A.

In particular we can assume w ∈ S ∩ Λ. Thus we can find a basis v1 − w, ..., vl − w of

W = span < v − w; v ∈ S ∩ Λ > with w, v1, ..., vl ∈ S ∩ Λ. Now clearly (S ∩ Λ) ⊆ A =

W + w. Hence we conclude

|S ∩ Λ| = |(S ∩ (W + w)) ∩ (Λ ∩ (W + w))| = |((S − w) ∩W ) ∩ (Λ ∩W )|

= |S′ ∩ Λ′|,

where S′ = (S − w) ∩W and Λ′ = Λ ∩W . Of course S′ is convex and lies in some Rl.

First suppose l = 1. Then, as |S ∩ Λ| > 1, we have Vol1S′ ≥ λ1(Λ′) ≥ λ1 and hence

|S ∩ Λ| ≤ (Vol1S′)/λ1 + 1 ≤ c3(1)(Vol1S′)/λ1.

From now on we assume l > 1. Suppose S′ (as a subset of Rl) has empty interior. Then

S′ lies in an affine subspace of dimension l − 1 and so (S ∩ Λ) ⊆ S′ + w does. But this

contradicts the minimality of A. Therefore we can apply John’s Theorem, i.e. we can

find an ellipsoid E, with center say P ∈ S′, such that

E ⊆ S′ ⊆ l(E − P ) + P.

There exists a translation tP by P and an orthogonal map ψ such that ψ◦tP (E) is defined

by (x1/a1)2 + · · ·+ (xl/al)2 = 1 for certain positive reals a1, ..., al. Put R = (a1 · · · al)1/l.
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Moreover, there exists a linear endomorphism Φ with det Φ = 1 that sends E − P to

B0(R). Hence we have Φ(E) = BP ′(R), with P ′ = Φ(P ), and therefore

BP ′(R) ⊆ Φ(S′) ⊆ BP ′(lR).(5.1)

Note that 0 = w−w ∈ S′. Using (5.1) and the triangle inequality yields Φ(S′) ⊆ B0(2lR).

The linearly independent lattice points v1 − w, ..., vl − w all lie in S′ and thus

λ′l ≤ max{|Φ(v1 − w)|, ..., |Φ(vl − w)|} ≤ 2lR

for the successive minimum λ′l of the lattice Φ(Λ′). Applying Theorem 2.1 with Φ(S′),

Φ(Λ′) and using 2lR ≥ λ′l we conclude

|S′ ∩ Λ′| = |Φ(S′) ∩ Φ(Λ′)| ≤ |BP ′(lR) ∩ Φ(Λ′)| ≤ VolBP ′(lR)
det Φ(Λ′)

+ c1(l, 1)
(2lR)l−1

λ′1 · · ·λ′l−1

2lR
λ′l

.

However, due to the lack of a published reference, we will apply Theorem 2.3 instead.

From Lemma 3.1 we see that ∂BP ′(lR) lies in Lip(l, 1, 8
√
l − 1lR), which gives

|S′ ∩ Λ′| ≤ VolBP ′(lR)
det Φ(Λ′)

+ c2(l)
(8
√
l − 1lR)l

λ′1 · · ·λ′l
.

Next we observe

VolBP ′(R) ≤ VolΦ(S′) ≤ VolBP ′(lR),

VolΦ(S′) = VolS′ = Voll(S ∩ A).

Writing c′2 = 1+c2(l)(4
√
l − 1)ll! and applying Minkowski’s second Theorem we conclude

|S′ ∩ Λ′| ≤ c′2
VolBP ′(lR)
det Φ(Λ′)

= c′2l
lVolBP ′(R)

det Λ′
≤ c′2ll

Voll(S ∩ A)
det Λ′

.

Finally, we use Minkowski’s second Theorem once more, together with λ1(Λ′) · · ·λl(Λ′) ≥
λ1 · · ·λl, and the result drops out, after noting that (2l)lc′2/VolB0(1) ≤ 8ll3l(l/2+1).

6. Proof of Corollary 2.2

For a vector y = (y0, y1, ..., yn−1) ∈ Zn we write Wy for the orthogonal complement

of yR in Rn. Put Λy = Wy ∩Zn and yd = (yd0 , y
d
1 , ..., y

d
n−1). If y is primitive (i.e. y 6= 0

and gcd(y0, y1, ..., yn−1) = 1) then Λy is a lattice of rank n − 1 with det Λy = |y|. Let

Λ∗y be the set of primitive vectors in Λy, and set |y|∞ = max{|y0|, |y1|, ..., |yn−1|}.

We fix a primitive vector y ∈ Z3 and we count all primitive vectors x satisfying (2.2)

and |x|∞ = H((x0 : x1 : x2)) ≤ t/H((y0 : y1 : y2)) = t/|y|∞. Then summing over all

primitive vectors y we see that

N(Vd, t) ≤
∑
y∈Z3

y primitive

|[− t

|y|∞
,

t

|y|∞
]3 ∩ Λ∗yd |.(6.1)
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Let us first estimate the number of (x,y) with x0x1x2 = 0. By symmetry we can assume

x2 = 0. Then the term in our sum above becomes

|[− t

|y|∞
,

t

|y|∞
]2 ∩ Λ∗(yd0 ,yd1 )|.(6.2)

We write (y0, y1) = m(y′0, y
′
1) = my′ with coprime y′0, y

′
1. Note that if y0 = y1 = 0 then

y2 = ±1 and so we have � t2 of these points (x,y). Thus we can assume my′ 6= 0. Now

Λ(yd0 ,y
d
1 ) = Λy′d is a 1-dimensional lattice with determinant |y′d|. This means that any

primitive vector (x0, x1) in Λy′d has length |y′d|, and moreover, there are only 2 primitive

vectors in each Λy′d . So (6.2) is either 0 or 2, and if it is 2 then:
√

2t/|y|∞ ≥ |(x0, x1)| =
|y′d| ≥ |y′d|∞. As |y|∞ ≥ m|y′|∞ we conclude |y′|∞ ≤ (

√
2t/m)1/(d+1). This shows that

the total number of points (x,y) with x0x1x2 = 0 and my′ 6= 0 is

≤ 3
[t]∑
m=1

∑
y=(my′0,my

′
1,y2)

|y2|≤t
|y′0|,|y

′
1|≤(

√
2t/m)1/(d+1)

|[− t

|y|∞
,

t

|y|∞
]2 ∩ Λ∗y′d | ≤ 6

[t]∑
m=1

∑
y=(my′0,my

′
1,y2)

|y2|≤t
|y′0|,|y

′
1|≤(

√
2t/m)1/(d+1)

1.

The latter is

�
[t]∑
m=1

t(t/m)2/(d+1) = t1+2/(d+1)

[t]∑
m=1

m−2/(d+1) �

{
t2 log(2t) : if d = 1,
t2 : if d > 1.

It remains to estimate the number of points (x,y) that satisfy x0x1x2 6= 0. We note

that for fixed x0, x1, x2 with x0x1x2 6= 0 the equation x0y
d
0 + x1y

d
1 + x2y

d
2 = 0 defines

an affine irreducible variety over R of dimension 2 and degree d. To see this it suffices

to show the irreducibility of f(x) = xd + yd − 1 in C[y][x]. But the latter follows from

Eisenstein’s criterion. Next we need an upper bound for the term in the sum of (6.1).

Now either [−t/|y|∞, t/|y|∞]3 ∩ Λ∗yd is not contained in a line, or all points lie on one

single line (passing the origin). In the former case we can apply Corollary 2.1 to deduce

the upper bound � t2|y|−(d+2), and in the latter we have at most 2 primitive vectors x.

Hence the number of points (x,y) that satisfy x0x1x2 6= 0 is

�
∑

y primitive
|y|∞≤t

t2

|y|d+2
+

∑
y primitive
|y|∞≤t

1∗(t,y)(6.3)

with

1∗(t,y) =

{
1 : if λ1(Λyd)|y|∞ ≤

√
3t,

0 : otherwise.

The simple calculation∑
y primitive
|y|∞≤t

t2

|y|d+2
≤

[t]∑
e=1

t2
|{y; |y|∞ = e}|

ed+2
� t2

[t]∑
e=1

e2

ed+2
= t2

[t]∑
e=1

e−d(6.4)

shows that the first sum in (6.3) is bounded from above by the right-hand side of (2.3).

To estimate the second sum we need an upper bound on the number of primitive vectors

y with λ1(Λyd)|y|∞ � t. We distinguish two cases. For brevity we write τ = τ(t) =
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t(3d
2−4d+2)/(5d−1), λ1 for λ1(Λyd) and λ2 for λ2(Λyd).

Case 1: λ2/λ1 ≤ τ .

Here we find

|y| � (det Λyd)1/d � (λ1λ2)1/d ≤ (λ1λ1τ)1/d = λ
2/d
1 τ1/d.

As we have λ1|y| � λ1|y|∞ � t we conclude |y| � t2/(d+2)τ1/(d+2). This means that

we have at most

� t6/(d+2)τ3/(d+2) = t6/(d+2)+3(3d2−4d+2)/((d+2)(5d−1)) = t9d/(5d−1)

possibilities for y in case 1, and this in turn proves Corollary 2.2 in case 1.

Case 2: λ2/λ1 > τ .

Here we have

t� λ1|y| � λ1(λ1λ2)1/d > λ1(λ2
1τ)1/d = λ

(d+2)/d
1 τ1/d,

and therefore λ1 � td/(d+2)τ−1/(d+2). Now let x = (x0, x1, x2) be a primitive vector in

Λyd with |x| = λ1 and x0x1x2 6= 0. Thus we have |x| � td/(d+2)τ−1/(d+2), and the height

bound gives |x||y| � t. Now for each fixed vector x as above we count the number of

primitive vectors y such that x is a minimal vector of Λyd and |x||y| � t. Then we

sum these upper bounds over all primitive vectors x with |x| � td/(d+2)τ−1/(d+2) and

x0x1x2 6= 0. So the number of vectors y is

�
∑

x primitive
x0x1x2 6=0

|x|�td/(d+2)τ−1/(d+2)

|{y primitive;x0y
d
0 + x1y

d
1 + x2y

d
2 = 0, |y| � t

|x|
}|.

The term in the sum above is certainly � t2/|x|2. Similar as in (6.4) this yields the

upper bound � t2+d/(d+2)τ−1/(d+2) for the number of vectors y, and this in turn proves

Corollary 2.2 for d = 1. However, for d > 1 we apply a general result of Pila (Theorem A

in [10]) to deduce the better bound�ε (t/|x|)1+1/d+ε for the term in the sum above (here

we used that for fixed x0, x1, x2 with x0x1x2 6= 0 the equation x0y
d
0 + x1y

d
1 + x2y

d
2 = 0

defines an affine irreducible variety over R of dimension 2 and degree d). This gives the

upper bound

�ε t
1+2(d2+1)/(d(d+2))+ετ−(2d−1)/(d(d+2)) = t9d/(5d−1)+ε

for the number of vectors y, and thereby completes the proof of Corollary 2.2.
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