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Abstract. Let the graph G = (V,E) be a cycle with n + 1 vertices, nonnega-
tive vertex weights and positive edge lengths. The inverse 1-median problem
on a cycle consists in changing the vertex weights at minimum cost such that
a prespecified vertex becomes the 1-median. The cost is proportional to the
increase or decrease of the corresponding weight. We show that this problem
can be formulated as a linear program with bounded variables and a special
structure of the constraint matrix: the columns of the linear program can be
partitioned into two classes in which they are monotonically decreasing. This
allows to solve the problem in O(n2)-time.
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1 Introduction and problem statement

Inverse optimization problems have recently found a considerable interest. In an inverse
optimization problem an instance of an optimization problem and a special feasible solu-
tion are given. The task is to change the given parameters of the problem at minimum
cost such that the given feasible solution becomes optimum. In 1992, Burton and Toint [4]
introduced the inverse shortest path problem with an interesting application to geological
sciences. Given a network, they change the edge lengths as little as possible such that a
given path becomes the shortest path. Cai, Yang and Zhang [5] proved that the inverse
center location problem is NP-hard, though the underlying center location problem is

∗The second author acknowledges financial support by the Spezialforschungsbereich F 003 “Opti-
mierung und Kontrolle”, Projektbereich Diskrete Optimierung. The first and third author acknowledge
partial support of Hong Kong University Grant Council under the grant 9040883 (CITYU 103003).

†burkard@tugraz.at. Institute of Optimization and Discrete Mathematics, Graz University of Tech-
nology, Steyrergasse 30, A-8010 Graz, Austria.

‡pleschiutschnig@opt.math.tu-graz.ac.at. Institute of Optimization and Discrete Mathematics,
Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria.

§mazhang@cityu.hk.edu. Department of Mathematics, City University of Hong Kong, Hong Kong.

1



polynomially solvable. Recently, Burkard, Pleschiutschnig and Zhang [3] showed that the
inverse 1-median problem on a tree (and in the plane where distances are measured in the
l1-metric) can be solved by a greedy algorithm. For further results on inverse optimiza-
tion including network and location models we refer the interested reader to the survey
on inverse optimization compiled by Heuberger [6].

In contrast to inverse optimization, a reverse optimization problem tries to improve
the objective function value of a given feasible solution by changing the parameters of
the optimization problem at cost within a given budget. In 1992, Berman, Ingco and
Odoni [1] published a paper on how to improve a transportation network by changing
the length of the arcs and by introducing new arcs in order to improve the minisum
objective value for a given facility. A similar question was treated by Zhang, Liu and
Ma [9]. They present a strongly polynomial algorithm for shortening the lengths in a tree
network within a given budget such that the longest distance from a given facility to all
other nodes becomes minimum. On the other hand, the reverse 1-median problem on a
cycle was solved by Burkard, Gassner and Hatzl [2]. In the latter paper the task is to use
a budget for changing the length of some edges such that the overall sum of the weighted
distances to a prespecified vertex becomes as small as possible.

In this paper we investigate the inverse 1-median problem on a cycle. The 1-median
problem on a cycle can be stated in the following way. Let an (undirected) cycle graph
G = (V,E) with n + 1 clockwise numbered vertices be given, i.e., |V | = |E| = n + 1 and
V =

{
v0, v1, . . . , vn

}
and E =

{
e0, e1, . . . , en

}
where ej = [j, j + 1] for j = 0, 1, . . . , n− 1

and en = [n, 0]. All edges ej ∈ E, j = 0, 1, . . . , n, have a positive length lj > 0. Moreover,
every vertex vj ∈ V , j = 0, 1, . . . , n, has a nonnegative weight wj. Let d(i, j) denote
the length of a shortest path between the two vertices vi and vj. The objective of the
1-median problem is to find a vertex vs ∈ V for which

n∑
j=0

d(j, s)wj

is minimum.
In the inverse 1-median problem on a cycle we want to change the vertex weights at

minimum cost such that vertex v0 becomes a 1-median of the given cycle. Every weight
wj can only be changed between a lower bound wj ≥ 0 and an upper bound wj. We
assume that the cost for changing each weight wj by one unit is the same, say 1. Thus
the total cost is measured by the function

n∑
j=0

(pj + qj),

where pj is the amount by which the weight wj of vertex vj is increased and qj the
amount by which wj is decreased. We call a solution (pj, qj), j = 0, 1, . . . , n, feasible, if
it guarantees that v0 is a 1-median and all bounds for the weights are met.

Using this notation, the inverse 1-median problem on a cycle can be written as the
linear program
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minimize
n∑

j=0

(pj + qj)

s. t.
n∑

j=0

(d(i, j)− d(0, j))(pj − qj) ≥
n∑

j=0

(d(0, j)− d(i, j))wj, i = 1, . . . , n, (1)

0 ≤ pj ≤ wj − wj, j = 0, 1, . . . , n,

0 ≤ qj ≤ wj − wj, j = 0, 1, . . . , n.

The constraints say that after a change of the weights the weighted sum of the distances
from any vertex vi to all other vertices is at least as large as the weighted sum of the
distances from vertex v0 to all other vertices, i.e., that vertex v0 is a 1-median. Note that
the coefficients of pj and qj differ only in their sign. It will turn out that the program (1)
has a special structure which allows a fast solution of this problem.

In the next section, the linear program (1) will be analyzed. We will show that the
columns of the constraint matrix can be partitioned into two classes such that in each class
the entries of the matrix decrease in each row. This property implies that every optimal
solution has a special form. Therefore, the problem can be written as (nonlinear) program
in two variables as stated in Section 3. Based on this, we propose two different algorithms
that solve the problem. The global solution method (Section 4) is a geometric approach
that determines for each inequality in (1) the feasible set in O(n) time. In this way,
the problem can be written as linear program with two variables and O(n2) constraints.
Since a linear program in two variables and n constraints can be solved in O(n) time, a
solution can be found in O(n2) time. Though this algorithm runs theoretically in O(n2)
time, it is rather involved and therefore computationally impractical. For this reason,
we state in Section 5 another simple solution method that is very fast in practice. The
solution process of this iterative algorithm consists of two phases. First, either a feasible
solution of the problem is found or it is shown that the problem is infeasible. In the
second phase, an optimal solution is determined. In each iteration step of this algorithm,
“local linear programs” with two variables and O(n) constraints have to be solved. As
such linear programs can easily be solved in linear time, this method quickly finds an
optimal solution.

2 Properties of the Linear Program

We denote the length of the cycle by L :=
∑n

j=0 lj. Let dR(i, j) denote the distance

between the vertices vi and vj when going clockwise from vi to vj and let dL(i, j) denote
the counterclockwise distance between vi and vj. Further, M be the point on the cycle
which is opposite to v0, i.e., dR(v0,M) = dL(v0,M) = L/2. The point M may or may
not coincide with a vertex. We define a new distance function d̂(j) for the vertices vj,
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j = 0, 1, ..., n, by

d̂(j) :=





0 if j = 0,

d(j, M) if d(0, j) = dR(0, j),

d(0, j) if d(0, j) = dL(0, j).

(2)

This means, d̂(j) is the clockwise distance between vertex vj and the midpoint M of the

cycle if vj lies in the right half of the cycle, and d̂(j) is the clockwise distance between
vertex vj and vertex v0 if vj lies in the left half of the cycle.

Now we order the distances d̂(j) increasingly:

0 = d̂(π(0)) ≤ d̂(π(1)) ≤ d̂(π(2)) ≤ · · · ≤ d̂(π(n)) (3)

and we rewrite the linear program (1) as

minimize
n∑

j=0

xj +
n∑

j=0

yj

s. t. Ax + Āy ≥ b, (4)

0 ≤ x ≤ x,

0 ≤ y ≤ y,

with x0 := p0 and

xj :=





qπ(j) if vπ(j) is in the right halfcycle (incl. M)

pπ(j) if vπ(j) is in the left halfcycle
for 1 ≤ j ≤ n,

yj :=





pπ(n−j) if xn−j = qπ(n−j)

qπ(n−j) if xn−j = pπ(n−j)

for 0 ≤ j ≤ n.

The coefficients of A = (aij) and Ā = (āij) are given by

aij :=





d(i, 0) for j = 0,

(−1)(d(i, π(j))− d(0, π(j))) for xj = qπ(j),

(d(i, π(j))− d(0, π(j))) for xj = pπ(j)

and
āij := −ai,n−j.

The right hand side b has the coefficients

bi :=
n∑

j=0

(d(0, j)− d(i, j))wj for i = 1, . . . , n.

The values xj and yj are the upper bounds of the original variables pπ(j) and qπ(j) which
correspond to xj and yj.

4



Proposition 2.1 The columns of matrix A (Ā) are monotonically decreasing, i.e.,

aij ≥ aik for 0 ≤ j < k ≤ n; i = 1, ..., n, (5)

āij ≥ āik for 0 ≤ j < k ≤ n; i = 1, ..., n. (6)

Proof. The result for matrix Ā is a direct consequence of āij = −ai,n−j and (5). So,
we only have to prove property (5).
We consider column 0 separately. If column j corresponds to a p-variable, then the
triangle-inequality implies

aij = d(i, π(j))− d(0, π(j)) ≤ d(i, 0) + d(0, π(j))− d(0, π(j)) = d(i, 0) = ai0.

The case of column j corresponding to a q-variable can be shown in an analogous way.
So, we have ai0 ≥ aij for all i = 1, . . . , n and for all j = 1, . . . , n. Hence, it suffices to
consider columns j and k with 1 ≤ j < k ≤ n. We consider four cases.

Case 1: Both vertices vπ(j) and vπ(k) lie in the right halfcycle (including M).

In this case, both variables xj and xk correspond to q-variables. Since d̂(π(j)) ≤ d̂(π(k))
we get

d(0, π(j)) = d(0, π(k)) + d(π(k), π(j)).

By means of the triangle-inequality we obtain for i = 1, . . . , n

aij = d(0, π(k)) + d(π(k), π(j))− d(i, π(j))

≥ d(0, π(k)) + d(π(k), π(j))− d(i, π(k))− d(π(k), π(j)) = aik.

Case 2: Both vertices vπ(j) and vπ(k) lie in the left halfcycle.
In an analogous way as in the first case it can be shown that also in this case aij ≥ aik

holds.

Case 3: Vertex vπ(j) lies in the left halfcycle, vertex vπ(k) lies in the right halfcycle.

In this case, xj corresponds to a p-variable and xk to a q-variable. Using d̂(π(j)) ≤ d̂(π(k)),
we see that the shorter way between vπ(j) and vπ(k) on the cycle leads via the vertex v0.
Thus, by means of the triangle-inequality, we get

d(0, π(k)) + d(0, π(j)) = d(π(j), π(k)) ≤ d(i, π(j)) + d(i, π(k)),

which shows that aij ≥ aik holds for all i = 1, . . . , n.

Case 4: Vertex vπ(j) lies in the right halfcycle, vertex vπ(k) lies in the left halfcycle.
In this case, xj corresponds to a q-variable and xk to a p-variable. We distinguish three
cases.
If π(k) ≤ i ≤ n, then d(0, π(k)) = d(0, i) + d(i, π(k)) holds. By means of the triangle
inequality we obtain

d(i, π(j)) + d(i, π(k)) = d(i, π(j)) + d(0, π(k))− d(0, i)

≤ d(0, π(j)) + d(0, π(k)),
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which means that aij ≥ aik.
If π(j) ≤ i ≤ π(k), then d(i, π(j)) + d(i, π(k)) = d(π(i), π(k)). Using the triangle-
inequality we obtain

d(i, π(j)) + d(i, π(k)) = d(π(j), π(k)) ≤ d(0, π(k)) + d(0, π(j)),

and consequently aij ≥ aik.
If, however, 1 ≤ i < π(j) holds, then we have d(0, π(j)) = d(0, i) + d(i, π(j)). By means
of the triangle-inequality we get

d(0, π(j)) + d(0, π(k)) = d(0, i) + d(i, π(j)) + d(0, π(k))

≥ d(i, π(k)) + d(i, π(j)),

which shows that aij ≥ aik.

This concludes the proof.

The optimal solutions of the feasible linear program (4) have a special structure as
stated in the subsequent proposition.

Proposition 2.2 If the linear program (4) is feasible, there exist indices r and s such
that

x∗j = xj for all j = 0, 1, . . . , r − 1,

x∗r ≥ 0 (7)

x∗j = 0 for all j = r + 1, . . . , n,

and

y∗j = yj for all j = 0, 1, . . . , s− 1,

y∗s ≥ 0 (8)

y∗j = 0 for all j = s + 1, . . . , n,

is an optimal solution of problem (4). Moreover, we can always assume that either x∗r or
y∗s is strictly positive.

Proof. Let (x̂j, ŷj), j = 0, 1, . . . , n, be an optimal solution of the linear program (4).
We assume that x̂r is the first component smaller than its upper bound and that there is
an index l, r + 1 ≤ l ≤ n, with x̂l > 0. According to Proposition 2.1 we have air ≥ ail

for all i = 1, . . . , n. So, increasing x̂r to x̂r + ε while decreasing x̂l to x̂l − ε maintains the
feasibility and does not change the objective function value. We can choose ε as large
as possible until either x̂r + ε = x̄r or x̂l − ε = 0 is met first. Proceeding iteratively like
this we obtain an optimal solution which fulfills (7). Starting from this solution, we can
apply the same arguments to ŷ.

If a vertex weight is increased, it does not make sense to decrease it at the same time,
since this will only enlarge the costs. So every optimal solution (x∗, y∗) of (4) fulfills an
orthogonality relation:

6



Proposition 2.3 For every optimal solution (x∗j , y
∗
j ), j = 0, 1, . . . , n, of the linear pro-

gram (4),
x∗j y∗n−j = 0, j = 0, 1, . . . , n, (9)

must hold.

In combination with Proposition 2.2 and the fact that either x∗r or y∗s is strictly positive,
we immediately get

Corollary 2.4 An optimal solution of the form stated in Proposition 2.2 always fulfills

r + s ≤ n.

3 Reformulation as Linear Program in Two Variables

For ξ ≥ 0, η ≥ 0 we define piecewise linear functions gi(ξ) and ḡi(η), i = 1, . . . , n, as
follows.

gi(ξ) :=
r−1∑
j=0

aijx̄j + air(ξ −
r−1∑
j=0

x̄j) for
r−1∑
j=0

x̄j ≤ ξ ≤
r∑

j=0

x̄j,

ḡi(η) :=
s−1∑

k=0

āikȳk + āis(η −
s−1∑

k=0

ȳk) for
s−1∑

k=0

ȳk ≤ η ≤
s∑

k=0

ȳk.

Proposition 2.2 implies that by setting

ξ :=
n∑

j=0

xj and η :=
n∑

k=0

yk

we can write the linear program (4) as the following problem in two variables which has
the same set of optimal solutions:

minimize ξ + η

s. t. gi(ξ) + ḡi(η) ≥ bi, i = 1, . . . , n, (10)

0 ≤ ξ ≤
n∑

j=0

x̄j,

0 ≤ η ≤
n∑

k=0

ȳk.

Due to Proposition 2.1 the functions gi(ξ) and ḡi(η) are concave for each i = 1, 2, ..., n
as their slopes are monotonically decreasing. As the sum of concave functions is again
concave and the set {x : g(x) ≥ b} is convex for any concave function g we get

Lemma 3.1 The set B defined by

B :=
{
(ξ, η) | gi(ξ) + ḡi(η) ≥ bi, 1 ≤ i ≤ n

}

is convex.
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The next lemma is essential for estimating of the running time.

Lemma 3.2 The boundary of B intersects at most 4(n + 1) boxes

B(r, s) :=

{
(ξ, η) :

r−1∑
j=0

x̄j ≤ ξ ≤
r∑

j=0

x̄j,

s−1∑

k=0

ȳk ≤ η ≤
s∑

k=0

ȳk

}
. (11)

Proof. For fixed η, we have n+1 boxes in ξ-direction; for fixed ξ we have n+1 boxes
in η-direction. The convexity of the set B immediately implies that when going in one
direction around the boundary one changes the box in ξ-direction at most 2(n + 1) and
in η-direction at most 2(n + 1) times. That is, the boundary intersects at most 4(n + 1)
boxes.

Every point (xr, ys) in B(r, s) corresponds in a unique way to a solution of the form
described in Proposition 2.2, namely by setting xj := xj for all 0 ≤ j ≤ r− 1 and xj := 0
for j ≥ r + 1. Similarly, yj = yj for all 0 ≤ j ≤ s − 1 and yj := 0 for j ≥ s + 1. Vice
versa, for every point of the form described in Proposition 2.2 there are indices r and s
such that this point uniquely corresponds to a point in B(r, s).

Since gi(ξ) and ḡi(η) are concave functions, gi(ξ)+ ḡi(η) ≥ bi can for every i = 1, . . . , n,
be replaced by the set of constraints

r−1∑
j=0

aijxj + air(ξ −
r−1∑
j=0

xj) +
s−1∑

k=0

āikyk + āis(η −
s−1∑

k=0

yk) ≥ bi,

r = 0, 1, . . . , n, s = 0, 1, . . . , n,

that is obtained by combining

lir(ξ) :=
r−1∑
j=0

aijxj + air(ξ −
r−1∑
j=0

xj)

for each r = 0, 1, . . . , n with

l̄is(η) :=
s−1∑

k=0

āikyk + āis(η −
s−1∑

k=0

yk)

for each s = 0, 1, . . . , m.
This yields a linear program (LP1) in two variables with O(n3) constraints, as m ≤ n.

4 Global Solution Method

Since there are only two variables in the linear program (LP1), it can be solved in O(n3)
time with Megiddo’s algorithm (see Megiddo [7]). We call this a global solution approach,
since all constraints defining the set B of feasible solutions are considered at the same
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time. This global approach can be refined: instead of considering all n3 constraints, we
can improve on the complexity if we find for every i = 1, 2, ..., n those linear functions
lir(ξ) + l̄is(η) which define the boundary of

Bi :=
{
(ξ, η) | gi(ξ) + ḡi(η) ≥ bi

}
.

Lemma 3.2 applied to Bi instead of B combined with the fact that the boundary of Bi in
a box B(r, s) is given by at most one inequality lir(ξ) + l̄is(η) ≥ bi shows that Bi can be
written as intersection of at most O(n) halfplanes:

Bi :=
{
(ξ, η) | lir(ξ) + l̄is(η) ≥ bi, (r, s) ∈ Ci

}
,

where
Ci :=

{
(r, s) | lir(ξ) + l̄is(η) = bi

}
,

As the feasible set B is the intersection of the sets Bi, B can be described by the O(n2)
inequalities of

C :=
⋃

i=1,...,n

Ci.

So, (LP1) can be written as a linear program with two variables and O(n2) constraints
which can be solved in time O(n2).

Variables with an upper bound 0 can be fixed beforehand and are deleted during
the following solution process. This means, we can assume in the following that every
box B(r, s) is non degenerated. After fixing some variables we are left with, say, n free
variables xj and m free variables yk, m ≤ n.

The determination of the sets Ci is a task of elementary geometry and can be performed
in O(n) steps. First, the points with the largest and the smallest η-value, respectively,
that lie on the boundary are determined. Since gi(ξ) and ḡi(η) are both concave, these
points can be found by calculating the value ξ̂ for which the function gi(ξ) is maximized
and the corresponding η-values. Since the functions are piecewise linear, ξ̂ can be found
in linear time. Starting from these points, we compute the intersection points of the
boundary with the lines ξ = ξr and η = ηs, where

ξr :=
r∑

j=0

xj, r = −1, 0, 1, . . . , n

and

ηs :=
s∑

k=0

yk, s = −1, 0, 1, . . . , m,

by going from ξ̂ right and then left until no intersection point, just one intersection point
or infinitely many intersection points are found. We will use the fact that every box B(r, s)
contains at most one linear part of the boundary. Finally, we determine the halfplanes
defining the feasible set by connecting all intersection points. For a detailed description
see Pleschiutschnig [8].
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The calculation of all intersection points to the right and to the left side of ξ̂ needs
O(n) time, since the boundary of Bi is convex and meets according to Lemma 3.2 at most
O(n) boxes. Thus the set of constraints Ci can be found in O(n) time.

As there are n inequalities to be considered, the overall time required for calculating
all sets Ci, i = 1, . . . , n, is O(n2). Thus the linear program (LP1) has two variables and
O(n2) constraints. Therefore it can be solved in O(n2) time.

Altogether, we get

Theorem 4.1 The inverse 1-median problem on cycles with nonnegative weights, positive
edge-lengths and uniform cost can be solved in O(n2) time.

5 Iterative Solution Method

Whereas the two main components of the global solution method, the determination of
the set C and Megiddo’s method, lead to a rather involved algorithm, there exists a very
simple, iterative, method for solving LP’s of the form (4). Computational tests strongly
suggest (see Table 1) that the worst case complexity of the iterative method is also O(n2)
time. We were not able to show this, as we cannot bound the number of local problems
until a feasible solution is found. But O(n3) time is certainly an upper bound for the
iterative method.

A straightforward idea of finding an optimal solution of the (nonlinear) program (10)
is to solve the local LPs

minimize xr + ys

s. t. arxr + āsys ≥ b−
r−1∑
j=0

xja
j −

s−1∑

k=0

ykā
k,

0 ≤ xr ≤ xr,

0 ≤ ys ≤ ys

in each box B(r, s), r = 0, 1, . . . , n, s = 0, 1, . . . , m and to compare the objective function
values of feasible solutions. Since in each one of the O(n2) boxes the optimal solution
of a linear program with two variables and O(n) constraints has to be determined, this
method runs in O(n3) time.

We can speed up this basic method in the following way. First, we determine a feasible
solution or prove that the problem is infeasible. In the second phase we start from a
feasible point and compute an optimal solution. Thus the solution process consists of two
phases.

Let us first assume that a feasible solution of (4) is already known. For finding an
optimal solution, we start from a feasible solution with objective function value z. Let us
assume that this feasible solution corresponds – in the way described above – to a point

10



(xr, ys) in B(r, s), where we assume that |xr|+ |ys| > 0. We solve the local linear program
(LP(r, s))

minimize xr + ys

s. t. arxr + āsys ≥ b−
r−1∑
j=0

xja
j −

s−1∑

k=0

ykā
k, (LP(r,s))

0 ≤ xr ≤ xr,

0 ≤ ys ≤ ys.

Due to the convexity of B we immediately get:

Lemma 5.1 If the optimal solution x∗r, y
∗
s of (LP(r, s)) fulfills one of the following three

conditions
0 < x∗r < xr and 0 < y∗s < ys, (12)

(r = 0 and x∗0 = 0) or (r = n and x∗n = xn), (13)

or
(s = 0 and y∗0 = 0) or (s = m and y∗m = ym), (14)

then the corresponding solution of (4) is optimal.

In the case that the optimal solution of (LP(r, s)) does not fulfill one of the conditions
(12)-(14), we have to solve one, two or three additional local LPs in order to meet a
decision. We distinguish eight cases:

• The optimum is attained in the lower left corner of the box B(r, s). In this case we
solve the linear programs in the boxes B(r − 1, s), B(r − 1, s− 1) and B(r, s− 1),
provided the corresponding boxes are non empty.

• The optimum is attained in an inner point of the left side of box B(r, s) and r > 0.
Then we have to check whether there is not a better solution in the box B(r− 1, s).

• The optimum is attained in an inner point of the right side of box B(r, s) with
r < n. Then we have to check whether there is not a better solution in the box
B(r + 1, s).

• The optimum is attained in an inner point of the upper side of box B(r, s) and
s < m. Then we have to check whether there is not a better solution in the box
B(r, s + 1).

• The optimum is attained in an inner point of the lower side of box B(r, s) and s > 0.
Then we have to check whether there is not a better solution in the box B(r, s− 1).

• The optimum is attained in the upper left corner of the box B(r, s) with r > 0, s <
m. Then due to the convexity of set B we have to check whether there is not a
better solution in the box B(r − 1, s + 1).
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• The optimum is attained in the lower right corner of the box B(r, s) with r > 0, s >
0. Then due to the convexity of set B we have to check whether there is not a better
solution in the box B(r + 1, s− 1).

• The optimum is attained in the upper right corner of the box B(r, s) with r < n, s <
m. In this case we have to check two new boxes, namely the box B(r, s + 1) and
the box B(r + 1, s).

Let z1, z2 and z3 be the objective function values of the solutions of (4) which corre-
spond to the optimal solutions of the currently first, second or third local LP. (If there
is only one new local LP, we set z2 := z3 := ∞, and analogously, in the case of only two
local LPs, z3 := ∞). If

min(z1, z2, z3) = z,

then the solution corresponding to z is optimal. If min(z1, z2, z3) < z and the minimum is
attained by two values, say z1 and z2, then the solution with objective function value z1 is
optimal. Otherwise we replace the previous feasible point by the solution with minimum
objective function value z1, z2 or z3 and proceed from this point. First, we check whether
Lemma 5.1 can be applied. Otherwise, we again solve new local LPs according the list
above.

Lemma 5.2 Starting from a feasible solution, an optimal solution is found in O(n2) time.

Proof. Every local linear program is an LP with two variables and n constraints and
can, therefore, be solved in O(n) time. Whenever the solution of a local LP is attained
in the lower left corner and r > 0, s > 0, we decrease r and s. Thus, this situation occurs
only O(n) times. On the other hand, due to Lemma 3.2 the boundary of B intersects at
most O(n) boxes. This means that once a boundary point is found, will find the optimal
solution by solving at most O(n) local LPs.

Now, we address the question how a first feasible point can be found, provided that
the problem is feasible. We proceed in a similar way as above and solve, starting from
r := s := 0 a series of local LPs with different objective functions. If xo = 0, y0 = 0 is
infeasible, the right-hand side vector b has at least one positive component, say, bi. In
this case, we choose the i-th row of the coefficient matrix as new objective function and
we solve the local LP

maximize ai0x0 + āi0y0

s. t. a0x0 + ā0y0 ≥ b̄, (15)

0 ≤ x0 ≤ x0,

0 ≤ y0 ≤ y0,

where b̄ is defined by

b̄i :=

{
0 if bi ≥ 0,

bi if bi < 0.
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This definition ensures that all already feasible inequalities stay feasible. Let (x∗0, y
∗
0) be an

optimal solution of this local LP. We replace the right hand side b by b̂ := b−x∗0a
0−y∗0 ā0.

If b̂ ≤ 0, the current point is feasible for the LP (4) and we continue with Phase 2.
Otherwise there are two possibilities. If the current point fulfills the i-th constraint we
continue from this point with a new objective function (which stems from a component
b̂i > 0). Otherwise we keep the old objective and solve a new local LP starting from the
current point.

Lemma 5.3 If the inverse 1-median problem on a cycle is feasible, then the algorithm
stated above determines a feasible point.

Proof. By definition of the objective function of the local linear programs, the
search direction coincides with the gradient of the actually considered inequality. The
constraints of the local linear programs guarantee that we stay within the feasible set of
the inequalities which are already met and that the right-hand side of not yet fulfilled
inequalities does not increase. Thus, if there are inequalities which are not met but there
is no search direction such that the problem is improved, i.e., if all current local LPs
have a non-positive objective function value or there are no more local LPs according
to the eight cases stated above that can be considered, then there is no feasible solution.

The computational behaviour of the algorithm leads to the conjecture that in fact
only O(n) local linear programs have to be considered until a feasible solution is found.
We run this method on more than 15000 randomly generated test instances with 10 to
500 vertices, see Table 1. For each instance the weights, upper and lower bounds of the
weights and the edge lengths were randomly chosen inbetween 0 and maxval. For every
problem set, num test instances have been solved. Table 1 shows in column avLPfeas
the average number of local linear programs solved until a feasible solution is found or
the infeasibility of the problem is proven. Column avLPopt shows the average number of
local linear programs solved until, starting from a feasible solution, an optimal solution
is found. The maximum number of linear programs solved until a feasible solution is
determined or the infeasibility of the problem is seen is shown in column maxLPfeas.
The maximum number of local linear programs solved until, starting from a feasible
solution, an optimal solution is found is shown in column maxLPopt.

This table shows that for finding a feasible solution never more than O(n) local linear
programs have been solved. On average, this number is even very small. This is a strong
hint that the iterative method runs in O(n2) time. Moreover, these results show that in
practice the inverse 1-median problem on a cycle can be solved in a very fast and simple
manner by the iterative approach.

6 An Example

The following example shall illustrate the reformulations of the inverse 1-median problem
on a cycle and illustrate the iterative method. We consider a cycle with the 9 vertices
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n + 1 maxval num avLPfeas avLPopt maxLPfeas maxLPopt

10 10 2000 4.7 1.6 26 6
10 100 2000 4.9 1.5 31 5
20 20 2000 8.2 1.9 50 8
20 400 2000 8.0 1.9 50 7
50 50 2000 14.5 2.3 80 11
50 2500 2000 14.6 2.3 78 10
100 100 2000 21.8 2.7 104 12
100 10000 2000 22.9 2.7 105 12
200 200 500 26.6 2.7 123 14
500 500 200 51.2 3.9 198 20

Table 1: Number of local linear programs solved by the iterative method

v0, v1, . . . , v8, where v0 should become the 1-median. We assume that the cycle has the
following edge lengths lj, vertex weights wj as well as lower and upper bounds for the
weights:

j wj lj wj wj

0 1 7 0 10
1 2 5 0 5
2 8 1 0 10
3 11 2 7 15
4 7 5 7 10
5 12 6 7 15
6 14 1 7 15
7 9 8 4 10
8 3 3 0 10

v0

v1

v2

v3

v4v5

v6

v7

v8

7

5

1

2

5

6

1

8

3

1

2

8

11

712

14

9

3
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Figure 1: Cycle with 9 vertices

By ordering d̂ increasingly, we get

x0 := p0, x1 := p8, x2 := q4, x3 := q3, x4 := q2,

x5 := p7, x6 := p6, x7 := q1, x8 := p5

and

y0 := q5, y1 := p1, y2 := q6, y3 := q7, y4 := p2,

y5 := p3, y6 := p4, y7 := q8, y8 := q0.
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Thus, we obtain the subsequent coefficient matrix A of the linear program (4)

A =




7 7 7 7 7 7 7 7 −5
12 12 12 12 12 4 2 2 −10
13 13 13 13 11 3 1 1 −11
15 15 15 11 9 1 −1 −1 −13
18 12 10 6 4 −4 −6 −6 −18
12 6 4 0 −2 −10 −12 −12 −12
11 5 3 −1 −3 −11 −11 −11 −11
3 −3 −3 −3 −3 −3 −3 −3 −3




The set of feasible solutions is shown in Figure 2.
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Figure 2: Feasible set of the example

Let us now apply the iterative method to solve this instance. First, we determine a
feasible solution. At the beginning, b = (67, 324, 363, 397, 438, 360, 323, 27). The com-
ponent b1 is positive, so we try to find a point which is feasible for the first inequality.
We solve the local linear program with the corresponding objective function in the box
B(0, 0) and obtain as optimal solution x∗0 = 9, y∗0 = 5.

After that, b = (−21, 166, 191, 197, 186, 192, 169,−15). We keep the first inequality
feasible and try to find a point which is also feasible for the second inequality. The
corresponding local LP in this box B(0, 0) yields the point (9, 5). So we turn to the
boxes B(0, 1), B(1, 1) and B(1, 0). The maximal objective value is attained in the box
B(1, 1) with x∗1 = 7, y∗1 = 2 and yields b = (−56, 76, 90, 78, 78, 114, 102, 0). Thus we
have still to consider the second constraint. As the optimum was attained in an in-
ner point of the right side of box B(1, 1) and the box B(2, 1) has been deleted since
x2 = 0, we check the box B(3, 1) next. The optimal solution is x∗3 = 1, y∗1 = 3. We get
b = (−56, 76, 90, 78, 78, 114, 102, 0) which shows that the second inequality still is not met
in the corresponding point. Since the optimum was attained in an inner point of the upper
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side of box B(3, 1), we consider the box B(3, 2) next and obtain as optimal solution x∗3 = 4,
y∗2 = 3 with b = (−56, 46, 54, 42, 42, 78, 72, 0). The last optimum was attained in an inner
point of the right side of box B(3, 2), so we consider the box B(4, 2) next and obtain as
locally optimal solution x∗4 = 4, y∗2 = 7 with b = (−56, 6, 14, 2, 2, 38, 40, 0). As the optimal
solution was attained in an inner point of the upper side of box B(4, 2), we check box
B(4, 3) next and obtain x∗4 = 8,y∗3 = 4 with b = (−56,−26,−18,−30,−30, 6, 8, 0). Now
the first five inequalities are met. Thus the sixth inequality defines the new objective func-
tion. We consider the box B(4, 3) once again and obtain as optimal solution x∗4 = 6.6364,
y∗3 = 5 with b = (−39.4545,−5.6364, 0,−16.7273,−28.5455,−6.7273, −7.0909,−7.0909).
Thus, a feasible solution has been found.

We start now the second phase and determine an optimal solution of the original given
problem. For this, we resolve a local linear program in the actual box B(4, 3) and obtain
x∗4 = 6.4464, y∗3 = 4.3036. Since the locally optimal solution is obtained in an inner point
of the actual box, an optimal solution with objective function value 45.75 has been found.

7 Conclusions

We have shown that the inverse 1-median problem on a cycle can be transformed to a
linear program of the form

minimize
n∑

j=0

xj +
n∑

j=0

yj

s. t. Ax + Āy ≥ b, (16)

0 ≤ x ≤ x,

0 ≤ y ≤ y.

where the columns of the matrices A and Ā are both monotonically decreasing. As the
results of Section 3 apply to any linear program of the form stated above, such LPs can be
transformed to a linear program with two variables and thus be solved in a fast manner.
We describe two solution methods, a global approach for which a low time complexity
is established, and a computational fast iterative approach for which we were not able
to prove the same time complexity. Computational tests, however, strongly support that
the iterative method has the same worst case behaviour as the global method. To show
this is an interesting task to be addressed in the future.
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