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Thomas’ conjecture over Function Fields

par VOLKER ZIEGLER?

RESUME. La conjecture de Thomas affirme que, pour des polynomes unitaires
D1, ---,Dd € Z[a] tels que 0 < degp; < -+ < deg pq, 'équation de Thue

(X —pi(@)Y)- (X —pa(@)Y) + Y =1
n’admet pas de solution non triviale (sur les entiers relatifs) pourvu que a > ag,
avec une borne effective ag. Nous nous intéressons & un analogue de la conjecture

de Thomas sur les corps de fonctions pour le degré d = 3 et en donnons un
contrexemple.

ABSTRACT. Thomas’ conjecture is, given monic polynomials pi,...,pqs € Zla]
with 0 < degpy < --- < degpg, then the Thue equation (over the rational integers)

(X —=p1(@)Y) - (X —pa(a)Y) + yi=1
has only trivial solutions, provided a > ag with effective computable ayg. We

consider a function field analogue of Thomas’ conjecture in case of degree d = 3.
Moreover we find a counterexample to Thomas’ conjecture for d = 3.

1. Introduction

In 1909 Thue [20] proved his famous theorem on the approximation of algebraic numbers
by rationals. As a corollary he proved that the Diophantine equation

F(X,Y)=m,

where F' € Z[X,Y] is a binary irreducible form of degree at least 3 and m some non-zero
integer, has only finitely many solutions. Since then such Diophantine equations are called
Thue equations. There were several extensions of Thue’s approximation theorem, e.g. to
number fields by Wirsing [21] and also to function fields by Gill [7]. However Thue’s
theorem is not effective and so it is not possible to solve Thue equations effectively with
this theorem. However, Baker [2] showed how to solve Thue equations effectively using
his theorem on linear forms of logarithms [1, 3]. Since then several Thue equations and
families of Thue equations were solved. In 1993 Thomas [19] proved that the family

X(X = pi(@)Y)(X = pa(a)¥) + Y? = 1,
where p1, ps € Z[a] are monic polynomials, such that 0 < degp; < degp2 and p, po fulfill
some growth conditions, has only trivial solutions, i.e. (X,Y) = (1,0),(0,1), (pi(a),1)

and (p2(a), 1), provided a is larger than some effective computable constant ag. This led
Thomas to his conjecture that

XX —p1(a)Y) - (X —pg_1(a)Y)+ Y% =1,
where p1,...,pq—1 € Z[a] are monic polynomials and degp; < -+ < degpg—1, has only
the trivial solutions (X,Y) = (£1,0), (0, £1), (p1(a), £1),..., (ps—1(a),£1), provided a is

2000 Mathematics Subject Classification. 11D59,11D25,11Y50.
Key words and phrases. Thue equation, function fields.
The author was supported by the Austrian Science Foundation, project P18079-N12.



2 V. Ziegler

sufficiently large and the minus sign only appears if d is even. This conjecture has been
proved by Heuberger [8] under the assumption of some complicated degree conditions.
However, if we allow degp; = 0, then some counterexamples are known, e.g. if d = 3 and
p1 = £1. In this case there exist the non-trivial solutions (1, —(1 + pa(a))) respectively
(3+p2(a), —2 —pa(a)) found by Lee [10] respectively Mignotte and Tzanakis [15]. To the
authors knowledge these are the only exceptions known yet in the case of rational integers
and d = 3. In this paper we find a counterexample with degp; > 0 and disprove Thomas
conjecture for degree 3.
Halter-Koch, Lettl, Pethé and Tichy considered the following equation

(1) XX —a1Y) (X —agoY)(X —aY) £ Y% =41,

where ai,...,aq_o € 7Z are fixed integers and a is some parameter. This equation has
been solved under the assumption of the Lang-Waldschmidt conjecture [9]. In this paper
we want to solve the function field analog of equation (1).

Gill’s result [7] applied to Thue equations, yields that the height of the solutions are
bounded. About 50 years later Schmidt [18] and Mason (cf. [12], resp. [14]) considered
the problem to determine effectively all solutions of a given Thue equation over some
function field. In contrast to the number field case Thue equations over function fields
may have infinitely many solutions. Recently, Lettl [11] proved criteria for which a given
Thue equation has only finitely many solutions. Also families of Thue equations over the
function field C(7") have been solved (cf. [5, 6]). We propose to prove following variant of
Thomas’ conjecture.

Theorem 1. Let k, A € C[T] be polynomials such that 0 < degr < degA. Let k be fized
and let (X,Y) € C[T] x C[T] be a solution to the Diophantine equation

(2) X(X —rY)(X - AY)+YV3=¢
with § € C*. Then either the triple (X, X,Y) is trivial, i.e.

(X7 Y) € {(C70)7 (07 C)? (C’ﬁ()? (C/\aC) : <3 = 5}

or (A, X,Y) € L with |£| <16452. In particular, if 34 deg k < deg \, then there exist only
trivial solutions.

If k € C* then a non-trivial solution (X,Y) € C[T] x C[T] to (2) exists, if and only if
k% = 1. All non-trivial solutions are listed in table 1.

TABLE 1. The non-trivial solutions to (2) in the case of Kk € C* (w3 is a
primitive third root of unity).

(s [ X[ Vv | k] X | v ]
L] ¢ | —¢ca+N || -1 C(3+A) —C(24+ M)
w3 [ Cwi | —Clws + ) || —ws [ C(Bw3 +ws)) | —¢((2ws + )
wi [ Cws | —C(w3 —N) || —w? | ((Bws +w3A) | —C(2w3 — )

We see that in the case of k € C* there are essentially no further solutions than those
known before (except the cases Kk = —ws, —w§ were not stated explicitly). These non-
trivial solutions have been found by Lee [10], Mignotte and Tzanakis [15] in the rational
case and by Ziegler [22] in the imaginary quadratic case (k = w3, w3).

One might conjecture, as Thomas [19] did, that there are only trivial solutions, if
deg k > 0 but this is not true. Indeed if A = x* 4+ 3k or A = k* — 2k, then there exist
non-trivial solutions. The author conjectures that these are the only non-trivial solutions.
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Conjecture 1. The Diophantine equation (2) has only trivial solutions, except the solu-
tions

C(=ARD — 4K — 1, Mk — 6K% — 4X6? — K°) if A =k + 3k,
C(RS = M Ak — A6t — k) if A= rK* — 2k,
with (3 = —¢.

To the authors knowledge the non-trivial solutions stated in Conjecture 1 have not be
known before. Therefore we have disproved Thomas’ conjecture in the case of d = 3.

The restriction x # 0 is essential, because in this case we can find fundamental units.
If Kk = 0 and the valuation at infinity is ramified we are still able to determine the unit
group. Theorem 2 characterizes for which \’s ramification at infinity occurs.

Theorem 2. The function field C(T, «), where « is a root of
XX =N +1,

is unramified over the prime corresponding to O = {f(T)/g(T) : f,g € C[T],deg(f) <
deg(g)} of C[T], if and only if 2| deg X. In the case of ramification the ramification index
of the ramified prime is 2.

The methods used in the proof of Theorem 1 together with Theorem 2 yield:
Theorem 3. The only solutions (X,Y) € C[T] x C[T] to the Diophantine equation
(3) XHX = AY)+Y? =¢,

where A € C[T]\ C and degA =1 (mod 2), are trivial, i.e. (X,Y) = (¢,0),(0,¢) or
(CA Q) with ¢* = €.

It is dissatisfactory to know nothing about the case of kK = 0 and 2| deg A except the
finiteness of solutions, which we know from a result of Lettl [11, Corollary 2]. Although
we do not know the structure of the unit group we are able to estimate the number of
solutions to (3):

Theorem 4. The Diophantine equation (3) has at most 17691 non-trivial solutions
(X,Y) € C[T] x C[T] for fixed X.

For the rest of the paper we will use following notation:
(4) F(r,A\)=X(X —kr)(X -+ 1

We remark that all theorems hold if we replace C by any algebraic closed field k of
characteristic 0. In particular, the theorems are valid in Q, the algebraic closure of Q.

The paper is organized as follows. In section 2 we remind some well known facts on
function fields and fix notations for the rest of the paper. After this we will prove Theorem
2 by using Puiseux’s theorem in section 3. By a careful analysis of the valuations at infinity
we are able to find fundamental units of the fields related to (2) and to (3) in the case
of 2 tdeg A. In the case of (3) and 2| deg A we can estimate by methods originating from
the geometry of numbers the number of possible solutions. All these results give a lower
bound for the height of solutions to (2) and (3) and are subject of section 4. The upper
bound for the height of the solutions is computed in section 5. Knowing upper and lower
bounds we can effectively determine the number of solutions. In the cases for which we
know fundamental solutions we can determine all solutions. This is done in section 6. In
section 7 we use a theorem of Minkowski in order to prove Theorem 4.
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2. Auxiliary results
Let us remind first the ABC-Theorem for function fields (see e.g. [17, Theorem 7.17)).

Proposition 1 (ABC-Theorem). Let K be a function field of characteristic 0, genus gx
and with constant field k. Let o, 3 € K* satisfying a+ 3 =1 and put A = (), B = (8)o
and C = (@)oo = ()0, where (+)g denotes the zero divisor and (+)s denotes the polar
divisor. Then

deg A =deg B=degC <max | 0,295 — 2+ Z degy P
PeSupp(A+B+C)

If the constant field k is algebraically closed and of characteristic 0, Mason [14, chapter
1, Lemma 2] proved following special case.

Corollary 1. Let H(a) := =} cyr min(0,v(a)) denote the height of o € K and let
Y1,72,73 € K with y1 +v2 +v3 = 0. Let V be a finite set of valuations such that for all
v &V we have v(y1) = v(y2) = v(73), then

H(y1/72) < max(0,2g9x — 2+ V).

Here we denote the set of all valuations in K by Mpg. It is rather easy to deduce
Corollary 1 from Proposition 1 (cf. [5]). Use the fact that the residue class degree is 1,
provided the constant field is algebraic closed and of characteristic 0.

Another well known fact is the following: Let A be a Dedekind ring, K its quotient
field and let B be the integral closure of some finite algebraic extension L/K. Further,
let d be the exact power of a prime P dividing the different Dp/4. Then d = e — 1
provided the characteristic of B/ does not divide the ramification index eg. Our main
interest is in function fields with constant field of characteristic 0. In this case B/B has
always characteristic 0 and we have Dp/y = [19Be* 1. We will use this fact in the case
of A =0, ={f(T)/g(T) : f,g € C[T],g(a) # 0} with a € C. Assume L/K is a
Galois extension, A a discrete valuation ring and B its integral closure in L. Let p be the
maximal prime of A, then pB = (1 ---PB4)¢. We have Dg/q = (P1---Py)* ! and

(5) Nz k(Dpja) = plleDg = ple=lg = dB/A>

where dp,4 denotes the discriminant. This will allow us to determine, where ramification
occurs and compute the ramification index.

We have already introduced for every a € C the discrete valuation ring O,, the corre-
sponding valuations v, to these rings are called finite. There is also another valuation ring
Oco :={f(T)/g(T) : f,g9 € C[T],deg(f) < deg(g)}, which has already been introduced
in Theorem 2. The corresponding valuation vy, will be called the infinite valuation. It is
well known (see e.g. [4, chapter 1, Proposition 4.4]) that the finite and infinite valuations
are in fact all C-valuations of C(T").

The following result is useful to determine ramifications and valuations:

Proposition 2 (Puiseux). Let k be an algebraic closed field of characteristic 0. And let
K be a function field defined by the polynomial
P(X,T)= X4+ Py (T)XT 1 4 ... 4 Py(T)

with coefficients Py, ..., Pyj_1 € k(T), then for each a € k there exist formal Puiseuz series

o0

Yij = Z ch,i(ihj(T — a)h/e‘” (1<j<eqil<i<rg),

h=m;
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where cp; € k and §; € k is an eq;-th root of unity such that
rq €a,i
PX,T) =[] T](X = viy)-
i=1j=1
Moreover let Bq,..., By, be the primes of K lying above the prime (T' — a) then e,; =
e(Pi (T —a)) fori=1,...,rq for some appropriate order of the indices.

Note that a similar statement is true for infinite valuations. Furthermore the m; are
the valuations of o with respect to the primes above (T'—a), where « is a root of P(X,T).

Let F(X,Y) = m be a Thue equation over the integral closure O, of k[T] in some
finite extension L/k(T"). Mason [12] proved an effective bound for the height of solutions
(X,Y) to F(X,Y) = m by using his fundamental inequality presented in Corollary 1. For
an application of Mason’s fundamental lemma (Corollary 1), we need a tool to compute
the genus of a function field. The Riemann-Hurwitz formula (see e.g. [17, Theorem 7.16])
yields such a tool.

Proposition 3 (Riemann-Hurwitz). Let L/K be a geometric extension of function fields
of characteristic 0, with constant field k and let g and g;, be the genera of K and L,
respectively, then

(6) 291, —2 = [L: K|(2gx —2) + Y (ew—1),

weMp,
where My, is the set of valuations of L and e, denotes the ramification index of w in the
extension L/ K.

By a geometric extension L/K we denote a finite algebraic extension of function fields
such that LNk = k holds for the constant field k. Note that if k is algebraic closed, every
finite algebraic extension is geometric.

We end this section by investigating some properties of the polynomials of interest.
First we prove that they are irreducible.

Lemma 1. The polynomials
X3 X =N +1 and X(X —r)(X =N +1

are irreducible under the same restrictions as made in Theorems 1 and 2. We also allow
Kk to be a constant.

Proof. Suppose one of the polynomials is reducible, then this polynomial splits into a
linear factor X — a and a quadratic factor X2 + bX + ¢ with a,b,c € C(T). Since the
coefficients of the polynomial are elements of C[T] also a, b, ¢ € C[T], hence a is a constant.
Moreover, a is a root of the polynomial and therefore a?(a — A\) + 1 = 0 respectively
ala —k)(a—A)+1=0. If a # 0, a # X respectively a # 0 a # k and a # A the left
hand side has degree at least deg A > 0 therefore a = 0, a = X respectively a = 0,a = &
or a = A. In any case this would yield 1 = 0. Therefore the polynomial is irreducible. [

For the rest of the paper we will denote by « a root of F'(k, \) respectively F'(0, ) and
by a1 := «, a9 and g its conjugates over C(T).

Let us denote by § := (a1 —ag)?(as —a3)?(as —a1)? the discriminant of the polynomial
F = F(k,\) resp. F' = F(0,\). If § is a square in C(T") we know that the field K = C(T, «)

is Galois over C(T"). We compute
(7) 6= AN+ K2+ N2EAN+ k)2 — 18 (N + k) —4X3K3 =27, if F = F(k,\),
T 4N 27, if F=F(0,\).
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Lemma 2. Let o be a root of F = F(0,\), then K = C(T, «) is not Galois over C(T).

Proof. The lemma is equivalent to the statement that the equation 4X3 — 27 = Y2 has
only constant solutions. We apply a theorem of Mason (see [14, Theorem 6] or [13]) to
this equation:

Lemma 3 (Mason). For a fized function field L/C let o, ..., apn € L and O, the integral
closure of C[T] in L. Assume (X,Y) € Or x O, is a solution of the equation

(X —a1) (X —a,) =Y?,

then Hp,(X) < 26H + 8¢y, + 4(r — 1), where H is the height of the polynomial on the left
side of the equation, gr, is the genus of L and r is the number of valuations of L above co.

We apply Lemma 3 for L = C(7"). Then we have r = 1, g;, = 0 and H = 0. Therefore
H(X) <0, which means X is a constant, hence both X and Y are constants. 0

Note that instead of Mason’s theorem (Lemma 3) we could also use a theorem of
Ribenboim [16] on Diophantine equations in polynomials.

The author conjectures that the Galois group of the polynomial F(k, ), with —oco <
degr < deg A\ is always the symmetric group S3. Unfortunately the author could only
prove Lemma 2.

3. Proof of Theorem 2

The proof will essentially depend on Puiseux’s theorem (Proposition 2). In particular,
we use the fact that the m; (in the notation of Puiseux’s theorem) are the different
valuations of the root a of P(X,T) in K. In view of Theorem 2 we denote by « a root
of X2(X — \) + 1. The Puiseux series at infinity can be interpreted as the “asymptotic”
expansion of . We compute the Puiseux series of X2(X — T') + 1 and obtain

12
al:T_ﬁ_ﬁ+‘.'7
11 5
(®) “@=miE Yoty T
11 5
a3 =

iz o TRra T

Therefore we have proved Theorem 2 in the special case A = T'. Since Puiseux series are
formal power series we may replace T by A(T') and replace \/A(T) by one of the Puiseux
series of X2 — \(T) at co. Let | = deg A\ > 0 and a; the leading coefficient of \. We obtain
after replacing and rearranging the power series (8) the series

alzalTl—i--”

[
(X2:7T +...
NG

__ L e
a3 N T +
Obviously K is ramified at infinity if [ is odd. So it remains to show that K is unramified
at infinity if [ is even. A close look on Puiseux’s theorem shows that if the series of ao
and ag correspond to the same ramified valuation then, the coefficients coincide for every
integral exponent. Therefore ramification at infinity can only occur if |/a; = —,/a;, hence
a; = 0, but this is a contradiction to the assumption that ;7" is the leading term of .
Therefore the valuation at infinity is unramified in this case, which proves Theorem 2.
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4. Fundamental Units

In order to solve Diophantine equations (2) and (3) we have to investigate the structure
of C[T,a]*. In particular we prove:

Proposition 4. Let a be a root of F(k,\) with k # 0 then, C[T,a]* = (o, a0 — k) x C*.
If a is a root of F(0,\; X) and deg A\ =1 is odd, then C[T,a]* = (a) x C*.

Let ¢ € C[T, a]* and &1 := ,e9 and 3 its conjugates, then we have
(9) € =ho+ hio; + hza? (1 <1< 3),
with hg, h1, ho € C[T]. Solving this linear system by Cramer’s rule one obtains

erasas(as — ag) + esazar (a1 — a3) + ezaias (e — aq)

hg = : 7
(10) hy = e1(ag + ag)(a2 — ag) + e2(as + a1)(az — ar) + ez(ar + az)(an — az)
N ) )

hy = 81(&3 - CVQ) + 52(&1 - 043) —+ 83(042 — 041)

4]
where
0= det(a;_1)1§i7j§3 = (a1 — OéQ)(OZQ — 043)(043 — 041)
is the square root of the discriminant of F'(k, \) resp. F'(0, \).

We know that ho,h; and hy € C[T], that is their valuations at infinity are < 0 or
= +00. The following lemma is essential for proving Proposition 4.

Lemma 4. Let e € C[T,a]* \ C* then H(e) > deg A +degk if o is a root of F(k, \) with
k#0, and H(g) > deg X if « is a root of F(0,\) and 21 deg \.

Proof. We have to distinguish two cases: k # 0, kK = 0 and 21 [. For the rest of the proof
and also for the rest of the paper we define [ := deg A and k := deg k.

In a first step we compute the infinite valuations of c. To obtain the valuations of «
we have to factor F'(k,\) over C((1/T)). Let

F(r,\) =X2 — A+ K) X%+ AeX +1
= (X— (a7 +...)) (X— (a1 +...)> <X— (a®)Tvs +...)),

then —uv; are the infinite valuations of . Let us assume vy > vy > v3. By comparing
coefficients we obtain for k # 0

Ak =@DT )+ (@D T2 4 )+ (@PT ),
Ak :(ag)Tvl 4. )(ag)Tvz + )+ (aq(j)T”? 4. )(al(g)Tvi“ 4+ )
(@ T ) (@) T ),
1 :(afﬁ)T”l 4. )(a&?T”Q +... )(al(g)T”?’ +n),
hence
max{vy,ve,v3} > 1, max{v) + vo,ve + v3,v3 +v1} > 1+ k, v1 + v9 +v3 = 0.

In the case of v1 = v = v3 we have v1 = v9 = v3 = 0, hence [ < 0 which is a contradiction.
If v1 = v9 > w3, then 201 = [+k, but max(vy, ve,v3) = 1/2+k/2 < [, again a contradiction.
Let v1 > v9 = v3. Then v1 = [, hence vy > k and v; + v9 + v3 > [ + 2k > 0. Now assume
v1 > v9 > vg, then we have v1 = [, v1+wve = [+ k and v1 +vo+v3 =0, hence v1 = [, vo = k
and v3 = -l — k.
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In the case of k = 0 we similarly obtain v; = [ and v = v3 = —[/2. Moreover it is easy

to compute the a’s. We find that al(l) = q; and aﬁ% = —al(;’; = ﬁ where q; is the leading

coefficient of X\. Note that we have already proved this in section 3.

First we study the case k # 0. Let co1,002 and ooz be the infinite valuations of
K = C(T,«) such that (o) = —looy — koog + (I + k)oos is the principal divisor of «.
Moreover, let € € C[T, a]* with (¢) = e1001 + €002 + e3003 and € = hg + hia + hoa®. We
denote by d; the degree of h; with ¢ = 0,1,2. In the case of h; = 0 we set d; = —oco. We
note that if two of the h’s are zero it is easy to see that Lemma 4 holds.

Let m = min{—dy, —d; — [, —d2 — 2l}. First we suppose —dy = m. Since [ > k we get
—do < min{—d; — k, —do — 2k} and —dy < min{—d; + 1+ k, —ds + 2] + 2k} and therefore
62263:—d0§ —d2—2l§2l ifhz#oand62:€3:—d0§ —dl—lﬁ -1 ifhl#o,
hence |e1| = |ea+e3| > 2l and Hi (e) > 21 > I+ k. Now we assume —d; —] = m < —dgs—2
or —dg — 21 = m is the sole minimum. Then e; = m < —2[ and again Hg () > 2l > [+ k.
At last we assume —d; — | = —do — 2] = m # —dgy note that in this case dy or dy cannot
be —oo. Then d; = dy + [ and the minimum of {—dy, —d; — k, —dy — 2k} is either —dj or
—d1—k = —do—1—k. If dg # d1+k then es is equal to the minimum which is < —do—1—k.
If dy = d1+k we have (—dy, —d1 +1+k, —do+21+2k) = (—dy —k, —dy +1+k, —d; +1+2k).
The sole minimum of this set iseg3 = —d1 —k=—-do — 1 —k < -l — k.

Now let us consider the case x = 0 and 2 { . In this case (o) = —loo1 + loog, where ooy
denotes the ramified valuation. Moreover we let () = ej00; + e2002. Note that e; = —eo,
because ¢ is a unit of C[T, ). This time we put m = min{—dy, —d; — I, —day — 21}.

Suppose m = —dy then —2dy < min{—2d; + [, —2ds + 21}, i.e. ea = —2dy = 2m <
—2d2—4l § —41 ifhg 75 0 and €2 S —2d1—2l § —2 ifhl 75 0. If m = —dl—lOI‘
m = —dg — 2l is the sole minimum, then ey = —d; — [ or e; = —dy — 2[. In any case
Hk(e) = |er| > 1. Now let us assume —dy — | = —dy — 21 = m respectively dy = dg + L.
We find (—2do, —2dy + I, —2dy + 21) = (—2dp, —2d; + 1,—2d; + 41). Either —2dy or
—2dy + 1 = —2ds — [ is the sole minimum or 2dy = 2d; + [. The first two cases yield that
es is equal to the sole minimum which is at most —2dy — I < —I, hence Hg(¢) > I. The
last case is impossible since [ is odd. O

Now we prove C[T, a]* = (o, «— k) x C*. Let us write 1 = o and 12 = a— k. Moreover,

we define the map
log : C[T,a]* — R? log(e) — (e1,e2),

where (g) = e1001 + e2002 + e3003. Obviously log(C[T,a]*) is a lattice A C Z? and
we have kerlog = C*. Therefore we have to prove log(n;) and log(n2) generate A or
equivalently log(n) = (=1, —k) = w; and log(n1/n2) = (0,1 + 2k) = wo generate A. Now
let € be any unit with log(e) = (e, e2). It is clear that subtracting from (e, e2) suitable
(integral) multiples of w; and wy we obtain a new vector (e}, eh) with —1/2 < e} < /2
and —(142k)/2 < e, < (I+2k)/2. By Lemma 4 we know max{|e1|, |ea|,|e1 +e2|} > 1 +k
or ¢ € C*. Therefore (e}, ¢e}) = (0,0), i.e. w; and wy generate A.

In the case of F(0,\) and 211 the proof is easier. This time we define our log-map as
follows:

log: C[T,a]* = R log(e) — e,

where () = e1001+e2002. Again log(C[T, a]*) is a lattice A C Z and we have ker log = C*.
Therefore we have to prove that log(a) = —I generates A. Because of Lemma 4 we know
that for any € € C[T, a]* \ C* we have |log(e)| > | and therefore log(¢) must be a multiple
of log(a). Otherwise there would exist an integer k such that

—1/2 < log(¢') = log(ea™%) = log(e) — klog(a) < 1/2
and log(g") # 0, a contradiction.
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TABLE 2. Valuations of the relevant quantities.

o1 : g9 : g3 : o/ g5 g6

a1 — Q9 a1 — Q9 a1 — Q9 a] — Q9 a] — (9 a1 — (9
— — — — — —

a1 — Qg a1 —ag a2 — a3 a2 — Qa1 a3 — Qg a3 — Qa3
a1 — o — -l 1/2 —1 — 1/2
oy — as 1/2 1/2 —1 —1 —1 —1
a3 —aq — —l —1 1/2 1/2 —1
o — =l 1/2 1/2 1/2 12
o 1/2 1/2 1/2 —1 —1 1/2
s 1/2 1/2 —1 1/2 1/2 —1

The next lemma tells us something about the valuations of units in the case of Kk =0
and 2|l.

Lemma 5. Let ¢ € C[T,a]* \ C*. Then H(e) > deg)/2, if a is a root of F(0,\)
and 2|deg A. Let () = e1001 + e2009 + €3003, where we choose 001,009,003 such that
() = —looy + /2009 + 1/2003. We have

leif 2, if Jea| = max|ei],
1) ol 2172 if Jea] = max e,
les| > 1/2, if les| = m?X|€i|-

Proof. In order to prove this lemma we have to consider the normal closure L = C(T, a; —
ag) of K = C(T,«). We have to compute the valuations in the closure, since we want to

compute the degree of hy in terms of e, ey and es using (10). For the valuations of the
relevant quantities see table 2.

At first, note that L is unramified above oo, since with K; = C(T,«a;) and Ko =
C(T, a2) also L = K1 K> is unramified. We obtain

(51(a3 — a2)

5 > :(61 + 2[)001 + (61 + 21)002 + (62 + 1/2)003 + (62 + l/2>OO4

+ (eg +1/2)oc05 + (€3 + 1/2)o0g,

<€2<&16—043>> —(e3 +1/2)001 + (e3 4 1/2)00s + (€3 + 1/2)003 + (e1 + 21)o0s

+ (€1 + 21)o05 + (e2 +1/2)ocs,

(W> =(e3 +1/2)o01 + (e2 +1/2)o0z + (e1 + 2l)o03 + (€3 + 1/2)004

+ (62 + l/2)OO5 + (61 + 2[)006,

where () denotes the polar divisor, oo; is the valuation corresponding to o; and
(€)oo = €1001 + 1002 + 2003 + 2004 + 3005 + €3006.

Now let m = min{e; + 2l,e2 +1/2,e3+1/2}. We know 0 > —deghy > m if hy # 0. This
can only happen if either e; < —2[ or eg < —1/2 or e3 < —I/2. Therefore (11) is satisfied
in this case.
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Now we want to prove that Hx(¢) > [ if hg = 0. We use the same method as used in
the proof of Lemma 4. Remind that d; = degh; for i = 0,1. Let m = min{—dy, —d; —}.
Assume m = —dy, then —dy < —d; + /2 and ez = —dy < —d; — 1 < —I. On the other
hand if —d; — [ is the sole minimum of {—dy, —d; — [} then e; = —d; — [ < —L. O

5. Bounding the height of the solutions

The aim of this section is to prove an upper bound for the solutions to (2) resp. (3).
We start with some notations usually used in the case of number fields. Let (X,Y) be a
solution to (2) resp. (3) and let a5, with ¢ = 1,2,3 be the roots of F(k,\) resp. F(0,\).
Then we define

Qi = o — ay, Bi =X — a;Y, Vi = B0k,
and we write 3 := 1 = X —aY. Equation (2) resp. (3) may be expressed as Ny /c(7)(X —
aY) = £, where Ng ¢y denotes the norm from K = C(T,«) to C(T'). From this norm
notation we deduce f3; € C[T,a]*. We denote by L := K(ag,a3) = C(T,a; — ag) the
splitting field of F(k,A). If K is Galois then K = L. By dx respectively d;, we denote
the discriminant of the Dedekind ring extension O /C[T] respectively O /C[T]. By dx
respectively 5 1, we denote the discriminant of the element «y respectively a; — as.

In order to get sharp estimates for the height of § we investigate Mason’s approach to
Thue equations (see [12, 14]). In particular we use Siegel’s identity

71,23 +72,31+73,12 =0

and combine it with the ABC-Theorem (Proposition 1), respectively with Mason’s fun-
damental lemma (Corollary 1).

In the following we distinguish whether K = C(T,«) is Galois or not. We start
by factoring the discriminant. Let O denote the algebraic closure of C[T] in L =
C(T, a1, as,a3) = C(T, a1 — ). Since C[T, a1 — as] C Op we compute the discrimi-
nant § = §(a; — ap). If K is Galois, then

8[{ = S = (Oél — 042)2(042 — 043)2(043 — 041)2.

If K is not Galois, we find

5[, = S :64(a1 - a2)6(a2 - a3)6(a3 — 041)6

X (201 — ag — a3)* (200 — a1 — a3)* (203 — a1 — ).

Note that 0 is a symmetric polynomial in a1, as and a3. Therefore we can write § as
a polynomial in s1 = a3 + as + a3 = Ak, So = ajag + asag + aga; = A + Kk and
s$3 = ayagag = —1. A symbolic computation e.g. in Mathematica shows

01, =64(27 — 2k3 + 3K2X 4 3kA%Z — 2X3)*
X (=27 — 6rA2 + KIAZ 1403 + K2N(=6 + A%) — 263(—2 4 A3))3,
respectively
O = —27 — 4r3A% — 18k (K + A) + K2X2(k 4+ V)2 + 4(k + V)2

Now it is easy to deduce deg o = 4l + 2k, if K is Galois and deg 6 = 24l + 6k if K is
not Galois and k # 0, respectively deg dr = 211 if kK = 0.
First, let us consider the non-Galois case. Since the discriminant (cf. section 2)

o = (131,2 - 'Pr2,2)3(P1,3 - 'Pr3,3)4(131,6 - 'pr6,6)5 = (dr),
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we have
T2 r3 T6

dr, = H(T - ag,2)3 H(T - %73)4 H(T - ag76)5
g=1 g=1 g=1
and 6, = drR? with dy,R € C[T]: Note that the p;; are the primes generated by
T — a; j.Therefore we have

(12) deg 5L = 3ry + 4rs + Brg + 2r,

where 7; is the number of finite primes ramified with ramification index e = ¢ and where
r = deg R. In the Galois case we obtain similarly

(13) degdy, = 2r3 + 2r.

Note that in the case of Kk =0 and [ = 1 (mod 2) also the infinite prime is ramified with
ramification index 2.

We have to consider four different cases: the case of K is Galois (case I), this implies
k # 0 (see Lemma 2), the case of K is not Galois and k # 0 (case II), the case of Kk =0
and [ is odd (case III) and at last the case of k = 0 and [ is even (case IV).

First we compute the genus gz, of L. By the Hurwitz-formula (Proposition 3) we obtain

29r, —2=—6+2r3 (case I),

2gr, — 2= —12+ brg + 4r3 + 3ro (case II),
291, —2 = —9+4 5r¢ + 4rs + 312 (case III),
2gr, — 2= —12+ brg + 4r3 + 3ro (case IV).

In view of Corollary 1 we have to compute the quantity |V|, where V is the set of
valuations such that v1 23,7231 and 73,12 do not have the same valuation. Obviously

VeV i={v: viviasrsiie) #0U{v : vieo} ={v : v(§) #0}U{v : v|oo}.

Let us consider case I. Since the finite part of V' are those primes (valuations) that divide
Sk = dx R? we have V| = r3 + 2r 4+ 3, where
r3
dK = (041 — 042)2(042 — a3)2(a3 - a1)2 = H(T - a973)2.
g=1
Now we investigate the other three cases. The finite parts of the V"’s are the same,
so we have essentially only one case. We obtain in any case |Vj| < rg + 2r3 + 3rp + 6r,
where V) denotes the finite part of V. In order to obtain |V'|, we have to add 6 or 3 or 6
according to the different cases.
Now we apply Mason’s fundamental lemma (Corollary 1) and obtain:

Hp, (W’) <3(rs+r—1) (case I),
72,3,1
71,2,3

Hy, () <6(r¢ +rs+re+r—1) (case II, III, IV),
72,3,1

where Hj denotes the height of elements in L.
Next we want to obtain an upper bound for Hy, (%) Let us denote by

H,(a) = — Z min(0,w(a)), a€ CU{oo}

wlva
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the local height. Obviously, we have

(14) Hp(o)= Y Hila).

Using notation (14) we obtain

H, (71,2,3) _ Z o <a2,3> LH (71,2,3)
V2,31 “\asg 2\ 2,31

va€Vo

(15) >H.. (51 : 0‘23)

BQ a3

By 2,3
= o (52> Heo <043,1> '

Now we have to estimate the quantity Hy(az23/as1). In order to get good estimates
we have to consider the normal closure and compute some valuations. Since we know the
valuation of «, it is easy to compute table 3. Note that if K is Galois 09,04 and og are
not elements of the Galois group of K and should not be considered in that case.

TABLE 3. Valuations of the relevant quantities.

01 02 g3 04 05 06
a1 — Q9 a1 — Q9 a1 — Q9 a1 — Q9 a1 — (9 a1 — (9
— — — — — —
a1 — Qg a1 — Qg Qp — Qg Qp — a1 a3 — Qg a3 — Qa3
a - -l —k —k l+k l+k
a9 —k l+k l+k -l - —k
Qs l+k —k -l l+k —k -
a1 — Qg - — —k -l -l —k
Qg — a3 —k —k -l -l -l -
a3 — ag - — -l —k —k -

Now we find from tables 2 and 3

Hp, <a273> <l—k (case I),
Qas.1

Hr, (O‘Z?’) <21 — 2k (case II),
Qas.1

Hy, (O‘zf’) <30 (case III, IV).
Qas.1

Next we are going to prove that %H L (%) > Hr(#1). We consider only the cases II,

IIT and IV, for which the proofs are the same. The proof of case I is similar. Since 1 € K
Wwe may assume

(B1) = b10o1 + b10og + ba003 + baooy + b3005 + bzocs,
where the valuations oo; are indicated by the o; given by table 3. Then

(B2) = baooy + bgoog + b3oog + bioog + bjoos + baoog,
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and furthermore
(B1/B2) =(br — bz)oo1 + (b1 — bs)oog + (b2 — b3)oo3 + (b — b1)oos
+ (b3 — b1)oos + (bg — ba)oog.
Let us assume by > 0 > by > b3 (all other cases run the same way, since we have
Hp(41) = 2max; |b;]). We have by = —bg — bg and —bg > %bl, since B is a unit in Og.
We also know that Hy(31) = 2b; and Hp, (B—;) = 2b; — 2b3 > 3b1 = %HL(ﬁl).
The cases II, III and 1V yield Hy (1) = 2Hg (f1). Therefore we obtain

Hy(6) <2(r3+r—1)+ %l — %k (case I),
(16) Hi(B1) <2(r¢ +rs+ra+r—1)+ 32 — 2k (case II),
Hy(B1) <2(r¢ +r3+r2+7r—1)+1 (case III, TV)).

From (12), (13) and (16) we find:

Lemma 6. If K is Galois we have Hi (1) < 7l and Hi (f1) < 311 if K is not Galois. In
the case of Kk = 0 we have Hy (1) < 22l. If we assume 34degk < deg \, then we obtain

the following improvements: If K is Galois, then Hg (1) < bl. In the non-Galois case
we obtain Hy (1) < 251.

Proof. The lemma follows from the following inequalities:
2 2 2 2
~ 2 2 2 2
2 2
Hg(61) <2(r¢ +rs+ra+r—1)+ §l - §k

~ 2 2 2 2
< — ] — | — —_] — —

Hg(B1) <2(r¢ +r3+ro+r—1)+1
<degdp — 241 =221 —2 < 22 (case III, TV).

6. Proof of Theorem 1 and Theorem 3

We start with the proof of Theorem 1. First let us assume that  is not a constant.
From Lemma 6 we know Hp (1) < 311. We also know that 3; = en{'n5?, with a1, as € Z,
N = a1, N = a1 — kK and € € C*. This yields

(61) = —(a1 + az)looy + ((ag — a1)k + axl)ooy + ((a1 — az)k + ayl)oos.
Therefore 311 > Hg (1) > I max{|a1 +azl, |ai1], |az|}, hence 30 > max{|a; +az|, |ai|, |az|}.
This yields 2791 possibilities for (a1, a2). We compute for every possibility the quantity 3y
in the form of Xy + Xjaq + Xoa?. It is clear that 3; yields a solution, namely (Xo, —X1),
to (2), if and only if X5 = 0.

Unconditionally X9 = 0, if and only if (a1, a9) € £, with

& :={(-1,-1),(0,0),(1,0),(0,1)}.

From these (3’s we obtain the trivial solutions. The strategy to prove that there are
essentially only trivial solutions is to prove for every possible g that Xo does not vanish
(with only some possible exceptions). Let us consider Xo as a polynomial in A and k.
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We use following simple criterion to exclude some Xs’s. Let us consider the following
degree function degP := deg, P + deg, P, where deg, P resp. deg, P denotes the degree
of P considered as a polynomial in x and A. Let M; and M> be two monomials of P

we write My ; My if ECEMl > d/e\gMg or ECEMl = d/e\gMg and deg, M; > deg, Ma.

If the largest monomial M with respect to ; has maximal A-exponent, then P cannot
be zero. Indeed M is the unique monomial which has maximal degree in T, since we
assume deg A > degk > 0. Using this criterion for P = X5 there remain only 392
exponents (a1, az). Let us pick out the exponents (4,—1) and (—1,4), for which we find
Xy = A+ 2k — K respectively Xo = XA — 3k — w*. These values yield the “sporadic”
solutions stated in Conjecture 1. Furthermore, we pick out the exponents (5,—1) and
(—1,5), for which X = A% 4+ 2X\k + 3k? — k5 respectively Xo = A2 — 4k + 6k2 4+ k5. We
want to prove that in these two cases Xo = 0 is not possible.

Lemma 7. The equations
X2 +2XY +3Y2-Y® =0

and
X?—4XY +6Y?+Y’ =0
do not have a solution (X,Y) € C[T)?, such that X is not a constant.

Proof. Put X +Y = Z respectively X —2Y = Z, then we have to show that Z2 = Y?—-Y?
respectively Z2 = —Y® —2Y? has only constant solutions. Because of a theorem of Mason
[13] (see Lemma 3) we can easily show that H(Z) < 0 in both cases. Therefore Z is a
constant, hence also Y is a constant. Since X = Z — Y resp. X = Z + 2Y also X is
a constant, which yields the lemma. Not that instead of Mason’s theorem we could also
apply a theorem of Ribenboim [16]. O

In order to proof Conjecture 1 we have to show that the 388 remaining equations arising
from X5 = 0 have only constant solutions. The author could only solve the 4 cases stated
above.

Let us prove the second statement of Theorem 1. Note that each exponent (ai,as)
yields for fixed x and A at most three solutions. Indeed one receives from one solution
all other solutions by multiplying this solution by the third roots of £&. So we are reduced
to determine how many \’s exist that yield solutions, if x is fixed. We want to count
the number of solutions of the 388 remaining equations. Since one equation has at most
deg, X5 solutions, provided & is fixed we add the degrees of all 388 possibilities and obtain
that there are at most 5482 different A’s. Adding the two possibilities that we gain from
the exponents (4,—1) and (—1,4) we have at most 5484 different \’s and therefore at
most 16452 non-trivial solutions.

Now let us prove that there are only trivial solutions if deg A > 34 deg x. Lemma 6 and
a similar argument as above yields that only exponents (a1, az) with max{|a1|, |az],|a1 +
az|} < 24 yield solutions to (2). Let us modify the degree argument given above, by using
the weighted degree function d/eTgP := 34 deg, P +deg, P instead. Now the criterion that
the largest monomial has maximal A exponent together with the assumption degA >
34 deg k yields that this monomial has unique maximal degree, with respect to 1" and
therefore Xs cannot be zero. A short computation on a computer shows that this criterion
is always fulfilled for all 1801 possibilities and therefore we have proved the first part of
Theorem 1.

Now we consider the case of kK € C*. The quantity X considered as polynomial in &
and A may only vanish if there is either no monomial or at least two monomials for each
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power of A. Checking all possibilities we are left to 48 cases. Next we check whether the
constant term, the coefficients of A\ and A\? can vanish simultaneously. This yields that
(a1,a2) € €, where

& ={(-1,-1),(-1,3),(0,0),(0,1),(1,0), (3, —1)}.

These exponents only yield the trivial solutions and the 6 exceptions listed in table 1.
Now we prove Theorem 3. The argument is the same but easier, because we have

only one exponent to keep track of. We know [ is a unit and therefore 8; = eaj* (see

Proposition 4), with ¢ € C*. If we combine this result with Lemma 6 we obtain

220 > HK(ﬁl) = \a1|l,

and therefore |aj| < 21. We compute each possible 51 = X + Xja1 + Xga%. Of course
(1 yields a solution if and only if X9 = 0. Unconditionally Xo = 0 if a; € {—2,0,1}.
These values for a; yield the trivial solutions. We have to prove that there are no further
possibilities for X5 to vanish. A close look on the other X5 shows that they are polynomials
only in A and so X2 = 0 is impossible, since A is not a constant.

7. Proof of Theorem 4

Since there is no analog of Dirichlet’s unit theorem for function fields we only know
that the unit group of Ok has rank at most 2. Since we have found one non-constant
unit we know that the rank is at least 1. In the case of rank 1 the proof of Theorem 4 is
the same as the proof of Theorem 3, and we obtain only 9 different solutions. Indeed «
generates the unit group since the log-function defined in section maps C[T, a]* on a line
through log(a) = (—1,1/2) and (0,0). But log(«) would be the smallest element on that
line that lies inside (11).

Now let us assume the rank of the unit group is 2. As stated in the paragraph above
a1 # n* for any unit n € C[T,1]* and |k| > 1. Therfore we can write #1 = eaj'n?,
where ¢ € C*, a1 and 7 are a system of fundamental units and ai,as € Z. We reduce
this counting problem to a problem of counting lattice points in a domain. Since (31 is a
unit we map 3; to the plane R? using the log function, defined in section 4. We know
that the units form a lattice A C Z?. Furthermore we know that no lattice point lies in
the open domain A given by (11). Since A is not convex we consider the convex domain
D = {(e1,e2) : max{lei],|ea|} < 1/2} C A. By Minkowski’s famous theorem we know
that the lattice constant of A is at least 1?/4, since |D| = [, where |D| denotes the area
of D. In order to proof Theorem 4 we have to estimate the number of lattice points of A
lying in the domain

S { ler + ea] < 221 if signe; = signes,
max{|e1], |e2|} < 221 if signe; # signes.
Let us consider the domain
S { ler +ea] < (224 1/4)1 if signe; = signes,
' max{|e1], ez} < (224 1/4)1 if signe; # signes.

Then every domain %D + w such that w € AN S is contained in &’. Since all %D + w are
disjoint, we have

1
Hw : we ANS} ‘QD' <18,
hence
3(22 + 1/4)%1*

Hw :weANnSt< (122

= 5940.75.
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Therefore we have only 5940 possibilities for the exponents (aj,a2) of (1. Obviously
exponents of the form (a, 0) yield only solutions that appear in the case of I =1 (mod 2).
Since in this case we only have trivial solutions, we may exclude the 43 possibilities given
by (a1,0). So we are left to 5897 possibilities. Since every pair of exponents yields at
most three solutions we have proved Theorem 4.
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