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1 Introduction

Computer generated pseudorandom numbers are used in many algorithms of applied mathematics
(Monte Carlo methods, simulation, etc.) and the performance of such algorithms depends in an
essential way on the properties of the random numbers used. A simple but important concept in the
study of pseudorandomness is the discrepancy, characterizing how close the distribution of a finite
sequence is to the uniform distribution. The discrepancy DN of a finite sequence (x1, . . . , xN ) in the
unit interval [0, 1) is defined by

DN = DN (x1, . . . , xN ) := sup
0≤t≤1

∣∣∣∣
1
N

card (k ≤ N : xk ≤ t)− t

∣∣∣∣ . (1)

An infinite sequence (xn) is called uniformly distributed in the sense of Weyl if DN (x1, . . . , xN ) → 0 as
N →∞. Uniform distribution and discrepancy are particularly useful tools in connection with Monte
Carlo and quasi-Monte Carlo integration, since by a well known inequality of Koksma and its multi-
dimensional generalizations (see e.g. [13], p. 143 and p. 155), the error term in such procedures depends
on the discrepancy of the pseudorandom sequence used. However, uniform distribution catches only
one aspect of randomness and so called low discrepancy sequences may have rather poor performance
with respect to other algorithms, such as simulation. Recall that if (ξn) is a sequence of i.i.d. random
variables uniformly distributed in [0, 1), then by the Chung-Smirnov LIL (see e.g. [22], p. 504) we have

lim sup
N→∞

NDN (ξ1, . . . , ξN )√
N log log N

=
1√
2

a.s. (2)

In other words, the discrepancy of ”truly” independent sequences has the precise order of magnitude
O(N−1/2(log log N)1/2) with probability 1. On the other hand, if ηn = {nω} where ω is a random
variable uniformly distributed in [0, 1), then by a result of Kesten [11] we have

NDN (η1, . . . , ηN ) ∼ 2
π2

log N log log N in probability. (3)

Here {t} denotes the fractional part of t. Thus the sequence (ηn) gives a better remainder term
in Monte Carlo integration than the ”truly” i.i.d. sequence (ξn), but obviously its fluctuations are
quite different from those of i.i.d. sequences and this makes (ηn) unsuitable for simulation pur-
poses. A sequence resembling i.i.d. sequences not only has to have small discrepancy, but it must
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share several other properties with random sequences as well. Such properties can be used as ’tests’
for pseudorandomness, see Knuth [12] for a detailed discussion. For example, an i.i.d. sequence
(e1, . . . , en) ∈ {−1, 1}n has the normality property meaning that not too long strings of ±1 occur in
it with the ’proper’ frequency, it must be well-distributed relative to arithmetic progressions in the
sense that the sums

∑r
j=1 ea+bj with a ∈ Z, b ∈ N and subject to 1 ≤ a + b ≤ a + br ≤ n are

uniformly small compared with n (in fact, roughly O(n1/2)), it must have small multiple correlations,
etc. In a series of papers (see e.g. [14], [15], [16]), Mauduit and Sárközy give a detailed study of these
properties, in particular, they investigate the well-distribution and correlation measure of several con-
crete constructions of pseudorandom sequences. In the context of sequences in [0, 1), they define the
well-distribution measure by

WN (x1, . . . , xN ) := sup
(pk)∈L

∣∣∣∣∣∣
∑

pk≤N

(
1(xpk

≤ 1/2)− 1/2
)
∣∣∣∣∣∣

(4)

where 1(B) denotes the indicator function of the set B and L is the class of arithmetic progressions
pk = a + bk, k = 1, 2, . . . with integers a ≥ 0, b ≥ 1. Both WN and NDN are suprema of sums of
centered indicator functions 1(xj ≤ t)−t, but they have a completely different behavior. For example,
the order of magnitude of NDN for an infinite sequence (xk) in [0, 1) can be as small as O(log N), an
order of magnitude which is in fact the smallest possible by a classical result of W. Schmidt (see e.g.
[6], [13]). In contrast, by a result of Roth [21], for any sequence (x1, . . . , xN ) we have

WN (x1, . . . , xN ) ≥ cN1/4

where c is an absolute constant. The discrepancy DN (x1, . . . xN ) can be fairly sharply estimated
in terms of the exponential sums SN (h) =

∑N
k=1 e2πihxk by using the Erdős-Turán and Koksma

inequalities (see e.g. [6], [13]), reducing the study of DN to an analytic problem for which powerful
tools exist. On the other hand, the computation of WN leads to difficult combinatorial problems
which are still unsolved in many important cases.

The purpose of the present paper is to give a detailed analysis of the well distribution measure WN

in (4); we will be specifically interested in the order of magnitude of WN (x1, . . . xN ) for i.i.d. sequences
(xn) and sequences of the type xk = {nkω}, where (nk) is an increasing sequence of positive integers.
The sequence {nkω} provides a particularly simple example for a uniformly distributed sequence in
the sense of Weyl and it has been investigated extensively in the literature. Apart from technical
simplifications, using the class L of arithmetic progressions in (4) has no particular significance; for
example, for ’not too large’ classes A of sequences of positive integers and for i.i.d. sequences (xn) we
will be able to give sharp bounds for the more general quantity

W
(A)
N (x1, . . . , xN ) := sup

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∣
∑

pk≤N

(
1(xpk

≤ t)− t
)
∣∣∣∣∣∣
. (5)

We will see that the order of magnitude of W
(A)
N is intimately connected with the geometric properties

of the class A, namely, its metric entropy function κ (A; δ,N) and related quantities. Metric entropy
plays an important role in uniformity problems in the law of large numbers, CLT and LIL for random
variables indexed by sets (see e.g. Dudley [7], [8], Dudley and Philipp [9], Pollard [20]), but no
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such connection has been studied when uniformity is meant over subsequences of integers as in (5). In
analogy with the existing probabilistic results on uniformity in the CLT, LIL and other limit theorems,
it can be expected that metric entropy type quantities provide not only upper, but lower estimates
for W

(A)
N , thereby reducing the study of W

(A)
N to the computation of metric entropy numbers.

Before formulating our results, it will be useful to review existing results on the ordinary dis-
crepancy and well-distribution measure of the sequence {nkω}. By a classical result of Weyl [23], for
any increasing sequence (nk) of integers, {nkω} is uniformly distributed for every ω ∈ [0, 1), except
for a set of Lebesgue measure 0. Kesten’s result cited above shows that

NDN ({kω}) ∼ 2
π2

log N log log N

in measure. Another case where the order of magnitude of the discrepancy of {nkω} is known is when
(nk) grows very rapidly. Philipp [18] proved that if (nk) satisfies the Hadamard gap condition

nk+1/nk ≥ q > 1 k = 1, 2, . . . (6)

then we have for almost all ω ∈ [0, 1)

1
4
≤ lim sup

N→∞

NDN ({nkω})√
N log log N

≤ C(q), (7)

where C(q) ¿ 1/(q − 1). Recalling that the precise order of magnitude of the discrepancy of i.i.d.
uniform sequences is O(N−1/2(log log N)1/2) with probability 1, the result of Philipp shows that, in
the sense of discrepancy, the sequence {nkω} behaves exactly like an i.i.d. sequence. For subexponen-
tially growing (nk) the behavior of DN ({nkω}) is much more complicated and depends sensitively on
the number-theoretic properties of the sequence (nk); see Berkes, Philipp and Tichy [3] for a detailed
analysis of the arithmetic effect. In [3] it is also shown that in a certain statistical sense, for ”most”
subexponential sequences (nk) the discrepancy DN ({nkω}) still satisfies (7). Passing to general se-
quences (nk), R. C. Baker [1] proved, improving earlier results of Cassels [5] and Erdős and Koksma
[10], that for any increasing sequence (nk) of positive integers we have

NDN ({nkω}) = O(N1/2(log N)3/2+ε) a.e. (8)

for any ε > 0. On the other hand, one can construct examples such that

NDN ({nkω}) ≥ cN1/2(log N)1/2 a.e. for infinitely many N

(see e.g. Berkes and Philipp [2]). This means that there exist sequences {nkω} whose discrepancy
DN ({nkω}) exceeds the discrepancy of i.i.d. sequences, but the excess factor can be at most a power
of log N .

The previous results give a fairly satisfactory picture of the metric discrepancy of sequences
{nkω} in a number of important cases. In contrast, relatively little is known on the well-distribution
measure WN of {nkω}. Mauduit and Sárközy [15], [16] showed that in the case nk = k we have

WN ({kω}) ¿ N1/2(log N)1+ε

3



for almost every ω ∈ [0, 1), and that the exponent of the log can be replaced by 1/2 if the partial
quotients of the continued fraction expansion of ω remain bounded. They also proved that

WN ({kω}) À N1/2

for every irrational ω. Thus for almost all ω the order of magnitude of WN ({kω}) is roughly O(N1/2),
which, as Theorem 1 in combination with the estimate (21) below will show, is very near to the
order of magnitude of the well-distribution measure of ”true” i.i.d. sequences. As noted, however,
NDN ({kω}) is much smaller than O(N1/2), indicating a very complicated probabilistic behavior of
the sequence {kω}.

Except for the sequence {kω}, no precise estimates for the well-distribution measure of {nkω}
seem to be known. For the sequence {krω} (r = 2, 3, . . .), Mauduit and Sárközy [15], [16] proved that
for almost every ω

WN ({krω}) ¿ N1−αr

with some (explicitly computed) constant αr > 0. In particular,

WN ({k2ω}) ¿ N3/5(log N)2/5+ε a.e.

Philipp and Tichy [19] proved that for any increasing sequence (nk) of integers we have

WN ({nkω}) ¿ N2/3(log N)1+ε a.e. (9)

It is possible that, in analogy with R. C. Baker’s result (8), the factor N2/3 here can be replaced by
N1/2, but this remains open.

2 Results

We are now ready to formulate our main results. Let (ηn) be any sequence of random variables with
values in [0, 1), and let A be a class of subsequences of N. Our purpose is to estimate the quantity

W
(A)
N (η1, . . . , ηN ) := sup

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∣
∑

pk≤N

(
1(ηpk

≤ t)− t
)
∣∣∣∣∣∣
. (10)

Our main interest will be the case when ηk are independent random variables or ηk = ηk(ω) = {nkω},
a sequence of random variables defined on the interval [0, 1) endowed with Lebesgue measure. When
the sequence (ηk) is understood, we shall simply write WN (A) instead of W

(A)
N (η1, . . . , ηN ). Clearly,

for any A and (ηk) we have
W

(A)
N (η1, . . . , ηN ) ≤ N

and for ”large” A this estimate cannot be substantially improved even if ηk are i.i.d. random variables.
For example, if ηk are independent r.v.’s taking the values 0 and 1 with probability 1/2− 1/2 and A
is the class of all increasing sequences in N, then

W
(A)
N (η1, . . . , ηN ) ≥ N/4.
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Indeed, if for each ω we let p1(ω) < p2(ω) < . . . denote those indices such that ηpk
(ω) = 0 then either

(pk) or its complement in the segment [1, 2, . . . , N ] has cardinality at least N/2. Consequently we
have for all ω

sup
(pk)∈A

∣∣∣∣∣∣
∑

pk≤N

(
1(ηpk

≤ 1/2)− 1/2
)
∣∣∣∣∣∣
≥ N/4.

In the case when A consists of a single sequence and (ηn) is an i.i.d. uniform sequence of r.v.’s, we
have

W
(A)
N (η1, . . . , ηN ) = o(N) a.s. (11)

by the Glivenko-Cantelli theorem of probability theory. (Actually, in this case the right hand side of
(11) can be improved to O

(
(N log log N)1/2

)
by the Chung-Smirnov law of the iterated logarithm.)

If relation (11) holds for a larger class A, this means a certain uniformity in the Glivenko-Cantelli
theorem with respect to a class of subsequences of integers. Uniformity in the Glivenko-Cantelli
theorem with respect to subsets of the Euclidean space Rd has been investigated extensively in the
literature. Let (ηn) be a sequence of i.i.d. random variables, uniformly distributed over the unit cube
Kd of Rd, and let C be a class of Borel sets ⊆ Kd. Put

ZN (C) =
∑

k≤N

(1(ηk ∈ C)− µ(C)), C ∈ C

where µ is the Lebesgue measure. As it turns out, the validity of the uniform strong law and LIL, i.e.

lim
N→∞

sup
C∈C

1
N
|ZN (C)| = 0 a.s. (12)

and

lim sup
N→∞

supC∈C |ZN (C)|√
N log log N

< ∞ a.s. (13)

are closely connected with the geometry of the class C, namely how closely the elements of C can be
approximated by ”special” sets. Specifically, let NI(δ, C) denote the smallest number r of measurable
sets A1, . . . , Ar inKd such that for every C ∈ C there exist Ai, Aj , 1 ≤ i < j ≤ r such that Ai ⊂ C ⊂ Aj

and µ(Aj \Ai) < δ (”metric entropy with inclusion”). Then the validity of the uniform LIL and CLT
is closely related to the finiteness of the entropy integral

∫ 1

0

(logNI(x2, C))1/2dx.

(See e.g. Dudley [7], [8], Dudley and Philipp [9].) Another important geometric property relevant for
the uniform strong law (12), discovered by Vapnik and Červonenkis, is how finite sets {x1, . . . , xN}
in Rd can be ”shattered” by elements of C, i.e. how many different sets of the form {x1, . . . , xN} ∩C,
C ∈ C exist. In fact, a necessary and sufficient condition for (12) can be given in terms of this quantity;
see e.g. Pollard [20], p. 22.

The purpose of this paper is to develop similar entropy concepts in the space of subsequences
of N and apply them to prove uniform Glivenko-Cantelli laws of the type (11), together with rates of
convergence, in particular uniform laws of the iterated logarithm. Let A be a class of subsequences
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of N such that N ∈ A. For each N ≥ 1 let AN denote the collection of the restrictions of these
subsequences to the segment [1, 2, . . . , N ] of the first N positive integers, i.e.

AN := {A ∩ [1, 2, . . . , N ] : A ∈ A}.
Clearly

AN =
⋃

r≥1

AN (r)

where AN (r) denotes the class of sets A ∈ AN for which N2−r < card A ≤ N2−(r−1). We call

ψ(A; N, r) := cardAN (r) (14)

the entropy function of the class A.

Next, let (ηk, k ≥ 1) be a sequence of random variables with each ηk having uniform distribution
over [0, 1), i.e.

P (ηk ≤ t) = t , 0 ≤ t ≤ 1, k ≥ 1 . (15)

In Theorems 2-5 we permit ηk to have asymptotically uniform distribution over [0, 1).

Theorem 1 Let (ηk) be a sequence of independent random variables with uniform distribution (15)
over [0,1). Let A be a class of subsequences of N with entropy function ψ satisfying

ψ(A; N, r) ≤ exp (B · 2r/2 log log N), r ≥ 0, N ≥ 10 (16)

for some constant B > 0. Then with probability 1

1
4
≤ lim sup

N→∞
(N log log N)−1/2WN (A) ≤ C

for some constant C, depending only on the constant B in (16).

Next, let (nk) be a sequence of real numbers satisfying the Hadamard gap condition

nk+1/nk ≥ q > 1, k = 1, 2, . . . . (17)

Then the sequence

ηk(ω) := {nkω} (18)

defined on the unit interval [0, 1) endowed with Lebesgue measure, is a sequence of random variables
having asymptotically uniform distribution over [0, 1).
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Theorem 2 Let (nk) be a sequence of real numbers satisfying the Hadamard gap condition (17) and
let ηk = ηk(ω) = {nkω}. Let A be a class of subsequences of N with entropy function satisfying

ψ(A;N, r) ≤ B · 2rβ (19)

for some constants B > 0 and β > 0 . Then with probability 1

1
4
≤ lim sup

N→∞
(N log log N)−1/2WN (A) ≤ C

for some constant C > 0, depending only on B, β and q.

The second entropy concept is based on the Hamming distance of sequences of integers. For
N ≥ 1 we define the distance of two sequences A and B of positive integers by

d(A,B;N) =
1
N

∑

n≤N

|1(n ∈ A)− 1(n ∈ B)|.

Given a class A of increasing sequences of positive integers we define the entropy function κ by

κ(A; δ,N) := sup {m : there exist A1, . . . , Am ∈ A such that d (Ai, Aj ; N) > δ for all i 6= j} . (20)

Clearly κ is a non-increasing function of δ ≥ 0.

Theorem 3 Let (ηk) be a sequence of independent random variables with uniform distribution (15)
over [0, 1). Let A be a class of increasing sequences of positive integers with entropy function κ(A; δ,N)
growing not faster than a polynomial in 1/δ (depending only on A). Then with probability 1

WN (A) ¿
√

N
(
log κ

(A; N−α, N
)

+ (log log N)1/2
)

for any α > 1/2.

The same result holds if ηk = {nkω}, where (nk) is a sequence of real numbers satisfying the Hadamard
gap condition (17).

As an example consider a Vapnik-Červonenkis (VC) class A in the set N of positive integers. For any
finite set F ⊂ N, let ∆A(F ) be the number of different subsets F ∩A,A ∈ A. For n = 1, 2, . . . let

mA(n) := max (∆A(F ) : card F = n)

Clearly mA(n) ≤ 2n. Let

v = V (A) :=
{

inf{n : mA(n) < 2n}
+∞ if mA(n) = 2n for all n.

If V (A) < +∞ then A is called a VC class in N. We recall a result of Dudley [7], Lemma 7.13 or
Dudley [8], p. 105 measuring the size of VC classes. Let Γ be the set of all laws on N of the form
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n−1
n∑

j=1

δx(j)

for unit point masses δx(j) at x(j) ∈ N, j = 1, 2, . . . , n; n = 1, 2, . . . where the x(j) need not be
distinct. For δ > 0 and γ ∈ Γ let

κ∗(A, γ; δ) := sup {m : there exist A1, . . . , Am ∈ A such that γ(Ai∆Aj) > δ for i 6= j}

and
κ∗(A; δ) := sup{κ(A, γ; δ) : γ ∈ Γ}.

Lemma 1 ([7], [8]). If A is a VC class in N with V (A) = v, then there is a constant K depending
only on v such that

κ∗(A; δ) ≤ Kδ−v| log δ|v for all δ > 0.

Hence if A is a VC class in N, the entropy function κ defined in (20) does not grow faster than
a polynomial in 1/δ.

Corollary 1 Let (ηk) be a sequence of independent random variables with uniform distribution (15)
over [0, 1) or ηk = {nkω} with a Hadamard lacunary (nk). Then if A is a VC class in N, with
probability 1 we have

WN (A) ¿
√

N log N.

In the following two results we consider the case when ηk = {nkω} with an arbitrary increasing
sequence (nk) of positive integers. If L denotes the collection of all integer valued arithmetic pro-
gressions pk = a + bk, k = 1, 2, . . ., a ≥ 0, b ≥ 1, then it is easy see that the entropy function ψ
satisfies

ψ(L; N, r) ≤ 22r r = 1, 2, . . . (21)

Theorem 4 Let (nk) be an increasing sequence of positive integers and let ηk = ηk(ω) = {nkω}. Let
A be a class of subsequences of N with entropy function ψ satisfying (19) for some positive constants
β and B. Then with probability 1 for any ε > 0

WN (A) ¿ N
β

1+β (log N)
3

1+β +ε if β > 1

¿ N
1
2 (log N)2+ε if β = 1

¿ N
1
2 (log N)

3
2+ε if β < 1.

Remark. The case β = 2 and (21) yields Theorem 1 in [19].
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Theorem 5 Let (nk) be an increasing sequence of positive integers and let ηk = ηk(ω) = {nkω}. Let
A be a class of increasing sequences of integers with entropy function κ(A; δ,N) ≤ Cδ−v for some
v ≥ 0, where C depends only on A. Then with probability 1

WN (A) ¿ N
v+1
v+2 (log N)

3
v+2+ε, ε > 0.

3 Proofs

In what follows, we will prove Theorem 4 and outline the idea of the proof of Theorem 3 in the
lacunary case, which is typical for the proof of the remaining results. Complete proofs of all results
and a number of further results will be given in our forthcoming paper [4].

Assume the conditions of Theorem 4. Fix N ≥ 1, r ≥ 1 and let (pk) be a fixed sequence in [1, N ]
such that (pk) ∈ AN (r). By the Erdős-Turán inequality (see e.g. [6], p. 15 or [13], p. 114) we have for
any 1 ≤ Q ≤ N

sup
0≤t≤1

∣∣∣∣∣∣
∑

pk≤Q

(
1(ηpk

(ω) ≤ t)− t
)
∣∣∣∣∣∣
≤ 6R

H
+ 6

∑

1≤h≤H

1
h

∣∣∣∣∣∣
∑

pk≤Q

e(hnpk
ω)

∣∣∣∣∣∣
.

Here R = #{k : pk ≤ Q}, e(x) = exp(2πix) and H ≥ 1 is arbitrary. Clearly R ≤ N and thus

max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∣
∑

pk≤Q

(
1(ηpk

(ω) ≤ t)− t
)
∣∣∣∣∣∣

2

≤ 72N2

H2
+ 72


 ∑

1≤h≤H

1
h

max
Q≤N

∣∣∣∣∣∣
∑

pk≤Q

e(hnpk
ω)

∣∣∣∣∣∣




2

.

By Hunt’s inequality (see e.g. [17]) we have

E


max

Q≤N

∣∣∣∣∣∣
∑

pk≤Q

e(hnpk
ω)

∣∣∣∣∣∣

2

 ≤ C

∑

pk≤N

1 ≤ CN2−(r−1)

and thus choosing H = N and using Minkowski’s inequality we get

E


max

Q≤N
sup

0≤t≤1

∣∣∣∣∣∣
∑

pk≤Q

(
1(ηpk

≤ t)− t
)
∣∣∣∣∣∣

2

 ¿ N2−r log2 N + 1 ¿ N2−r log2 N. (22)

(To justify the last step, we note that without loss of generality we can assume that N2−(r−1) ≥ 1,
since otherwise AN (r) is empty.) Since the number of sequences (pk) ∈ AN (r) is at most B · 2rβ by
the assumptions of Theorem 4, we have for any α > 0, τ > 0 (to be chosen suitably later),

P


 max

(pk)∈AN (r)
max
Q≤N

sup
0≤t≤1

∣∣∣∣∣∣
∑

pk≤Q

(
1(ηpk

≤ t)− t
)
∣∣∣∣∣∣
≥ 2Nα(log N)τ


 (23)

¿ N1−2α(log N)2−2τ · 2r(β−1).
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Without loss of generality we can assume that N2−(r−1) ≥ Nα(log N)τ , i.e.

2r ≤ 2N1−α(log N)−τ (24)

since otherwise the absolute value of the sum in (23) would be less than Nα(log N)τ . Summing the
probability bounds in (23) over all r subject to (24) and choosing α and τ according to the following
table

β α τ
> 1 β/(1 + β) (3 + ε)/(1 + β)

= 1 1
2 2 + ε

< 1 1
2

3
2 + ε

we obtain letting N = 2m+1, m = 1, 2, . . .

P


 max

2m<Q≤2m+1
max

(pk)∈A
sup

0≤t≤1

∣∣∣∣∣∣
∑

pk≤Q

(
1(ηpk

≤ t)− t
)
∣∣∣∣∣∣
≥ C∗2mαmτ


 ¿ (log 2m)−(1+ε′) ¿ m−(1+ε′)

for some C∗ > 0, ε′ > 0. We apply the convergence part of the Borel-Cantelli lemma and obtain the
conclusion of Theorem 4.

For the proof of Theorem 3 in the lacunary case define, for 0 ≤ s < t ≤ 1,

xn(s, t) := 1(s ≤ ηn < t)− (t− s).

We state the following maximal inequality.

Proposition 1 Let N ≥ 1 be an integer and let R ≥ 1. Suppose that ` := t − s ≥ N− 3
2 . Then for

some constant A ≥ 1 depending only on q and for any β > 0 we have as N →∞

P

(
max
Q≤N

∣∣∣∣∣
Q∑

k=1

xk(s, t)

∣∣∣∣∣ ≥ AR`1/32(N log log N)1/2

)
¿ exp(−16R`−1/32 log log N) + R−8βN−2β

where the constant implied by ¿ only depends on q and β.

An exponential bound of this kind is a crucial ingredient of all discrepancy estimates of LIL type.
The proof depends on a martingale approximation argument and can be modelled after the proof of
[18, Proposition 4.2.1]. The details are, however, long and technical and will be given in [4].

To deduce Theorem 3 from Proposition 1, fix 1/2 < α < 1 and 0 ≤ s < t ≤ 1. By the hypotheses
of the theorem, we can choose β > 0 such that

κ(A; δ,N) ¿ δ−β/2 (25)
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where the constant implied by ¿ depends only on A. For simplicity we set

κ(δ) := κ(A; δα, [1/δ]). (26)

By Proposition 1 we have for any sequence (pk) ⊂ N and R ≥ 1, 0 < ε ≤ 1/32 and t− s ≥ 2−3r/2 as
r →∞

P


max

Q≤2r

∣∣∣∣∣∣
∑

pk≤Q

xpk
(s, t)

∣∣∣∣∣∣
≥ AR2

1
2 r(t− s)ε(log κ(2−r) + (log r)

1
2 )




¿
{

exp(−16R(t− s)−ε log κ(2−r) log
1
2 r + R−8β2−2rβ if log κ(2−r) > log

1
2 r

exp(−16R(t− s)−ε log r) + R−8β2−2rβ if log κ(2−r) ≤ log
1
2 r

(27)

for some constant A ≥ 1. (In the case of the first line of (27) we apply Proposition 1 with R replaced
by R log κ(2−r)(log r)−1/2.) Let

δ := AR(t− s)ε2−r/2 (28)

and B = {(p(1)
k ), . . . , (p(M)

k )} a maximal set of sequences in A with pairwise distance > δ with respect
to the Hamming distance d(·, ·, 2r). Then

M = κ(A, δ, 2r) ≤ κ(A; 2−αr, 2r) = κ(2−r)

since

δ ≥ (t− s)ε2−r/2 ≥ 2−r(3ε/2+1/2) ≥ 2−αr

provided we choose ε > 0 so small that 3ε/2 + 1/2 < α. Clearly, for any (qk) ∈ A there is a
(pk) ∈ B with d((pk), (qk), 2r) ≤ δ, which implies that for any Q ≤ 2r the sums

∑
pk≤Q xpk

(s, t) and∑
qk≤Q xqk

(s, t) differ at most by δ2r = AR(t− s)ε2r/2. Hence using (27) we get

P


 max

(qk)∈A
max
Q≤2r

∣∣∣∣∣∣
∑

qk≤Q

xqk
(s, t)

∣∣∣∣∣∣
≥ 2AR2

1
2 r(t− s)ε(log κ(2−r) + log

1
2 r)




¿ exp
(
−8R(t− s)−ε(log κ(2−r) + log

1
2 r) log

1
2 r + log κ(2−r)

)
+ R−8βκ(2−r)2−2rβ

¿ exp(−4R(t− s)−ε log r) + R−8β2−3rβ/2

by distinguishing the cases log κ(2−r) > log
1
2 r and log κ(2−r) ≤ log

1
2 r and by using (25) in the

estimate of the very last term.

The proof of Theorem 3 can now by completed by a chaining argument similar to that in [18].

Remark. The first and third named authors are very sad to have to note that their friend and
coauthor Walter Philipp passed away unexpectedly on July 19, 2006 after a mountain tour near Graz,
Austria.
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